Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Experimental Procedure
2.3. Sample Analysis and Results Calculation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Monitoring of the Composting Process
3.1.1. Evaluation of the Thermal Profiles of the Composting Process
3.1.2. Evolution of the Physico-Chemical and Microbiological Parameters during the Composting Process
3.2. The Impact of Composts on Remediation Process
4. Conclusions
- A higher temperature in the thermophilic phase (which resulted in complete hygienization of the composts) and a higher OM loss ratio (at the level of 60%) were obtained during composting of feedstock with SS2 addition;
- All obtained composts met the requirements set out in Polish law, taking into account the fertilizing properties and the concentration of heavy metals;
- The composts produced with the digestate from the WWTP did not meet legal requirements because of the high content of Helminth eggs, which was probably linked to the lower temperature in the thermophilic phase during the process;
- All composts used for remediation caused a significant increase in fescue biomass. The highest yield was achieved for compost produced from the mixture with the addition of 30% sewage sludge from the co-digestion process. As compared with control samples, it was almost 5-fold and 3-fold higher for soil from the zinc smelter area and soil from the lignite mine dumping site, respectively.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
ARB | antibiotic resistance bacteria |
ARGs | antibiotic resistance genes |
BA | bulking agent |
bdt | below detection threshold |
C16:0 | palmitic acid |
C18:1 | oleic acid |
CE | circular economy |
cont B | control sample for samples collected from brown coal post-mining area |
cont M | control sample for samples collected from the zinc smelter |
EPA | Environmental Protection Agency |
G | grass |
GTS | grease trap sludge |
LCFAs | long chain fatty acids |
OFMSW | organic fraction of municipal waste |
OM | organic matter |
SS | sewage sludge |
SS1 | sewage sludge from a municipal |
WWTP | dewatered digestate from anaerobic digester |
SS2 | sewage sludge from a co-digestion process -dewatered digestate from laboratory reactor |
TC | total carbon |
TN | total nitrogen |
TS | total solids |
VS | volatile solids |
WWTP | wastewater treatment plant |
References
- European Commission (EC). Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the regions Closing the Loop—An EU Action Plan for the Circular Economy. COM (2015) 614/2; European Commission (EC): Brussels, Belgium, 2015. [Google Scholar]
- European Commission. A New Circular Economy Action Plan: For a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF (accessed on 1 July 2021).
- Raheem, A.; Sikarwar, V.; He, J.; Dastyar, W.; Dionysiou, D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Mehariya, S.; Patel, A.K.; Obulisamy, P.K.; Punniyakotti, E.; Wong, J.W. Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresour. Technol. 2018, 265, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Wehner, M.; Lichtmannegger, T.; Robra, S.; Lopes, A.D.C.P.; Ebner, C.; Bockreis, A. Determination of the dewatered digestate amounts and methane yields from the co-digestion of biowaste as a basis for a cost-benefit analysis. Waste Manag. 2021, 126, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Grosser, A.; Neczaj, E.; Singh, B.; Almås, Å.R.; Brattebø, H.; Kacprzak, M. Anaerobic digestion of sewage sludge with grease trap sludge and municipal solid waste as co-substrates. Environ. Res. 2017, 155, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Anwar, Z.; Irshad, M.; Fareed, I.; Saleem, A. Characterization and Recycling of Organic Waste after Co-Composting—A Review. J. Agric. Sci. 2015, 7, 68. [Google Scholar] [CrossRef]
- Al-Rumaihi, A.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability 2020, 12, 1595. [Google Scholar] [CrossRef] [Green Version]
- Kominko, H.; Gorazda, K.; Wzorek, Z. Potentiality of sewage sludge-based organo-mineral fertilizer production in Poland considering nutrient value, heavy metal content and phytotoxicity for rapeseed crops. J. Environ. Manag. 2019, 248, 109283. [Google Scholar] [CrossRef]
- Lasaridi, K.-E.; Manios, T.; Stamatiadis, S.; Chroni, C.; Kyriacou, A. The Evaluation of Hazards to Man and the Environment during the Composting of Sewage Sludge. Sustainability 2018, 10, 2618. [Google Scholar] [CrossRef] [Green Version]
- Wijesekara, H.; Colyvas, K.; Rippon, P.; Hoang, S.A.; Bolan, N.S.; Manna, M.C.; Thangavel, R.; Seshadri, B.; Vithanage, M.; Awad, Y.M.; et al. Carbon sequestration value of biosolids applied to soil: A global meta-analysis. J. Environ. Manag. 2021, 284, 112008. [Google Scholar] [CrossRef] [PubMed]
- Grobelak, A.; Napora, A. The Chemophytostabilisation Process of Heavy Metal Polluted Soil. PLoS ONE 2015, 10, e0129538. [Google Scholar] [CrossRef] [PubMed]
- EPA Biosoilds. Available online: https://www.epa.gov/biosolids (accessed on 1 July 2021).
