Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads
Abstract
:1. Introduction
2. Methods
2.1. Baseline Model Selection and Main Assumptions
2.2. Design of Experiments
3. Results and Discussion
3.1. Development of the Meta-Models
3.2. Comparison of the Accuracy of FFD and LHS
3.2.1. Comparison of the Meta-Model Accuracy for FFD Validation Set
3.2.2. Comparison of the Meta-Model Accuracy for LHS Validation Set
3.3. Analysis of Factor Influences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ACR | air leakage (ACH) |
AR | aspect ratio |
BHCL | building heating and cooling load |
CCD | central composite design |
CH | ceiling height (m) |
coefficient | |
FA | floor area (m2) |
FFD | fractional factorial design |
total number of data | |
LHS | Latin hypercube sampling |
degree of freedom, number of validation points | |
OR | orientation (degrees) |
PH | plenum height (m) |
RMSE | root mean square errors |
SHGC | solar heat gain coefficients (%) |
WDI | window insulation (W/m2 K) |
WI | wall insulation (W/m2 K) |
WWR | window-to-wall ratio (%) |
design variables | |
TRNSYS estimated loads (k Wh/m2 yr) | |
response variable | |
predicted loads (k Wh/m2 yr) | |
residual of the regression | |
Subscripts | |
integer counter |
Appendix A
Fractional Factorial Sampling (Meta-Model a-1, Sampling Number: 512) | Latin Hypercube Sampling (Meta-Model b-2, Sampling Number: 512) | ||||||
---|---|---|---|---|---|---|---|
Factor | Coefficient | Factor | Coefficient | Factor | Coefficient | Factor | Coefficient |
(Intercept) | −19.74 | FA:SHGC | 5.09E−05 | (Intercept) | −26.5 | FA:WDI | −0.00316 |
AR | −0.4107 | FA:WWR | −5.8E−05 | AR | −1.009 | FA:SHGC | 0.000189 |
FA | 0.004394 | FA:WI | −0.00482 | FA | 0.004271 | FA:WWR | −7.8E−05 |
CH | 4.888 | FA:ACR | −0.00116 | CH | 6.91 | FA:WI | −0.00312 |
PH | 2.921 | CH:WDI | 1.54 | PH | −1.152 | FA:OR | −5.8E−06 |
WDI | −2.606 | CH:SHGC | −0.05731 | WDI | −0.215 | FA:I(SHGC^2) | −1.9E−06 |
SHGC | 0.1946 | CH:WWR | 0.03245 | SHGC | 1.254 | FA:I(WDI^2) | 0.000439 |
WWR | 0.0607 | CH:WI | 2.985 | WWR | 0.1274 | CH:WDI | 3.798 |
WI | 11.65 | CH:ACR | 21.2 | WI | 1.113 | CH:SHGC | −0.1626 |
ACR | −9.729 | PH:WDI | 1.462 | ACR | −18.79 | CH:WWR | 0.03005 |
OR | −0.0115 | PH:SHGC | −0.0389 | OR | −0.05114 | CH:WI | 6.2 |
AR:FA | −0.00023 | PH:WWR | 0.04828 | I(SHGC^2) | −0.01724 | CH:ACR | 20.66 |
AR:CH | 0.2574 | PH:WI | 4.248 | I(WDI^2) | −1.113 | CH:OR | 0.01076 |
AR:WDI | 0.3186 | PH:ACR | 7.721 | AR:PH | 1.001 | CH:I(SHGC^2) | 0.001321 |
AR:SHGC | −0.0069 | WDI:SHGC | −0.02956 | AR:WDI | 1.258 | CH:I(WDI^2) | −0.4713 |
