Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock
Abstract
:1. Introduction
2. Material and Method
2.1. Total Organic Carbon
2.2. Specific Surface Area (SSA)
2.3. Mineralogical Characterization (X-ray Diffraction)
2.4. Rock–Eval Pyrolysis
2.5. Important Parameters
2.6. Hydrocarbon Source
2.7. Thermal Maturity
- Different kerogens respond differently as a function of temperature and time.
- Different sampling and analytical methods have an influence.
- Maturity terms have different interpretations in consideration of different factors.
3. Results and Discussion
3.1. Petrophysical Characterization (TOC, Grain Density, SSA)
3.2. XRD Characterization
3.3. Rock–Eval Pyrolysis
3.4. Organic Source Richness
3.4.1. Organic Matter Quality
3.4.2. Hydrocarbon Potential
3.4.3. Thermal Maturity
4. Conclusions
- The TOC and grain density of these examined samples are in the range of 1.64–8.37% and 2.3–2.63 g/cc. As the organic component has a lower density than the minerals, the TOC and density of the samples have an inversely propositional relationship.
- The specific surface area (BET) of the examined samples is in a range of 1.97–9.94 m2/g, which has a positive correlation with TOC.
- XRD results indicate that the shale samples are dominated by clay, primarily kaolinite and muscovite. Few samples have a higher proportion of quartz and calcite. However, considering the brittleness component of the shale, such a high amount of clay is not suitable for hydraulic fracture. Therefore, this Middle Eastern shale is not the best candidate for economic hydrocarbon production (in case hydrocarbon is present).
- Rock–Eval analysis results indicate that almost all of the samples have very low hydrogen index (HI) and oxygen index (OI). Sample JF2-760 shows high HI and high S2. The HI and OI value suggests that the type III and type III /IV kerogen are most likely from terrestrial and varied settings’ origin. The Tmax and PI data indicate immature-to-early-mature source rock status and low conversion scenario.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TOC | Total Organic Content |
XRD | X-ray Diffraction |
SSA | Specific Surface Area |
BET | Brunaur-Emmett-Teller |
EOM | Extractable Organic Matter |
FID | Flame Ionization Detector |
IR | Infrared |
SCI | Spore Color Indices |
TAI | Thermal Alteration Index |
References
- Few, S.; Gambhir, A.; Napp, T.; Hawkes, A.; Mangeon, S.; Bernie, D.; Lowe, J. The impact of shale gas on the cost and feasibility of meeting climate targets—A global energy system model analysis and an exploration of uncertainties. Energies 2017, 10, 158. [Google Scholar] [CrossRef]
- Kaczmarczyk, W.; Słota-Valim, M. Multidisciplinary Characterization of Unconventional Reservoirs Based on Correlation of Well and Seismic Data. Energies 2020, 13, 4413. [Google Scholar] [CrossRef]
- Zheng, M.; Tang, H.; Li, H.; Zheng, J.; Jing, C. Geomechanical Analysis for Deep Shale Gas Exploration Wells in the NDNR Blocks, Sichuan Basin, Southwest China. Energies 2020, 13, 1117. [Google Scholar] [CrossRef] [Green Version]
- Jarvie, D.M. Factors affecting Rock–Eval derived kinetic parameters. Chem. Geol. 1991, 93, 79–99. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 1—Shale-gas resource systems. AAPG Memoir 2012, 97, 69–87. [Google Scholar]
