The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewage Sludge Used for Experiments
2.2. Biochar Production Procedure
2.3. Solid-Phase Microextraction
2.4. Chromatographic Analysis of Adsorbed VOCs by GC-MS
3. Results and Discussion
3.1. Torrefaction and Pyrolysis of Sewage Sludge
3.2. VOC Emission for SS and Biochars
3.3. PAHs Transformation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final Report. Part I: Overview Report; Milieu Ltd.: Brussels, Belgium, 2009. [Google Scholar]
- Seiple, T.E.; Coleman, A.M.; Skaggs, R.L. Municipal wastewater sludge as a sustainable bioresource in the United States. J. Environ. Manag. 2017, 197, 673–680. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 137–143. [Google Scholar] [CrossRef]
- Haghighat, M.; Majidian, N.; Hallajisani, A.; Samipourgiri, M. Production of bio-oil from sewage sludge: A review on the thermal and catalytic conversion by pyrolysis. Sustain. Energy Technol. Assess. 2020, 42, 100870. [Google Scholar] [CrossRef]
- Kwapinski, W.; Kolinovic, I.; Leahy, J.J. Sewage Sludge Thermal Treatment Technologies with a Focus on Phosphorus Recovery: A Review. Waste Biomass Valorization 2021, 1–16. [Google Scholar] [CrossRef]
- Pulka, J.; Manczarski, P.; Stępień, P.; Styczyńska, M.; Koziel, J.A.; Białowiec, A. Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer? Materials 2020, 13, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Białowiec, A.; Micuda, M.; Koziel, J.A. Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel. Energies 2018, 11, 3233. [Google Scholar] [CrossRef] [Green Version]
- Syguła, E.; Świechowski, K.; Stępień, P.; Koziel, J.A.; Białowiec, A. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO2. Materials 2020, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Meyer-Kohlstock, D.; Haupt, T.; Heldt, E.; Heldt, N.; Kraft, E. Biochar as Additive in Biogas-Production from Bio-Waste. Energies 2016, 9, 247. [Google Scholar] [CrossRef]
- Mysior, M.; Tomaszewski, M.; Stępień, P.; Koziel, J.A.; Białowiec, A. Valorization of Sewage Sludge via Gasification and Transportation of Compressed Syngas. Processes 2019, 7, 556. [Google Scholar] [CrossRef] [Green Version]
- Wzorek, Z. Odzysk Związków Fosforu z Termicznie Przetworzonych Odpadów i Ich Zastosowanie Jako Substytutu Naturalnych Surowców Fosforowych. Inżnieria Technol. Chem. 2008, 1, 7–28. [Google Scholar]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A Review of Non-Soil Biochar Applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huggins, T.M.; Haeger, A.; Biffinger, J.C.; Ren, Z.J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res. 2016, 94, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, R.; Kumar, M. Removal of fluoride from aqueous solution using nanoscale rice husk biochar. Groundw. Sustain. Dev. 2018, 7, 446–451. [Google Scholar] [CrossRef]
- Hai, A.; Bharath, G.; Babu, K.R.; Taher, H.; Naushad, M.; Banat, F. Date seeds biomass-derived activated carbon for efficient removal of NaCl from saline solution. Process. Saf. Environ. Prot. 2019, 129, 103–111. [Google Scholar] [CrossRef]