AR:WWR | 0.01086 | WDI:WWR | 0.1064 | AR:SHGC | −0.05625 | PH:WDI | 0.9934 |
AR:OR | 0.002964 | WDI:WI | 0.6382 | AR:OR | 0.007653 | PH:SHGC | −0.102 |
FA:CH | −0.00068 | WDI:ACR | 1.479 | AR:I(SHGC^2) | 0.000671 | PH:WWR | 0.04976 |
FA:PH | −0.00124 | WDI:OR | 0.001436 | AR:I(WDI^2) | −0.2225 | PH:WI | 7.536 |
FA:WDI | −0.00171 | SHGC:WWR | −0.00271 | FA:CH | −0.00129 | PH:ACR | 10.43 |
Fractional Factorial Sampling (Meta-Model a-1, Sampling Number: 512) | Latin Hypercube Sampling (Meta-Model b-2, Sampling Number: 512) | ||||||
---|---|---|---|---|---|---|---|
Factor | Coefficient | Factor | Coefficient | Factor | Coefficient | Factor | Coefficient |
(Intercept) | 64.26 | FA:WI | 0.002763 | (Intercept) | 56.58 | FA:WDI | 0.00051 |
AR | −1.47 | FA:ACR | −0.00197 | AR | −2.57 | FA:SHGC | −0.00017 |
FA | 0.007343 | CH:SHGC | 0.07293 | FA | 0.009083 | FA:WWR | −7.7E−05 |
CH | −2.811 | CH:WWR | 0.07476 | CH | −1.513 | FA:I(SHGC^2) | 6.71E−07 |
PH | −2.543 | PH:WDI | −0.5328 | PH | −1.738 | CH:SHGC | 0.06898 |
WDI | −3.046 | PH:SHGC | 0.08419 | WDI | −0.2447 | CH:WWR | 0.07604 |
SHGC | −0.1781 | PH:WWR | 0.05117 | SHGC | −0.01485 | PH:SHGC | 0.07062 |
WWR | −0.2029 | WDI:SHGC | 0.05068 | WWR | −0.313 | PH:WWR | 0.04219 |
WI | −11.52 | WDI:WWR | −0.03779 | WI | −9.937 | PH:OR | 0.01052 |
ACR | −13.18 | WDI:ACR | 2.941 | ACR | −16.71 | WDI:SHGC | 0.2018 |
OR | −0.02924 | SHGC:WWR | 0.008425 | OR | −0.04141 | WDI:WWR | −0.1112 |
AR:FA | −0.0002 | SHGC:WI | −0.02208 | I(SHGC^2) | 0.000367 | WDI:ACR | 6.495 |
AR:WDI | −0.1019 | SHGC:ACR | −0.09084 | I(WDI^2) | 0.1003 | WDI:I(SHGC^2) | −0.00488 |
AR:SHGC | 0.02076 | SHGC:OR | −0.00013 | AR:PH | −0.7593 | SHGC:WWR | 0.01565 |
AR:WWR | 0.01458 | WWR:WI | 0.06953 | AR:SHGC | 0.07467 | SHGC:ACR | −0.3382 |
AR:OR | 0.02109 | WI:ACR | 5.886 | AR:WWR | 0.03442 | SHGC:I(WDI^2) | −0.09947 |
FA:CH | −0.00092 | AR:OR | 0.02044 | WWR:WI | 0.1422 | ||
FA:WDI | 0.000441 | AR:I(SHGC^2) | −0.00061 | WWR:ACR | 0.05938 | ||
FA:SHGC | −0.00011 | AR:I(WDI^2) | −0.05166 | WWR:I(SHGC^2) | −9E−05 | ||
FA:WWR | −8.7E−05 | FA:CH | −0.0015 | WWR:I(WDI^2) | 0.01679 |
References
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy consumption and efficiency in buildings: Current status and future trends. J. Clean. Prod. 2015, 109, 118–130. [Google Scholar] [CrossRef]
- Large Building Energy Consumption Rankings Revealed | Seoul Information & Communication Plaza (Public Information). 2018. Available online: https://opengov.seoul.go.kr/press/18994915 (accessed on 1 February 2020).