- Eid, E.M.; El-Bebany, A.F.; Taher, M.A.; Alrumman, S.A.; Galal, T.M.; Shaltout, K.H.; Sewelam, N.A.; Ahmed, M.T. Heavy Metal Bioaccumulation, Growth Characteristics, and Yield of Pisum sativum L. Grown in Agricultural Soil-Sewage Sludge Mixtures. Plants 2020, 9, 1300. [Google Scholar] [CrossRef] [PubMed]
- Urionabarrenetxea, E.; Garcia-Velasco, N.; Anza, M.; Artetxe, U.; Lacalle, R.; Garbisu, C.; Becerril, T.; Soto, M. Application of in situ bioremediation strategies in soils amended with sewage sludges. Sci. Total Environ. 2021, 766, 144099. [Google Scholar] [CrossRef]
- Kacprzak, M.; Grobelak, A.; Grosser, A.; Prasad, M.N.V. Efficacy of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species. Int. J. Phytoremediation 2014, 16, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.A.; Scelza, R.; Acevedo, F.; Diez, M.C.; Gianfreda, L. Enzymes as useful tools for environmental purposes. Chemosphere 2014, 107, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.W.; Metker, D.J.; Welp, G. Effect of long-term organic amendments on chemical and microbial properties of a lu-visol. Plant Soil Environ. 2011, 57, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Komilis, D.; Kontou, I.; Ntougias, S. A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bioresour. Technol. 2011, 102, 5863–5872. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20nd ed.; APHA: Washington, DC, USA, 1998. [Google Scholar]
- Mooijman, K.A.; Pielaat, A.; Kuijpers, A.F. Validation of EN ISO 6579-1—Microbiology of the food chain—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1 detection of Salmonella spp. Int. J. Food Microbiol. 2019, 288, 3–12. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge. Appendix I: Analytical Method for Viable Helminth Ova. 2003. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa-625-r-92-013.pdf (accessed on 15 October 2021).
- El Fels, L.; Zamama, M.; El Asli, A.; Hafidi, M. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int. Biodeterior. Biodegrad. 2014, 87, 128–137. [Google Scholar] [CrossRef]
- Gea, T.; Ferrer, P.; Álvaro, G.; Valero, F.; Artola, A.; Sánchez, A. Co-composting of sewage sludge:fats mixtures and characteristics of the lipases involved. Biochem. Eng. J. 2007, 33, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Ponsá, S.; Pagans, E.; Sánchez, A. Composting of dewatered wastewater sludge with various ratios of pruning waste used as a bulking agent and monitored by respirometer. Biosyst. Eng. 2009, 102, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Ou, Y.-L.; Lin, J.-G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Ogunwande, G.; Osunade, J.; Adekalu, K.; Ogunjimi, L. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Bioresour. Technol. 2008, 99, 7495–7503. [Google Scholar] [CrossRef]
- Zhu, N. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresour. Technol. 2007, 98, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.; Alburquerque, J.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Ocaña, E.R.; Torres-Lozada, P.; Marmolejo-Rebellon, L.; Hoyos, L.; Gonzales, S.; Barrena, R.; Komilis, D.; Sanchez, A. Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices. Waste Manag. 2015, 44, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siles-Castellano, A.B.; López, M.J.; Jurado, M.M.; Suárez-Estrella, F.; López-González, J.A.; Estrella-González, M.J.; Moreno, J. Industrial composting of low carbon/nitrogen ratio mixtures of agri-food waste and impact on compost quality. Bioresour. Technol. 2020, 316, 123946. [Google Scholar] [CrossRef] [PubMed]
- Moldes, A.; Cendón, Y.; Barral, M.T.; Menduiña, A.B.M. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresour. Technol. 2007, 98, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Bernai, M.; Paredes, C.; Sanchez-Monedero, M.; Cegarra, J. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 1998, 63, 91–99. [Google Scholar] [CrossRef]
- Regulation of the Minister for Agriculture and Rural Deevlopment of 18 June 2008 on Execution of Some Regulations Con-Tained in the Act on Fertilisers and Fertilisation; Official Journal of Law: Warsaw, Poland, 2008.