- Chen, C.-F.; Ju, Y.-R.; Lim, Y.C.; Hsieh, S.-L.; Tsai, M.-L.; Sun, P.-P.; Katiyar, R.; Chen, C.-W.; Dong, C.-D. Determination of Polycyclic Aromatic Hydrocarbons in Sludge from Water and Wastewater Treatment Plants by GC-MS. Int. J. Environ. Res. Public Health 2019, 16, 2604. [Google Scholar] [CrossRef] [Green Version]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef]
- Harrison, E.Z.; Oakes, S.R.; Hysell, M.; Hay, A. Organic chemicals in sewage sludges. Sci. Total. Environ. 2006, 367, 481–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.-Z.; Venkatesan, A.K.; Ni, Y.-L.; Steele, J.C.; Wu, L.-L.; Bignert, A.; Bergman, Å.; Halden, R.U. Organic Contaminants in Chinese Sewage Sludge: A Meta-Analysis of the Literature of the Past 30 Years. Environ. Sci. Technol. 2016, 50, 5454–5466. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.L.; Northcott, G.L.; Stern, G.A.; Tomy, G.T.; Jones, K.C. PAHs, PCBs, PCNs, Organochlorine Pesticides, Synthetic Musks, and Polychlorinated n-Alkanes in U.K. Sewage Sludge: Survey Results and Implications. Environ. Sci. Technol. 2003, 37, 462–467. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Jośko, I.; Kuśmierz, M. Biochar properties regarding to contaminants content and ecotoxicological assessment. J. Hazard. Mater. 2013, 260, 375–382. [Google Scholar] [CrossRef]
- Olsson, M.; Kjällstrand, J.; Petersson, G. Oxidative pyrolysis of integral softwood pellets. J. Anal. Appl. Pyrolysis 2003, 67, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Olsson, M.; Ramnäs, O.; Petersson, G. Specific volatile hydrocarbons in smoke from oxidative pyrolysis of softwood pellets. J. Anal. Appl. Pyrolysis 2004, 71, 847–854. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; DuSaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef]
- Ghidotti, M.; Fabbri, D.; Hornung, A. Profiles of Volatile Organic Compounds in Biochar: Insights into Process Conditions and Quality Assessment. ACS Sustain. Chem. Eng. 2017, 5, 510–517. [Google Scholar] [CrossRef]
- Białowiec, A.; Micuda, M.; Szumny, A.; Łyczko, J.; Koziel, J.A. Quantification of VOC Emissions from Carbonized Refuse-Derived Fuel Using Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules 2018, 23, 3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buss, W.; Mašek, O.; Graham, M.; Wüst, D. Inherent organic compounds in biochar–Their content, composition and potential toxic effects. J. Environ. Manag. 2015, 156, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taherymoosavi, S.; Verheyen, V.; Munroe, P.; Joseph, S.; Reynolds, A. Characterization of organic compounds in biochars derived from municipal solid waste. Waste Manag. 2017, 67, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Herath, H. Polycyclic aromatic hydrocarbons (PAHs) in biochar—Their formation, occurrence and analysis: A review. Org. Geochem. 2017, 114, 1–11. [Google Scholar] [CrossRef]
- Odinga, E.S.; Waigi, M.G.; Gudda, F.O.; Wang, J.; Yang, B.; Hu, X.; Li, S.; Gao, Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. Environ. Int. 2020, 134, 105172. [Google Scholar] [CrossRef]
