GHG Emissions Mitigation in the European Union Based on Labor Market Changes
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
- CB—carbon budget per capita
- CI—carbon intensity of an economy
- P—labor productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fitzgerald, J.B.; Schor, J.B.; Jorgenson, A.K. Working hours and carbon dioxide emissions in the United States, 2007–2013. Social Forces. 2018, 96, 1851–1874. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S. The direct impact of climate change on regional labor productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Marin, G.; Mazzanti, M. The evolution of environmental and labor productivity dynamics. J. Evol. Econ. 2013, 23, 357–399. [Google Scholar] [CrossRef]
- Takeda, S.; Arimura, T.H.; Sugino, M. Labor market distortions and welfare-decreasing international emissions trading. Environ. Resour. Econ. 2019, 74, 271–293. [Google Scholar] [CrossRef] [Green Version]
- Bilan, Y.; Mishchuk, H.; Roshchyk, I.; Kmecova, I. Analysis of Intellectual Potential and its Impact on the Social and Economic Development of European Countries. J. Compet. 2020, 1, 22–38. [Google Scholar] [CrossRef]
- Štreimikienė, D.; Mikalauskienė, A.; Mikalauskas, I. Comparative assessment of sustainable energy development in the Czech Republic, Lithuania and Slovakia. J. Compet. 2016, 8, 31–41. [Google Scholar]
- Jonek-Kowalska, I. Transformation of energy balances with dominant coal consumption in European economies and Turkey in the years 1990–2017. Oeconomia Copernic. 2019, 10, 627–647. [Google Scholar] [CrossRef] [Green Version]
- Filimonova, I.; Komarova, A.; Mishenin, M. Impact of the global green factor on the capitalization of oil companies in Russia. Oeconomia Copernicana. 2020, 11, 309–324. [Google Scholar] [CrossRef]
- Semenenko, I. Energy security of Ukraine in the context of its sustainable development. Equilib. Q. J. Econ. Econ. Policy 2016, 11, 537–555. [Google Scholar] [CrossRef] [Green Version]
- Balcerzak, A.P. Europe 2020 Strategy and Structural Diversity Between Old and New Member States. Application of Zero-unitarization Method for Dynamic Analysis in the Years 2004–2013. Econ. Sociol. 2015, 8, 190–210. [Google Scholar] [CrossRef]
- Balcerzak, A.P. Europe 2020 Climate Change and Energy Objectives in EU-15. In Proceedings of the 11th International Days of Statistics and Economics. Conference Proceedings, Prague, Czech Republic, 6–8 September 2018; pp. 88–91. [Google Scholar]
- Balcerzak, A.P. Cluster analysis of European economies in regard to Europe 2020 Climate Change and Energy Objectives. In Proceedings of the International Scientific Conference Quantitative Methods in Economics Multiple Criteria Decision Making XIX, 23–25 May 2018; Letra Edu: Trenčianske Teplice, Slovakia, 2018; pp. 7–14. [Google Scholar]
- Balcerzak, A.P. Europe 2020 climate change and energy objectives in Central European countries. Measurement via taxonomic measure of development with generalized distance measure GDM. In Proceedings of the 36th International conference Mathematical Methods in Economics MME, 12–14 September 2018, Prague, Conference Proceedings; MatfyzPress, Publishing House of the Faculty of Mathematics and Physics Charles University: Prague, Czech Republic, 2018; pp. 7–12. [Google Scholar]