- Markowicz, A.; Bondarczuk, K.; Cycoń, M.; Sułowicz, S. Land application of sewage sludge: Response of soil microbial com-munities and potential spread of antibiotic resistance. Environ. Pollut. 2021, 271, 116317. [Google Scholar] [CrossRef] [PubMed]
- Placek, A.; Grobelak, A.; Kacprzak, M. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int. J. Phytoremediation 2016, 18, 605–618. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.A.R.; Marto, S.; Quina, M.J.; Gando-Ferreira, L.; Quinta-Ferreira, R. Evaluation of eggshell-rich compost as bio-sorbent for removal of Pb (II) from aqueous solutions. Water Air Soil Pollut. 2016, 227, 150. [Google Scholar] [CrossRef]
- Tsang, D.C.W.; Yip, A.; Olds, W.E.; Weber, P. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost. Environ. Sci. Pollut. Res. 2014, 21, 10194–10204. [Google Scholar] [CrossRef] [PubMed]
Feedstock | SS | G | OFMSW | BA | |
---|---|---|---|---|---|
SS1 | SS2 | ||||
R1 | 20% | - | 60% | 15% | 5% |
R2 | - | 20% | 60% | 15% | 5% |
R3 | 30% | - | 50% | 15% | 5% |
R4 | - | 30% | 50% | 15% | 5% |
Parameter | Substrate | |||||
---|---|---|---|---|---|---|
G | SS1 | SS2 | BA | OFMSW | ||
Moisture | (%) | 73.30 ± 0.1 | 70.6 ± 1.54 | 82.70 ± 2.1 | 10.81 ± 0.02 | 56.58 ± 2.12 |
Volatile solids | (% TS) | 78.80 ± 1.2 | 58.6 ± 0.21 | 53.20 ± 1.8 | 89.19 ± 1.29 | 54.22 ± 0.76 |
Total solids | (%) | 26.70 ± 0.02 | 29.4 ± 1.23 | 17.30 ± 0.1 | 95.79 ± 0.5 | 43.42 ± 0.34 |
pH | (-) | 7.56 | 7.8 | 7.20 | 6.81 | 7.60 |
P | (mg/g TS) | 4.20 ± 2.30 | 3.11 ± 6.54 | 2.90 ± 3.1 | bdl | 5.20 ± 0.30 |
N | 13.80 ± 1.53 | 21.25 ± 2.45 | 25.30 ± 1.98 | 3.28 ± 0.1 | 12.76 ± 2.49 | |
TC | 347.80 ± 1.76 | 336.0 ± 2.87 | 364.0 ± 0.68 | 452.6 ± 1.67 | 443.2 ± 0.11 | |
Cr | (mg/kg TS) | 3 ± 0.21 | 250 ± 37.5 | 220 ± 24.2 | 7 ± 0.42 | 45 ± 3.6 |
Cd | bdl | 3 ± 0.24 | 2.8 ± 0.22 | 1.6 ± 0.14 | 9 ± 0.9 | |
Ni | 1.5 ± 0.15 | 135 ± 13.5 | 118 ± 8.26 | bdl | 49 ± 4.41 | |
Pb | bdl | 75 ± 6.75 | 72 ± 6.48 | bdl | bdl | |
Hg | bdl | bdl | bdl | bdl | bdl |
AD of Ss | Kind of LCFA | mg/g TS | mg/g TS | mg/g TS | AcD of Ss, GTS and OFMSW | mg/g TS | mg/g TS | mg/g TS | ||
av. | SD | max | min | av. | SD | max | min | |||
C10:0 | 0.04 | 0.01 | 0.06 | 0.03 | 0.03 | 0.01 | 0.05 | 0.01 | ||
C12:0 | 0.10 | 0.03 | 0.12 | 0.06 | 0.09 | 0.03 | 0.16 | 0.03 | ||
C14:0 | 0.50 | 0.11 | 0.64 | 0.36 | 1.56 | 0.47 | 2.98 | 0.71 | ||
C16:0 | 6.58 | 1.38 | 8.42 | 5.12 | 21.79 | 4.26 | 32.82 | 14.26 | ||
C18:1 | 2.47 | 0.90 | 3.68 | 1.55 | 11.30 | 2.27 | 15.92 | 5.68 | ||