- Sanei, H.; Goodarzi, F. Relationship between organic matter and mercury in recent lake sediment: The physical-geochemical aspects. Appl. Geochem. 2006, 21, 1900–1912. [Google Scholar] [CrossRef]
- Barberes, G.A.; Pena dos Reis, R.; Pimentel, N.L.; Spigolon, A.L.D.; Fonseca, P.E.; Karcz, P.; Azevedo, M.C.; Barata, M.T. Geochemical Considerations from the Carboniferous Unconventional Petroleum System of SW Iberia. Minerals 2021, 11, 811. [Google Scholar] [CrossRef]
- Turakhanov, A.; Tsyshkova, A.; Mukhina, E.; Popov, E.; Kalacheva, D.; Dvoretskaya, E.; Kasyanenko, A.; Prochukhan, K.; Cheremisin, A. Cyclic Subcritical Water Injection into Bazhenov Oil Shale: Geochemical and Petrophysical Properties Evolution Due to Hydrothermal Exposure. Energies 2021, 14, 4570. [Google Scholar] [CrossRef]
- Spasennykh, M.; Maglevannaia, P.; Kozlova, E.; Bulatov, T.; Leushina, E.; Morozov, N. Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation. Geosciences 2021, 11, 307. [Google Scholar] [CrossRef]
- Bogdanovich, N.; Kozlova, E.; Karamov, T. Lithological and Geochemical Heterogeneity of the Organo-Mineral Matrix in Carbonate-Rich Shales. Geosciences 2021, 11, 295. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; He, Z.; Li, Y.; Xiao, D.; Chen, G.; Zhao, J. Coupling between Source Rock and Reservoir of Shale Gas in Wufeng-Longmaxi Formation in Sichuan Basin, South China. Energies 2021, 14, 2679. [Google Scholar] [CrossRef]
- Dembicki, H., Jr. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bull. 2009, 93, 341–356. [Google Scholar] [CrossRef]
- Hart, B.S.; Steen, A.S. Programmed pyrolysis (Rock–Eval) data and shale paleoenvironmental analyses: A review. Interpretation 2015, 3, SH41–SH58. [Google Scholar] [CrossRef]
- Katz, B.J. Limitations of “Rock–Eval” pyrolysis for typing organic matter. Org. Geochem. 1983, 4, 195–199. [Google Scholar] [CrossRef]
- Vandenbroucke, M. Kerogan: From types to models of chemical structure. Oil Gas Sci. Technol. 2003, 58, 243–269. [Google Scholar] [CrossRef] [Green Version]
- Khatibi, S.; Ostadhassan, M.; Tuschel, D.; Gentzis, T.; Carvajal-Ortiz, H. Evaluating molecular evolution of kerogen by raman spectroscopy: Correlation with optical microscopy and Rock–Eval pyrolysis. Energies 2018, 11, 1406. [Google Scholar] [CrossRef] [Green Version]
- Sondhi, N. Petrophysical Characterization of Eagle Ford Shale. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 2011. [Google Scholar]
- Butt, A.S. Shale Characterization Using X-Ray Diffraction. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2012. [Google Scholar]
- Ross, D.J.K.; Marc Bustin, R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Herrmann, J.; Rybacki, E.; Sone, H.; Dresen, G. Deformation Experiments on Bowland and Posidonia Shale—Part I: Strength and Young’s Modulus at Ambient and In Situ pc–T Conditions. Rock Mech. Rock Eng. 2015, 51, 3645–3666. [Google Scholar] [CrossRef] [Green Version]