- Gratia, E.; De Herde, A. A simple design tool for the thermal study of an office building. Energy Build. 2002, 34, 279–289. [Google Scholar] [CrossRef]
- Chlela, F.; Husaunndee, A.; Inard, C.; Riederer, P. A new methodology for the design of low energy buildings. Energy Build. 2009, 41, 982–990. [Google Scholar] [CrossRef]
- Jaffal, I.; Inard, C.; Ghiaus, C. Fast method to predict building heating demand based on the design of experiments. Energy Build. 2009, 41, 669–677. [Google Scholar] [CrossRef]
- Hygh, J.S.; DeCarolis, J.F.; Hill, D.B.; Ranji Ranjithan, S. Multivariate regression as an energy assessment tool in early building design. Build. Environ. 2012, 57, 165–175. [Google Scholar] [CrossRef]
- Gong, X.; Akashi, Y.; Sumiyoshi, D. Optimization of passive design measures for residential buildings in different Chinese areas. Build. Environ. 2012, 58, 46–57. [Google Scholar] [CrossRef]
- Catalina, T.; Iordache, V.; Caracaleanu, B. Multiple regression model for fast prediction of the heating energy demand. Energy Build. 2013, 57, 302–312. [Google Scholar] [CrossRef]
- Xu, J.; Kim, J.-H.; Hong, H.; Koo, J. A systematic approach for energy efficient building design factors optimization. Energy Build. 2015, 89, 87–96. [Google Scholar] [CrossRef]
- Jaffal, I.; Inard, C. A metamodel for building energy performance. Energy Build. 2017, 151, 501–510. [Google Scholar] [CrossRef]
- Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-Objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy 2016, 170, 293–303. [Google Scholar] [CrossRef]
- Yong, S.-G.; Kim, J.; Cho, J.; Koo, J. Meta-Models for building energy loads at an arbitrary location. J. Build. Eng. 2019, 25, 100823. [Google Scholar] [CrossRef]
- Li, A.; Xiao, F.; Fan, C.; Hu, M. Development of an ANN-based building energy model for information-poor buildings using transfer learning. Build. Simul. 2021, 14, 89–101. [Google Scholar] [CrossRef]
- Lee, S.; Cho, S.; Kim, S.-H.; Kim, J.; Chae, S.; Jeong, H.; Kim, T. Deep neural network approach for prediction of heating energy consumption in old houses. Energies 2020, 14, 1. [Google Scholar] [CrossRef]
- Vakharia, V.; Vaishnani, S.; Thakker, H. Appliances Energy Prediction Using Random Forest Classifier; Springer: Singapore, 2021; pp. 405–410. [Google Scholar]
- Thrampoulidis, E.; Mavromatidis, G.; Lucchi, A.; Orehounig, K. A machine learning-based surrogate model to approximate optimal building retrofit solutions. Appl. Energy 2021, 281, 116024. [Google Scholar] [CrossRef]
- Aghaei Pour, P.; Rodemann, T.; Hakanen, J.; Miettinen, K. Surrogate assisted interactive multiobjective optimization in energy system design of buildings. Optim. Eng. 2021, 1–25. [Google Scholar] [CrossRef]
- Heckert, N.A.; Filliben, J.J.; Croarkin, C.M.; Hembree, B.; Guthrie, W.F.; Tobias, P.; Prinz, J. Handbook 151: NIST/SEMATECH e-Handbook of Statistical Methods; NIST: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Yong, S.G.; Kim, J.H.; Gim, Y.; Kim, J.; Cho, J.; Hong, H.; Baik, Y.J.; Koo, J. Impacts of building envelope design factors upon energy loads and their optimization in US standard climate zones using experimental design. Energy Build. 2017, 141, 1–15. [Google Scholar] [CrossRef]
- Antoy, J. Design of Experiments for Engineers and Scientists: Second Edition, 2nd ed.; Elsevier Ltd: Amsterdam, The Netherlands, 2014; ISBN 9780080994178. [Google Scholar]