C18:0 | 0.55 | 0.02 | 0.57 | 0.52 | 0.61 | 0.08 | 0.77 | 0.53 |
Parameter | Soil from the Area of the Zinc Smelter (Soil M) ± SD | Soil from Brown Coal Post-Mining Area (Soil B) ± SD |
---|---|---|
pH in H2O | 5.39 ± 0.01 | 8.12 ± 0.01 |
pH in 1 M KCl | 5.03 ± 0.01 | 7.90 ± 0.02 |
CEC [cmol(+)/kg TS] | 3.21 ± 0.13 | 24.93 ± 0.20 |
C total [g/kg TS] | 13.51 ± 0.03 | 4.15 ± 0.05 |
N Kjeldhal [mg/kg TS] | 599.00 ± 19.00 | 106.250 ± 9.00 |
P total [mg/kg TS] | 179.00 ± 1.23 | 132.00 ± 1.00 |
Zn [mg/kg TS] | 1751.00 ± 57.00 | 14.00 ± 1.05 |
Cd [mg/kg TS] | 28.78 ± 1.23 | 0.29 ± 0.01 |
Pb [mg/kg TS] | 1696.00 ± 87.00 | 1.20 ± 0.05 |
MIX | Moisture (%) | pH | TN (mg/g) | P (%P2O5) | K (% K2O) | C/N | Ash (% TS) | VS (%TS) | OM Loss (%) |
---|---|---|---|---|---|---|---|---|---|
R1 mix | 74.19 ± 1.05 ab | 5.90 | 20.91 ± 0.32 a | 0.20 | 0.15 | 20.93 c | 15.54 ± 1.74 | 84.46 ± 1.74 ab | 52.44 |
R1 comp. | 58.77 ± 0.14 b | 6.92 | 30.33 ± 0.32 c | 0.55 | 0.25 | 12.24 a | 27.90 ± 1.25 bc | 72.10 ± 1.25 | |
R2 mix | 73.21 ± 2.87 ab | 5.72 | 24.36 ± 0.48 b | 0.25 | 0.17 | 19.07 b | 12.29 ± 1.73 | 87.71 ± 1.73 bc | 58.42 |
R2 comp. | 65.86 ± 0.03 d | 6.98 | 27.63 ± 0.16 b | 0.64 | 0.29 | 13.40 b | 25.21 ± 2.01 ab | 74.79 ± 2.01 | |
R3 mix | 77.61 ± 0.32 b | 5.60 | 24.17 ± 0.32 b | 0.21 | 0.17 | 18.25 a | 11.20 ± 2.66 | 88.80 ± 2.66 c | 55.38 |
R3 comp. | 63.86 ± 0.24 c | 6.74 | 25.71 ± 1.29 a | 0.59 | 0.28 | 12.51 b | 22.03 ± 1.94 a | 77.97 ± 1.94 | |
R4 mix | 72.53 ± 2.09 a | 5.59 | 25.01 ± 0.16 b | 0.35 | 0.18 | 19.53 b | 15.07 ± 0.89 | 84.93 ± 0.89 | 60.59 |
R4 comp. | 57.47 ± 0.41 a | 6.79 | 29.03 ± 0.16 bc | 0.70 | 0.34 | 13.79 b | 31.05 ± 2.85 c | 68.95 ± 2.85 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neczaj, E.; Grosser, A.; Grobelak, A.; Celary, P.; Singh, B.R. Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective. Energies 2021, 14, 6953. https://doi.org/10.3390/en14216953
Neczaj E, Grosser A, Grobelak A, Celary P, Singh BR. Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective. Energies. 2021; 14(21):6953. https://doi.org/10.3390/en14216953
Chicago/Turabian StyleNeczaj, Ewa, Anna Grosser, Anna Grobelak, Piotr Celary, and Bal Ram Singh. 2021. "Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective" Energies 14, no. 21: 6953. https://doi.org/10.3390/en14216953
APA StyleNeczaj, E., Grosser, A., Grobelak, A., Celary, P., & Singh, B. R. (2021). Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective. Energies, 14(21), 6953. https://doi.org/10.3390/en14216953