- Josh, M.; Esteban, L.; Delle Piane, C.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B. Laboratory characterisation of shale properties. J. Pet. Sci. Eng. 2012, 88–89, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.; Zhang, Y.X.; Wu, Y.S.; Zheng, B. Gas shale hydraulic fracturing: A numerical investigation of the fracturing network evolution in the Silurian Longmaxi formation in the southeast of Sichuan Basin, China, using a coupled FSD approach. Environ. Earth Sci. 2016, 75, 1–18. [Google Scholar] [CrossRef]
- He, J.; Deng, H.; Ma, R.; Wang, R.; Wang, Y.; Li, A. Reservoir characteristics of the Lower Jurassic lacustrine shale in the Eastern Sichuan Basin and its effect on gas properties: An integrated approach. Energies 2020, 13, 4495. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Li, N.; Gu, Z.-K.; Ding, B.; Zhu, C.-Y. Molecular Investigation on the Displacement Characteristics of CH4 by CO2, N2 and Their Mixture in a Composite Shale Model. Energies 2021, 14, 2. [Google Scholar] [CrossRef]
- Sondergeld, C.H.; Newsham, K.E.; Comisky, J.T.; Rice, M.C. Petrophysical Considerations in Evaluating and Producing Shale Gas Resources. In Proceedings of the SPE Unconventional Gas Conference, Pittsburgh, PA, USA, 23–25 February 2010. [Google Scholar]
- Ye, Y.; Tang, S.; Xi, Z. Brittleness evaluation in shale gas reservoirs and its influence on fracability. Energies 2021, 13, 388. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.M. Petroleum Geochemistry and Geology, 2nd ed.; W.H. Freeman & Company: New York, NY, USA, 1996. [Google Scholar]
- Rahmani, O.; Khoshnoodkia, M.; Kadkhodaie, A.; Beiranvand Pour, A.; Tsegab, H. Geochemical analysis for determining total organic carbon content based on delta LogR technique in the South Pars field. Minerals 2019, 9, 735. [Google Scholar] [CrossRef] [Green Version]
- Kern, M.; Möckel, R.; Krause, J.; Teichmann, J.; Gutzmer, J. Calculating the deportment of a fine-grained and compositionally complex Sn skarn with a modified approach for automated mineralogy. Miner. Eng. 2018, 116, 213–225. [Google Scholar] [CrossRef]
- Rahfeld, A.; Kleeberg, R.; Möckel, R.; Gutzmer, J. Quantitative mineralogical analysis of European Kupferschiefer ore. Miner. Eng. 2000, 115, 21–32. [Google Scholar] [CrossRef]
- Als-Nielsen, J.; McMorrow, D. Elements of Modern X-ray Physics, 2nd ed.; John Wiley & Sons: West Sussex, UK, 2011. [Google Scholar]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock–Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut Francais Du Petrole 1998, 53, 421–437. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, K.; Rojas, K.; Niemann, M.; Palrnowski, D.; Peters, K.; Stankiewicz, A. Basic petroleum geochemistry for source rock evaluation. Oilfield Rev. 2011, 23, 32–43. [Google Scholar]
- Tissot, B.P.; Welte, B.H. Petroleum Formation and Occurence, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Hutton, A.; Bharati, S.; Robl, T. Chemical and Petrographic Classification of Kerogen/Macerals. Energy Fuels 1994, 8, 1478–1488. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Y.; Wang, G.; Wei, Z.; He, W. Geochemistry and shale gas potential of the lower Permian marine-continental transitional shales in the Eastern Ordos Basin. Energy Explor. Exploit. 2021, 39, 738–760. [Google Scholar] [CrossRef]