- Güngör, S.; Ceyhan, U.; Karadeniz, Z.H. Optimization of heat transfer in a grooved pipe model by Stochastic Algorithms and DOE based RSM. Int. J. Therm. Sci. 2021, 159, 106634. [Google Scholar] [CrossRef]
- Jaffal, I.; Inard, C.; Bozonnet, E. Toward integrated building design: A parametric method for evaluating heating demand. Appl. Therm. Eng. 2012, 40, 267–274. [Google Scholar] [CrossRef]
- Delgarm, N.; Sajadi, B.; Azarbad, K.; Delgarm, S. Sensitivity analysis of building energy performance: A simulation-based approach using OFAT and variance-based sensitivity analysis methods. J. Build. Eng. 2018, 15, 181–193. [Google Scholar] [CrossRef]
- Gramacy, R.B. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Tian, W.; Choudhary, R. A probabilistic energy model for non-domestic building sectors applied to analysis of school buildings in greater London. Energy Build. 2012, 54, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hopfe, C.J.; Hensen, J.L.M. Uncertainty analysis in building performance simulation for design support. Energy Build. 2011, 43, 2798–2805. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, Y.; Korkmaz, K.; Göksal Özbalta, T.; Arsan, Z.D. An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings. Appl. Energy 2012, 93, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Struck, C.; Jan, H.; Kotek, P. On the application of uncertainty and sensitivity analysis with abstract building performance simulation tools. J. Build. Phys. 2009, 33, 5–27. [Google Scholar] [CrossRef] [Green Version]
- Ballarini, I.; Corrado, V. Analysis of the building energy balance to investigate the effect of thermal insulation in summer conditions. Energy Build. 2012, 52, 168–180. [Google Scholar] [CrossRef]
- De Wilde, P.; Tian, W. Predicting the performance of an office under climate change: A study of metrics, sensitivity and zonal resolution. Energy Build. 2010, 42, 1674–1684. [Google Scholar] [CrossRef]
- Tian, W. A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 2013, 20, 411–419. [Google Scholar] [CrossRef]
- De Wit, S.; Augenbroe, G. Analysis of uncertainty in building design evaluations and its implications. Energy Build. 2002, 34, 951–958. [Google Scholar] [CrossRef]
- Pourreza, F.; Mousazadeh, M.; Basim, M.C. An efficient method for incorporating modeling uncertainties into collapse fragility of steel structures. Struct. Saf. 2021, 88, 102009. [Google Scholar] [CrossRef]
- Kang, S.; Yong, S.-G.; Kim, J.; Jeon, H.; Cho, H.; Koo, J. Automated processes of estimating the heating and cooling load for building envelope design optimization. Build. Simul. 2018, 11, 219–233. [Google Scholar] [CrossRef]
- Korea Energy Management Corporation. Explanation of Energy Saving Design Standard in Buildings in Innovation City; Korea Energy Management Corporation: Yongin, Korea, 2011. [Google Scholar]
- Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; et al. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock; NREL: Golden, CO, USA, 2011. [Google Scholar]
- ASHRAE. Standard 90.1-2004. Energy Standard for Building Except Low-Rise Residential Buildings; ASHRAE: Atlanta, GA, USA, 2004; p. 176. [Google Scholar]
- Gowri, K.; Winiarski, D.W.; Jarnagin, R.E. Infiltration Modeling Guidelines for Commercial Building Energy Analysis; Pacific Northwest National Lab.: Richland, WA, USA; p. 2.
- pyDOE: The experimental design package for python—pyDOE 0.3.6 documentation, (n.d.). Available online: https://pythonhosted.org/pyDOE/#credits (accessed on 1 February 2020).