- Szyja, P. The role of the state in creating green economy. Oeconomia Copernic. 2016, 7, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Pimonenko, T.; Lyulyov, O.; Chygryn, O.; Palienko, M. Environmental Performance Index: Relation between social and economic welfare of the countries. Environ. Econ. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tjoek, P.W.; Wu, P.-I. Exploring the environmental Kuznets curve for CO2 and SO2 for Southeast Asia in the 21st century context. Environ. Econ. 2018, 9, 7–21. [Google Scholar] [CrossRef]
- Li, R.; Sineviciene, L.; Melnyk, L.; Kubatko, O.; Karintseva, O.; Lyulyov, O. Economic and environmental convergence of transformation economy: The case of China. Probl. Perspect. Manag. 2019, 17, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Chovancová, J.; Tej, J. Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 235–251. [Google Scholar] [CrossRef]
- Myronenko, M.; Polova, O.; Prylutskyi, A.; Smoglo, O. Financial and economic aspects of bioenergy development in the context of providing energy independence of Ukraine. Probl. Perspect. Manag. 2017, 15, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Simionescu, M.; Albu, L.L.; RaileanuSzeles, M.; Bilan, Y. The impact of biofuels utilisation in transport on the sustainable development in the European Union. Technol. Econ. Dev. Econ. 2017, 23, 667–686. [Google Scholar] [CrossRef]
- Popp, J.; Kot, S.; Lakner, Z.; Oláh, J. Biofuel use: Peculiarities and implications. J. Secur. Sustain. Issues 2018, 7, 477–493. [Google Scholar] [CrossRef]
- Oláh, J.; Krisán, E.; Kiss, A.; Lakner, Z.; Popp, J. PRISMA Statement for Reporting Literature Searches in Systematic Reviews of the Bioethanol Sector. Energies 2020, 13, 2323. [Google Scholar] [CrossRef]
- Liao, H.; Long, Y.; Ming, T.; Mardani, A.; Xu, J. Low carbon supplier selection using a hesitant fuzzy linguistic span method integrating the analytic network. Transform. Bussiness Econ. 2019, 18, 67–88. [Google Scholar]
- Hu, X.; Liu, C. Carbon productivity: A case study in the Australian construction industry. J. Clean. Prod. 2016, 112, 2354–2362. [Google Scholar] [CrossRef]
- Ouyang, X.; Lin, B. An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector. Renew. Sustain. Energy Rev. 2015, 45, 838–849. [Google Scholar] [CrossRef] [Green Version]
- Mariyakhan, K.; Mohamued, E.A.; Khan, M.A.; Popp, J.; Oláh, J. Does the Level of Absorptive Capacity Matter for Carbon Intensity? Evidence from the USA and China. Energies 2020, 13, 407. [Google Scholar] [CrossRef] [Green Version]
- Tnani, M. Relationships between economic growth, CO2 emissions, and innovation for nations with the highest patent applications. Environ. Econ. 2018, 9, 47–69. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cheng, S.; Nikic, V.; Song, M. Quo Vadis? Major Players in Global Coal Consumption and Emissions Reduction. Transform. Bus. Econ. 2018, 17, 112–133. [Google Scholar]
- Simanaviciene, Z.; Volochovic, A.; Cibinskiene, A. Features of energy saving potential in Lithuanian households. Equilib. Q. J. Econ. Econ. Policy 2016, 11, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Simas, M.; Wood, R.; Hertwich, E. Labor embodied in trade: The role of labor and energy productivity and implications for greenhouse gas emissions. J. Ind. Ecol. 2015, 19, 343–356. [Google Scholar] [CrossRef]
- Resler, M.; Kurylo, M.; Logvinenko, M.; Makhinchuk, V.; Ivanyshchuk, A. Analysis of current trends in innovation and investment activity of Ukrainian metallurgical enterprises. Invest. Manag. Financial Innov. 2018, 15, 116–128. [Google Scholar] [CrossRef]
- Mariia, V.; Dykha, N.P.; Tanasiienko, N.; Galina, M.K.G. Ensuring of labor productivity growth in the context of investment and innovation activity intensification. Probl. Perspect. Manag. 2017, 15, 197–208. [Google Scholar] [CrossRef]