- Zhao, B.; Li, R.; Qin, X.; Li, D.; Wu, X.; Khaled, A.; Zhou, W.; Zhao, D.; Liu, Q.; Zhang, Y. Biomarkers and Re–Os geochronology of solid bitumen in the Beiba Dome, northern Sichuan Basin, China: Implications for solid bitumen origin and petroleum system evolution. Mar. Pet. Geol. 2021, 126, 104916. [Google Scholar] [CrossRef]
- Hood, A.; Gutjahr, C.C.M.; Heacock, R.L. Organic metamorphism and the generation of petroleum. AAPG Bull. 1975, 59, 986–996. [Google Scholar]
- Magoon, L.B.; Dow, W.G. The Petroleum System—From Source to Trap; AAPG Bulletin; American Association of Petroleum Geologists (AAPG): Tulsa, OK, USA, 1991. [Google Scholar]
- Klemme, H.D.; Ulmishek, G.F. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors. Am. Assoc. Pet. Geol. Bull. 1991, 75, 1809–1851. [Google Scholar]
- Boyer, C.; Kieschnick, J.; Suarez-Rivera, R.; Lewis, R.E.; Waters, G. Producing gas from its source. Oilfield Rev. 2006, 10, 36–49. [Google Scholar]
- Cornford, C. Petroleum Geology: The petroleum system. In Encyclopedia of Geology; Selley, R.C., Cocks, L.R.M., Plimer, I.R., Eds.; Elsevier: Bideford, UK, 2005; pp. 268–294. [Google Scholar]
- O’Brien, N.R. Fabric of Kaolinite and Illite Floccules. Clays Clay Miner. 1971, 19, 353–359. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2006, 95, 2017–2030. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Cai, M.; Luo, C.; Shi, X.; Zhang, J. Pore evolution characteristic of shale in the Longmaxi Formation, Sichuan Basin. Pet. Res. 2017, 2, 291–300. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Coal: Typology, Chemistry, Physics, Constitution; Elsevier Scientific Pub. Co.: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Petersen, H.I.; Andsbjerg, J.; Bojesen-Koefoed, J.A.; Nytoft, H.P. Fabric of Coal-generated oil: Source rock evaluation and petroleum geochemistry of the Lulita oilfield, Danish North Sea. J. Pet. Geol. 2000, 23, 55–90. [Google Scholar] [CrossRef]
Sample | Depth, m | TOC | Grain Density | XRD | SSA[BET] | Rock-Eval |
---|---|---|---|---|---|---|
JF2-760 | 760 | ✓ | ✓ | ✓ | ✓ | ✓ |
JF2-1050 | 1050 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS3-1490 | 1490 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS8-1435 | 1435 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS9-1490 | 1490 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS9-1520 | 1520 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS10-1515 | 1515 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS10-1535 | 1535 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS13-1350 | 1350 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS13-1385 | 1385 | ✓ | ✓ | ✓ | ✓ | ✓ |
WS14-1895 | 1895 | ✓ | ✓ | ✓ | ✓ | ✓ |
HS1-1515 | 1515 | ✓ | ✓ | ✓ | ✓ | ✓ |
HS1-1520 | 1520 | ✓ | ✓ | ✓ | ✓ | ✓ |
SQ1-1340 | 1340 | ✓ | ✓ | ✓ | ✓ | ✓ |
SQ1-1640 | 1640 | ✓ | ✓ | ✓ | ✓ | ✓ |
Parameter | Definition | Unit | Measurement Procedure | Indicator |
---|---|---|---|---|
TOC | Total organic carbon | % | Corg/Rock (wt%) | Richness |
S1 | Free bitumen | mg/g | HC/Rock (wt%) | Oil and gas present |
S2 | HC potenital | mg/g | HC/Rock (wt%) | Quality/Quantity |
S3 | CO2 potential | mg/g | CO2/Rock (wt%) | Quality |
Tmax | Temp. of maximum generation rate (i.e., S2) | °C | Maturity | |
HI | Hydrogen index | mg/g TOC | 100 * S2/TOC | Kerogen Type |
OI | Oxygen index | mg/g TOC | 100 * S3/TOC | Kerogen Type |