- R.C. Team. R: A language and Environment for Statistical Computing; R.C. Team: Vienna, Austria, 2017. [Google Scholar]
Weather data | Seoul.TMY2 (Climate zone 4) |
Set temperature | 26 °C in Cooling season and 20 °C in Heating season [35] |
Internal heat gain [36,37] | People: 0.1 people/m2 Lighting: 12 W/m2 Equipment: 16 W/m2 Schedule: Taken from [35,36] |
Building load [36,37] | U-value of exterior wall: 0.365 W/m2 K U-value of window: 2.84 W/m2 K SHGC of window: 0.4 |
Infiltration [38] | 0.3 ACH |
Thickness (m) | Conductivity (W/m K) | Capacity (J/kg K) | Density (kg/m3) | |
---|---|---|---|---|
Inside gypsum plastering | 0.025 | 0.209 | 840 | 800 |
Insulation material | 0.07 | 0.047 | 1190 | 30 |
Outside wall panel | 0.024–0.151 * | 0.039 | 840 | 110 |
Factor | Abbreviation | Level | |
---|---|---|---|
Low (0) | High (1) | ||
Floor area (m2) | FA | 1000 | 2000 |
Aspect ratio | AR | 1 | 2 |
Orientation (degrees) | OR | South (0) | West (90) |
Window-to-wall ratio (%) | WWR | 25 | 52 |
Ceiling height (m) | CH | 2.4 | 2.9 |
Plenum height (m) | PH | 0.8 | 1.2 |
Wall insulation (W/m2 K) | WI | 0.15 | 0.36 |
Window insulation (W/m2 K) | WDI | 0.75 | 2.84 |
Solar heat gain coefficient (%) | SHGC | 20 | 70 |
Air leakage (ACH) | ACR | 0.1 | 0.3 |
Case | Meta-Model | Validation Data | |||
---|---|---|---|---|---|
Meta-Model | Sampling Method | Regression Method | Sampling Number | ||
Case 1-1 | Meta-model a-1 | FFD | Linear | 128/256/512 | FFD |
Case 1-2 | Meta-model a-2 | Square | |||
Case 1-3 | Meta-model b-1 | LHS | Linear | 128/256/512/1024 | |
Case 1-4 | Meta-model b-2 | Square | |||
Case 2-1 | Meta-model a-1 | FFD | Linear | 128/256/512 | LHS |
Case 2-2 | Meta-model a-2 | Square | |||
Case 2-3 | Meta-model b-1 | LHS | Linear | 128/256/512/1024 | |
Case 2-4 | Meta-model b-2 | Square |
Sampling Number | Fitting Accuracy | Prediction Accuracy | ||||
---|---|---|---|---|---|---|
Meta-Model a-1 (HL,CL) | Meta-Model b-1 (HL,CL) | Meta-Model b-2 (HL,CL) | Case 1-1 (HL,CL) | Case 1-3 (HL,CL) | Case 1-4 (HL,CL) | |
128 | 0.9966, 0.9959 | 0.8585, 0.9517 | 0.9951, 0.9968 | 0.9940, 0.9935 | 0.6731, 0.8918 | 0.9806, 0.9909 |
256 | 0.9971, 0.9963 | 0.8023, 0.9423 | 0.9929, 0.9966 | 0.9956, 0.9943 | 0.7943, 0.9382 | 0.9917, 0.9960 |
512 | 0.9968, 0.9960 | 0.8126, 0.9398 | 0.9926, 0.9966 | 0.9964, 0.9950 | 0.8224, 0.9443 | 0.9929, 0.9966 |
1024 | 0.8263, 0.9446 | 0.9926, 0.9968 | 0.8312, 0.9469 | 0.9935, 0.9970 |
Sampling Number | Prediction Accuracy | ||
---|---|---|---|
Case 2-1 (HL,CL) | Case 2-3 (HL,CL) | Case 2-4 HL,CL) | |
128 | 0.6917, 0.9220 | 0.6497, 0.8733 | 0.9752, 0.9889 |
256 | 0.6959, 0.9235 | 0.7753, 0.9266 | 0.9911, 0.9955 |
512 | 0.6967, 0.9233 | 0.7940, 0.9340 | 0.9910, 0.9960 |
1024 | 0.8089, 0.9379 | 0.9911, 0.9964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Song, D.; Yoon, S.; Koo, J. Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads. Energies 2021, 14, 512. https://doi.org/10.3390/en14020512
Choi Y, Song D, Yoon S, Koo J. Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads. Energies. 2021; 14(2):512. https://doi.org/10.3390/en14020512
Chicago/Turabian StyleChoi, Younhee, Doosam Song, Sungmin Yoon, and Junemo Koo. 2021. "Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads" Energies 14, no. 2: 512. https://doi.org/10.3390/en14020512
APA StyleChoi, Y., Song, D., Yoon, S., & Koo, J. (2021). Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads. Energies, 14(2), 512. https://doi.org/10.3390/en14020512