- Ilyash, O.; Dzhadan, I.; Ostasz, G. The influence of the industry’s innovation activities indices on the industrial products’ revenue of Ukraine. Econ. Sociol. 2018, 11, 317–331. [Google Scholar] [CrossRef]
- Kharlamova, G.; Stavytskyy, A.; Zarotiadis, G. The impact of technological changes on income inequality: The EU states case study. J. Int. Stud. 2018, 11, 76–94. [Google Scholar] [CrossRef] [PubMed]
- O’neill, B.C.; Dalton, M.; Fuchs, R.; Jiang, L.; Pachauri, S.; Zigova, K. Global demographic trends and future carbon emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 17521–17526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savitz, R.; Dan Gavriletea, M. Climate change and insurance. Transform. Bus. Econ. 2019, 18, 21–43. [Google Scholar]
- Hnatyshyn, M. Decomposition analysis of the impact of economic growth on ammonia and nitrogen oxides emissions in the European Union. J. Int. Stud. 2018, 11, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Sansyzbayeva, G.; Temerbulatova, Z.; Zhidebekkyzy, A.; Ashirbekova, L. Evaluating the transition to green economy in Kazakhstan: A synthetic control approach. J. Int. Stud. 2020, 13, 324–341. [Google Scholar] [CrossRef]
- Piwowar, A. Challenges associated with environmental protection in rural areas of Poland: Empirical studies’ results. Econ. Sociol. 2020, 13, 217–229. [Google Scholar] [CrossRef]
- Yoo, S.; Heshmati, A. The Effects of Environmental Regulations on the Manufacturing Industry’s Performance: A Comparison of Green and Non-Green Sectors in Korea. Energies 2019, 12, 2296. [Google Scholar] [CrossRef] [Green Version]
- Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. Sustainable economic development and greenhouse gas emissions: The dynamic impact of renewable energy consumption, GDP, and corruption. Energies 2019, 12, 3289. [Google Scholar] [CrossRef] [Green Version]
- Bilan, Y.; Mishchuk, H.; Samoliuk, N.; Yurchyk, H. Impact of Income Distribution on Social and Economic Well-Being of the State. Sustainability 2020, 12, 429. [Google Scholar] [CrossRef] [Green Version]
- Mishchuk, H.; Bilan, S.; Yurchyk, H.; Akimova, L.; Navickas, M. Impact of the shadow economy on social safety: The experience of Ukraine. Econ. Sociol. 2020, 13, 289–303. [Google Scholar] [CrossRef]
- Bilan, Y.; Streimikiene, D.; Vasylieva, T.; Lyulyov, O.; Pimonenko, T.; Pavlyk, A. Linking between Renewable Energy, CO2 Emissions, and Economic Growth: Challenges for Candidates and Potential Candidates for the EU Membership. Sustainability 2019, 11, 1528. [Google Scholar] [CrossRef] [Green Version]
- Banaszewska, M. The determinants of local public investments in Poland. Equilib. Q. J. Econ. Econ. Policy 2018, 13, 105–121. [Google Scholar] [CrossRef]
- Zygmunt, J. Entrepreneurial activity drivers in the transition economies. Evidence from the Visegrad countries. Equilib. Q. J. Econ. Econ. Policy 2018, 13, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Nässén, J.; Larsson, J. Would shorter working time reduce greenhouse gas emissions? An analysis of time use and consumption in Swedish households. Environ. Plan. C Gov. Policy 2015, 33, 726–745. [Google Scholar] [CrossRef]
- Stronge, W.; Harper, A.; Guizzo, D. The Shorter Working Week: A Radical and Pragmatic Proposal. Autonomy and Four Day Week Campaign. 2019. Available online: https://docs.wixstatic.com/ugd/6a142f_36162778914a46b3a00dcd466562fce7.pdf (accessed on 1 September 2020).