- Kuśmierz, M.; Oleszczuk, P. Biochar production increases the polycyclic aromatic hydrocarbon content in surrounding soils and potential cancer risk. Environ. Sci. Pollut. Res. 2014, 21, 3646–3652. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.; Wang, L.; Tang, J. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions. J. Hazard. Mater. 2021, 406, 124676. [Google Scholar] [CrossRef] [PubMed]
- Boone, T. Trenton Wastewater Treatment Plant 2019 Annual Wastewater System Performance; The Corporation of the City of Quinte West: Trenton, ON, Canada, 2019. [Google Scholar]
- Pulka, J.; Manczarski, P.; Koziel, J.A.; Białowiec, A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies 2019, 12, 565. [Google Scholar] [CrossRef] [Green Version]
- Stuchal, L.D.; Weil, R.E.; Roberts, S.M. Derivation of a chronic reference concentration for decalin. Regul. Toxicol. Pharmacol. 2013, 66, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Clewell, H.; Efremenko, A.; Campbell, J.; Dodd, D.; Thomas, R. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor. Toxicol. Appl. Pharmacol. 2014, 280, 78–85. [Google Scholar] [CrossRef]
- Stone, L.C.; Mccracken, M.S.; Kanerva, R.L.; Alden, C.L. Development of a Short-Term Model of Decalin Inhalation Ne-phrotoxicity in the Male Rat. Food Chem. Toxicol. 1987, 25, 35–41. [Google Scholar] [CrossRef]
- Białowiec, A.; Micuda, M.; Szumny, A.; Lyczko, J.; Koziel, J.A. The Proof-of-the-Concept of Application of Pelletization for Mitigation of Volatile Organic Compounds Emissions from Carbonized Refuse-Derived Fuel. Materials 2019, 12, 1692. [Google Scholar] [CrossRef] [Green Version]
- Białowiec, A.; Micuda, M.; Szumny, A.; Łyczko, J.; Koziel, J.A. Waste to Carbon: Influence of Structural Modification on VOC Emission Kinetics from Stored Carbonized Refuse-Derived Fuel. Sustainability 2019, 11, 935. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Singh, E.; Khapre, A.; Bordoloi, N.; Kumar, S. Sorption of volatile organic compounds on non-activated biochar. Bioresour. Technol. 2020, 297, 122469. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.-H.; Peng, W.; Ge, S.; Ok, Y.S. Adsorption performance of standard biochar materials against volatile organic compounds in air: A case study using benzene and methyl ethyl ketone. Chem. Eng. J. 2020, 387, 123943. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L.; Myneni, S.C.; Deng, Y. Leaching of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge-derived biochar. Chem. Eng. J. 2019, 373, 840–845. [Google Scholar] [CrossRef]
- Tomczyk, B.; Siatecka, A.; Jędruchniewicz, K.; Sochacka, A.; Bogusz, A.; Oleszczuk, P. Polycyclic aromatic hydrocarbons (PAHs) persistence, bioavailability and toxicity in sewage sludge- or sewage sludge-derived biochar-amended soil. Sci. Total Environ. 2020, 747, 141123. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass Bioenergy 2015, 75, 235–244. [Google Scholar] [CrossRef]
- Feiner, R.; Schwaiger, N.; Pucher, H.; Ellmaier, L.; Derntl, M.; Pucher, P.; Siebenhofer, M. Chemical loop systems for biochar liquefaction: Hydrogenation of Naphthalene. RSC Adv. 2014, 4, 34955–34962. [Google Scholar] [CrossRef]