PP | Petroleum potential | mg/g | S1 + S2 | HC potential |
PI | Production index | S1/(S1 + S2) | Transformation ratio |
Oil | Gas | Oil | Gas | Oil | Gas | Oil | Gas | |
---|---|---|---|---|---|---|---|---|
Generation Stage | % R %, | Tmax, °C | SCI (1–10) | TAI (1–5) | ||||
Immature–Early mature | 0.5 | 1 | 432 | 455 | 4 | 9 | 2.25 | 2.6 |
E. Mature–Mid Mature | 0.7 | 1.3 | 442 | 465 | 5 | >9 | 2.3 | 3.5 |
M. Mature–Late Mature | 1 | 2.2 | 455 | 525 | 9 | 10+ | 2.6 | 4 |
Post Mature | 1.3 | >3.00 | 465 | >575 | >9 | 10+ | 3.5 | 5 |
Sample | Depth, m | TOC, % | Grain Density, g/cc | Specific Surface Area [BET], m2/g |
---|---|---|---|---|
JF2-760 | 760 | 8.37 | 2.30 | 9.94 |
JF2-1050 | 1050 | 3.26 | 2.52 | 1.97 |
WS3-1490 | 1490 | 2.68 | 2.51 | 2.75 |
WS8-1435 | 1435 | 3.61 | 2.49 | 6.36 |
WS9-1490 | 1490 | 2.10 | 2.53 | 8.33 |
WS9-1520 | 1520 | 3.41 | 2.45 | 5.67 |
WS10-1515 | 1515 | 1.86 | 2.53 | 7.43 |
WS10-1535 | 1535 | 3.50 | 2.48 | 5.29 |
WS13-1350 | 1350 | 1.68 | n/a | 7.31 |
WS13-1385 | 1385 | 3.01 | 2.55 | 5.06 |
WS14-1895 | 1895 | 5.00 | 2.41 | 6.58 |
HS1-1515 | 1515 | 2.44 | 2.63 | 4.43 |
HS1-1520 | 1520 | 4.91 | 2.53 | 3.26 |
SQ1-1340 | 1340 | 1.64 | 2.60 | n/a |
SQ1-1640 | 1640 | 2.66 | 2.58 | 6.37 |
Sample | Tmax | S1, (mg/g) | S2, (mg/g) | S3, (mg/g) | PI, (wt ratio) | PP, mg/g | HI | OI | TOC, % |
---|---|---|---|---|---|---|---|---|---|
HS1-1515 | 430 | 2.93 | 3.28 | 1.85 | 0.47 | 6.21 | 134 | 76 | 2.44 |
HS1-1520 | 429 | 4.27 | 7.45 | 2.23 | 0.36 | 11.72 | 152 | 45 | 4.91 |
JF2-760 | 415 | 2.46 | 48.38 | 4.35 | 0.05 | 50.84 | 578 | 52 | 8.37 |
JF2-1050 | 420 | 0.39 | 3.90 | 1.89 | 0.09 | 4.29 | 120 | 58 | 3.26 |
SQ1-1340 | 421 | 0.21 | 4.62 | 2.17 | 0.04 | 4.83 | 282 | 132 | 1.64 |
WS10-1515 | 427 | 0.52 | 0.58 | 1.67 | 0.47 | 1.10 | 31 | 90 | 1.86 |
WS10-1535 | 431 | 0.67 | 1.41 | 1.59 | 0.32 | 2.08 | 40 | 45 | 3.50 |
WS13-1350 | 433 | 0.56 | 1.33 | 3.82 | 0.30 | 1.89 | 79 | 227 | 1.68 |
WS13-1385 | 425 | 1.12 | 2.19 | 2.09 | 0.34 | 3.31 | 73 | 69 | 3.01 |
WS14-1895 | 428 | 1.42 | 2.01 | 2.21 | 0.41 | 3.43 | 40 | 44 | 5.00 |
WS3-1490 | 433 | 0.44 | 2.99 | 1.56 | 0.13 | 3.43 | 112 | 58 | 2.68 |
WS8-1435 | 427 | 1.44 | 2.67 | 2.18 | 0.35 | 4.11 | 74 | 60 | 3.61 |
WS9-1490 | 426 | 0.61 | 0.72 | 2.31 | 0.46 | 1.33 | 34 | 110 | 2.10 |
WS9-1520 | 424 | 1.29 | 1.95 | 2.37 | 0.40 | 3.24 | 57 | 70 | 3.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muktadir, G.; Amro, M.; Kummer, N.; Freese, C.; Abid, K. Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock. Energies 2021, 14, 6672. https://doi.org/10.3390/en14206672
Muktadir G, Amro M, Kummer N, Freese C, Abid K. Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock. Energies. 2021; 14(20):6672. https://doi.org/10.3390/en14206672
Chicago/Turabian StyleMuktadir, Golam, Moh’d Amro, Nicolai Kummer, Carsten Freese, and Khizar Abid. 2021. "Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock" Energies 14, no. 20: 6672. https://doi.org/10.3390/en14206672
APA StyleMuktadir, G., Amro, M., Kummer, N., Freese, C., & Abid, K. (2021). Application of X-ray Diffraction (XRD) and Rock–Eval Analysis for the Evaluation of Middle Eastern Petroleum Source Rock. Energies, 14(20), 6672. https://doi.org/10.3390/en14206672