- Maroušek, J.; Strunecký, O.; Kolář, L.; Vochozka, M.; Kopecky, M.; Maroušková, A.; Batt, J.; Poliak, M.; Šoch, M.; Bartoš, P.; et al. Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Mardoyan, A.; Braun, P. Analysis of Czech Subsidies for Solid Biofuels. Int. J. Green Energy 2015, 12, 405–408. [Google Scholar] [CrossRef]
- Maroušek, J. Economic analysis of the pressure shockwave disintegration process. Int. J. Green Energy 2015, 12, 1232–1235. [Google Scholar] [CrossRef]
- Maroušek, J.; Kolář, L.; Strunecký, O.; Kopecky, M.; Bartoš, P.; Maroušková, A.; Cudlínová, E.; Konvalina, P.; Šoch, M.; Vaníčková, R.; et al. Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. J. Clean. Prod. 2020, 272, 123015. [Google Scholar] [CrossRef]
- Maroušek, J.; Strunecký, O.; Stehel, V. Biochar farming: Defining economically perspective applications. Clean Technol. Environ. Policy 2019, 21, 1389–1395. [Google Scholar] [CrossRef]
- Jandačka, J.; Mičieta, J.; Holubčík, M.; Nosek, R. Experimental Determination of Bed Temperatures during Wood Pellet Combustion. Energy Fuels 2017, 31, 2919–2926. [Google Scholar] [CrossRef]
- Lenhard, R.; Malcho, M.; Jandačka, J. Modelling of heat transfer in the evaporator and condenser of the working fluid in the heat pipe. Heat Transf. Eng. 2019, 40, 215–226. [Google Scholar] [CrossRef]
- Hadzima, B.; Janeček, M.; Estrin, Y.; Kim, H.S. Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater. Sci. Eng. A 2007, 462, 243–247. [Google Scholar] [CrossRef]
Variable | Coefficient | t-Statistic | Prob. |
---|---|---|---|
Constant | −4.528826 | −1.606357 | 0.1096 |
LOG_HOURS Austria | 2.374706 | 3.177634 | 0.0017 |
LOG_HOURS Belgium | 2.523723 | 3.330355 | 0.0010 |
LOG_HOURS Bulgaria | 2.323269 | 3.069366 | 0.0024 |
LOG_HOURS Croatia | 2.095546 | 2.771682 | 0.0060 |
LOG_HOURS Cyprus | 1.824839 | 2.421196 | 0.0163 |
LOG_HOURS Czech Republic | 2.524953 | 3.352928 | 0.0009 |
LOG_HOURS Denmark | 2.359422 | 3.062474 | 0.0025 |
LOG_HOURS Estonia | 2.031629 | 2.673771 | 0.0081 |
LOG_HOURS Finland | 2.370042 | 3.104394 | 0.0022 |
LOG_HOURS France | 2.899233 | 3.816429 | 0.0002 |
LOG_HOURS Germany | 3.053543 | 4.040827 | 0.0001 |
LOG_HOURS Greece | 2.456113 | 3.294993 | 0.0011 |
LOG_HOURS Hungary | 2.344663 | 3.083028 | 0.0023 |
LOG_HOURS Ireland | 2.353352 | 3.078592 | 0.0023 |
LOG_HOURS Italy | 2.896314 | 3.805309 | 0.0002 |
LOG_HOURS Latvia | 1.887982 | 2.484152 | 0.0137 |
LOG_HOURS Lithuania | 2.064334 | 2.695609 | 0.0076 |
LOG_HOURS Luxembourg | 1.912182 | 2.511378 | 0.0127 |
LOG_HOURS Malta | 1.535253 | 2.026685 | 0.0439 |
LOG_HOURS Netherlands | 2.662444 | 3.505251 | 0.0006 |
LOG_HOURS Poland | 2.807210 | 3.731150 | 0.0002 |
LOG_HOURS Portugal | 2.357358 | 3.126832 | 0.0020 |
LOG_HOURS Romania | 2.528473 | 3.324473 | 0.0010 |