Sewage Sludge Sample Type | Losses on Ignition, % d.m. |
---|---|
Raw sewage sludge | 62.9 |
SS biochar under 200 °C | 61.0 |
SS biochar under 220 °C | 60.5 |
SS biochar under 240 °C | 59.2 |
SS biochar under 260 °C | 57.5 |
SS biochar under 280 °C | 54.7 |
SS biochar under 300 °C | 60.9 |
SS biochar under 450 °C | 33.7 |
SS biochar under 600 °C | 31.9 |
Compound | LRI 1 | CAS | Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SS RAW | SS200 | SS220 | SS240 | SS260 | SS280 | SS300 | SS450 | SS600 | |||
Contribution (%) | |||||||||||
(E)-2-Butene | 450 | 0107-01-07 | - | - | - | 4.96 | - | - | - | - | - |
n-Hexane | 600 | 110-54-3 | - | - | - | - | 0.68 | - | - | - | - |
Acetaldehyde | 702 | 75-07-0 | - | - | 1.17 | - | - | - | - | - | - |
(Z)-4-Methyl-2-hexene | Na 2 | 3683-19-0 | - | - | - | - | 1.08 | - | - | - | - |
Carbon disulfide | 735 | 75-15-0 | - | - | 1.89 | - | - | - | - | - | - |
2,4,4-Trimethyl-1-pentene | 750 | 107-39-1 | - | - | - | 7.31 | 11.84 | 7.69 | - | - | - |
2,4,4-Trimethyl-2-pentene, | 755 | 107-40-4 | - | - | - | - | - | 1.98 | - | - | - |
(E)-4-methyl- -2-hepten | 797 | 66225-17-0 | - | - | 2.97 | 7.74 | 19.20 | - | - | - | - |
Furan | 799 | 110-00-9 | - | 2.94 | 7.17 | 4.92 | - | 0.68 | - | - | - |
(Z)-1,3-Dimethylcyclohexane | 810 | 638-04-0 | - | - | - | 1.47 | 2.20 | - | - | - | - |
Acetone | 819 | 67-64-1 | 10.89 | 6.53 | 7.36 | 4.43 | 2.80 | 3.19 | 4.82 | ||
Acetic acid, methyl ester | 828 | 79-20-9 | - | 3.08 | 3.72 | 12.48 | - | 71.54 | - | - | - |
(E)-4-Octene | 840 | 14850-23-8 | - | - | - | - | 0.32 | - | - | - | - |
2-Methyl-furan | 869 | 534-22-5 | - | 3.76 | 5.55 | 9.95 | 8.53 | 2.09 | - | - | - |
2-Butanone | 907 | 78-93-3 | - | 1.90 | 1.93 | 2.11 | 2.08 | 2.04 | - | - | - |
2-Methylbutanal | 914 | 96-17-3 | - | 0.42 | 0.60 | 0.37 | - | - | - | ||
3-Methylbutanal | 918 | 590-86-3 | - | 0.34 | 0.65 | 0.66 | 1.15 | 0.03 | - | - | - |
3-Methyl-2-butanone | 930 | 563-80-4 | - | 0.17 | - | - | - | - | - | - | - |
Ethanol | 932 | 64-17-5 | - | 3.12 | 0.25 | - | - | 2.68 | - | - | - |
Benzene | 957 | 71-43-2 | 2.53 | 4.24 | 7.97 | 4.05 | 2.07 | 0.68 | - | - | - |
Methyl isobutyl ketone | 1010 | 108-10-1 | - | - | 0.92 | - | - | - | - | - | - |
Acetonitrile | 1013 | 75-05-8 | - | 0.83 | - | - | - | - | - | - | - |
Glycolaldehyde dimethyl acetal | na | 621-63-6 | 17.13 | - | - | 1.09 | 0.47 | - | - | - | - |
Trimethylsilanol | na | 1066-40-6 | - | - | - | - | - | - | 7.24 | - | - |
Toluene | 1042 | 108-88-3 | - | 0.14 | 0.46 | - | - | - | - | - | - |
unknown | - | - | 2.63 | 2.25 | - | - | - | - | - | - | |
(Z)-1-Ethyl-1,3-dimethyl-cyclohexane | na | na | - | 0.35 | 2.07 | 0.79 | 0.18 | - | - | - | - |
Dimethyl disulfide | 1077 | 624-92-0 | - | 1.43 | - | - | 0.94 | - | - | - | - |
Hexanal | 1083 | 66-25-1 | - | - | 1.06 | - | - | - | 1.27 | - | - |
2-Propen-1-ol | 1123 | 107-18-6 | - | - | 0.05 | - | - | - | - | - | - |
Butanenitrile | 1129 | 109-74-0 | - | - | 0.50 | - | - | - | - | - | - |