LOG_HOURS Slovak Republic | 2.236623 | 2.957027 | 0.0034 |
LOG_HOURS Slovenia | 2.000971 | 2.652824 | 0.0086 |
LOG_HOURS Spain | 2.803499 | 3.708347 | 0.0003 |
LOG_HOURS Sweden | 2.329846 | 3.065572 | 0.0024 |
LOG_HOURS United Kingdom | 2.914551 | 3.884871 | 0.0001 |
Variable | Coefficient | t-Statistic | Prob. | Fixed Effects in Cross-Sections |
---|---|---|---|---|
Constant | 3.084282 | 2.602044 | 0.0100 | - |
LOG_PRODUCTIVITY Austria | 0.418470 | 0.169037 | 0.8659 | −0.645994 |
LOG_PRODUCTIVITY Belgium | –4.228235 | −1.254570 | 0.2111 | 22.35009 |
LOG_PRODUCTIVITY Bulgaria | −0.697473 | −1.760887 | 0.0798 | 3.637926 |
LOG_PRODUCTIVITY Croatia | −1.973733 | −2.384460 | 0.0181 | 8.592227 |
LOG_PRODUCTIVITY Cyprus | 1.649082 | 3.376769 | 0.0009 | −8.203394 |
LOG_PRODUCTIVITY Czech Republic | −1.529256 | −1.161062 | 0.2470 | 8.494610 |
LOG_PRODUCTIVITY Denmark | −2.870355 | −4.242095 | 0.0000 | 14.57087 |
LOG_PRODUCTIVITY Estonia | 0.571981 | 1.232132 | 0.2194 | −2.507345 |
LOG_PRODUCTIVITY Finland | 3.265985 | 4.334859 | 0.0000 | −14.24606 |
LOG_PRODUCTIVITY France | 5.846247 | 1.752436 | 0.0813 | −24.65584 |
LOG_PRODUCTIVITY Germany | 1.175201 | 0.617821 | 0.5374 | −1.696959 |
LOG_PRODUCTIVITY Greece | 1.554722 | 4.723170 | 0.0000 | −5.316457 |
LOG_PRODUCTIVITY Hungary | −1.452678 | −2.192440 | 0.0295 | 7.277454 |
LOG_PRODUCTIVITY Ireland | −0.246748 | −1.159395 | 0.2477 | 2.294721 |
LOG_PRODUCTIVITY Italy | 3.057773 | 4.059997 | 0.0001 | −11.28358 |
LOG_PRODUCTIVITY Latvia | −0.308320 | −0.880025 | 0.3799 | 0.652280 |
LOG_PRODUCTIVITY Lithuania | −0.631010 | −2.231207 | 0.0268 | 2.656333 |
LOG_PRODUCTIVITY Luxembourg | 0.188546 | 0.228106 | 0.8198 | −1.496400 |
LOG_PRODUCTIVITY Malta | −1.763441 | −1.804239 | 0.0727 | 6.080273 |
LOG_PRODUCTIVITY Netherlands | 1.079677 | 1.113348 | 0.2669 | −2.854071 |
LOG_PRODUCTIVITY Poland | −0.178439 | −0.635034 | 0.5261 | 3.663037 |
LOG_PRODUCTIVITY Portugal | −0.652947 | −0.475896 | 0.6347 | 4.048352 |
LOG_PRODUCTIVITY Romania | −1.044747 | −3.784005 | 0.0002 | 5.915631 |
LOG_PRODUCTIVITY Slovak Republic | −1.710048 | −2.574278 | 0.0108 | 8.241236 |
LOG_PRODUCTIVITY Slovenia | 2.180342 | 1.690661 | 0.0925 | −9.711269 |
LOG_PRODUCTIVITY Spain | −3.445807 | −2.310405 | 0.0219 | 18.78657 |
LOG_PRODUCTIVITY Sweden | 3.854284 | 2.834242 | 0.0051 | −17.29007 |
LOG_PRODUCTIVITY United Kingdom | 4.460316 | 3.769067 | 0.0002 | −17.35418 |
Variable | Coefficient | t-Statistic | Prob. | Fixed Effects in Cross-Sections |
---|---|---|---|---|
Constant | 7.595205 | 42.68101 | 0.0000 | - |
LOG_target labor utilization Austria | 1.290708 | 2.325966 | 0.0210 | 1.198593 |
LOG_ target labor utilization Belgium | 0.887833 | 4.562631 | 0.0000 | 0.022864 |
LOG_ target labor utilization Bulgaria | 0.751750 | 4.321717 | 0.0000 | −1.360586 |