1-(2-Furanyl-)2-pentanone | na | 20907-03-3 | - | - | - | 0.09 | - | - | - | - | - |
Naphtalene derivative | 1170 | - | - | - | 8.91 | - | - | - | 4.66 | - | - |
Decalin | 1170 | 91-17-8 | - | 23.44 | 12.21 | 3.49 | 1.99 | 1.03 | - | - | |
(E)-2-Methyl-decalin | na | 2958-76-1 | 15.89 | - | 0.57 | 10.43 | 8.44 | 26.13 | - | - | |
Limonene | 1200 | 5989-54-8 | 23.58 | - | - | - | - | - | - | - | - |
Naphtalene derivative | - | - | - | 0.53 | - | - | - | - | - | - | |
1-Methyldecalin | 1215 | 2958-75-0 | - | 11.27 | 0.15 | - | - | 0.70 | - | - | - |
Decalin derivative | - | - | - | 4.39 | 6.60 | - | - | 0.28 | 11.54 | - | - |
Phthalic acid, cyclobutyl heptyl ester | na | na | 0.21 | - | - | - | - | - | - | - | - |
(E)-4a-Methyldecalin | na | 2547-27-5 | 8.97 | - | - | - | - | - | - | - | - |
(E)-9-Methyldecalin | na | na | - | - | - | 5.65 | 5.50 | - | 2.82 | - | - |
2,6-Dimethyldecalin | 1226 | 1618-22-0 | - | 6.80 | 4.31 | 2.68 | 0.32 | - | - | ||
Decalin derivative | - | - | - | - | - | - | 1.78 | - | 5.58 | - | - |
1,5-Dimethyldecalin | na | 66552-62-3 | 3.87 | - | - | 3.48 | 1.48 | - | - | - | - |
Decalin dimethyl- derivative | - | - | - | 2.57 | 3.41 | - | - | 0.12 | - | - | - |
Decalin dimethyl- derivative | - | - | - | 5.71 | 7.47 | - | - | 0.45 | 6.51 | - | - |
Decalin dimethyl- derivative | - | - | - | 7.46 | 1.25 | - | 0.69 | 0.55 | 6.09 | - | - |
1,6-Dimethyldecalin | na | 1618-22-0 | - | - | - | - | 0.83 | - | 12.52 | - | - |
2,3-Dimethyldecalin | na | na | 5.81 | - | - | 2.27 | 1.73 | - | - | - | - |
Decalin derivative | - | - | 3.32 | 1.21 | 0.94 | - | - | - | - | - | - |
Decalin dimethyl- derivative | - | - | - | 1.00 | 2.82 | 3.05 | 4.17 | - | - | - | - |
unknown | - | - | - | 0.41 | 0.03 | - | - | - | - | - | - |
(Z,E)-3-Ethylbicyclo[4.4.0]decane | 1301 | na | - | 3.42 | - | - | - | - | - | - | - |
Naphtalene derivative | - | - | - | - | 0.05 | - | - | - | - | - | - |
Acetic acid | 1449 | 64-19-7 | 1.82 | 0.45 | 2.24 | 6.37 | 17.55 | 3.59 | 10.84 | - | - |
Furfural | 1461 | 98-01-1 | - | - | - | 0.53 | 2.30 | - | - | - | - |
Methoxyphenyloxime | na | na | 4.15 | - | - | - | - | - | - | - | - |
2-Amino-5-methylbenzoic acid * | na | 2941-78-8 | - | - | - | - | - | - | - | 100 | 100 |
2-Amino-3-chloro-1,4-naphthalenedione | na | 2797-51-5 | 1.82 | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łyczko, J.; Koziel, J.A.; Banik, C.; Białowiec, A. The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge. Energies 2021, 14, 6479. https://doi.org/10.3390/en14206479
Łyczko J, Koziel JA, Banik C, Białowiec A. The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge. Energies. 2021; 14(20):6479. https://doi.org/10.3390/en14206479
Chicago/Turabian StyleŁyczko, Jacek, Jacek A. Koziel, Chumki Banik, and Andrzej Białowiec. 2021. "The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge" Energies 14, no. 20: 6479. https://doi.org/10.3390/en14206479
APA StyleŁyczko, J., Koziel, J. A., Banik, C., & Białowiec, A. (2021). The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge. Energies, 14(20), 6479. https://doi.org/10.3390/en14206479