LOG_ target labor utilization Croatia | 1.193971 | 6.566906 | 0.0000 | −0.139935 |
LOG_ target labor utilization Cyprus | 0.780924 | 5.207532 | 0.0000 | −2.734326 |
LOG_ target labor utilization Czech Republic | 0.984679 | 3.442137 | 0.0007 | 0.198950 |
LOG_ target labor utilization Denmark | 1.035592 | 7.693056 | 0.0000 | 0.110846 |
LOG_ target labor utilization Estonia | 1.329022 | 4.083331 | 0.0001 | −1.026821 |
LOG_ target labor utilization Finland | 2.520250 | 5.235673 | 0.0000 | 3.748187 |
LOG_ target labor utilization France | 1.387689 | 3.519021 | 0.0005 | 3.297188 |
LOG_ target labor utilization Germany | 0.955921 | 1.446582 | 0.1496 | 2.397611 |
LOG_ target labor utilization Greece | 1.562980 | 6.447787 | 0.0000 | 2.624011 |
LOG_ target labor utilization Hungary | 1.189989 | 5.218068 | 0.0000 | 0.523914 |
LOG_ target labor utilization Ireland | 0.335334 | 3.472294 | 0.0006 | −2.167776 |
LOG_ target labor utilization Italy | 1.503959 | 6.438319 | 0.0000 | 4.089052 |
LOG_ target labor utilization Latvia | 0.447631 | 1.561165 | 0.1201 | −3.658754 |
LOG_ target labor utilization Lithuania | 0.373441 | 4.342400 | 0.0000 | −3.283039 |
LOG_ target labor utilization Luxembourg | 0.566637 | 3.510276 | 0.0006 | −3.367340 |
LOG_ target labor utilization Malta | −0.168396 | −0.934250 | 0.3513 | −6.899195 |
LOG_ target labor utilization Netherlands | 0.946009 | 2.347054 | 0.0199 | 0.601370 |
LOG_ target labor utilization Poland | 0.244986 | 1.308398 | 0.1923 | −0.796262 |
LOG_ target labor utilization Portugal | 1.158827 | 4.488078 | 0.0000 | 0.769669 |
LOG_ target labor utilization Romania | 0.659273 | 6.155120 | 0.0000 | −0.498780 |
LOG_ target labor utilization Slovak Republic | 1.056760 | 4.857822 | 0.0000 | −0.363325 |
LOG_ target labor utilization Slovenia | 1.539481 | 5.506877 | 0.0000 | 0.188531 |
LOG_ target labor utilization Spain | 1.028870 | 6.440760 | 0.0000 | 1.974870 |
LOG_ target labor utilization Sweden | 1.257058 | 3.422819 | 0.0008 | 0.384713 |
LOG_ target labor utilization United Kingdom | 1.548574 | 5.908787 | 0.0000 | 4.165770 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, M.; Bilan, Y.; Zawadzki, P.; Wojciechowski, A.; Rabe, M. GHG Emissions Mitigation in the European Union Based on Labor Market Changes. Energies 2021, 14, 465. https://doi.org/10.3390/en14020465
Simionescu M, Bilan Y, Zawadzki P, Wojciechowski A, Rabe M. GHG Emissions Mitigation in the European Union Based on Labor Market Changes. Energies. 2021; 14(2):465. https://doi.org/10.3390/en14020465
Chicago/Turabian StyleSimionescu, Mihaela, Yuriy Bilan, Piotr Zawadzki, Adam Wojciechowski, and Marcin Rabe. 2021. "GHG Emissions Mitigation in the European Union Based on Labor Market Changes" Energies 14, no. 2: 465. https://doi.org/10.3390/en14020465