Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review
Abstract
:1. Introduction
2. Solar Cells
2.1. Materials for Solar Cells
2.2. Performance of Solar Cells
3. Supercapacitor as the Energy Storage Component for an Integrated Device
Materials for Supercapacitor Electrodes
4. Integration of Solar Cells and Supercapacitors
4.1. Photo-Assisted Mechanism of a Solar-Cell-Integrated Supercapacitor
4.2. Integration Configuration
4.3. Effectiveness of the Integration
4.4. Photoelectrochemical Performance of Integrated Device
4.5. Power Electronics for Integrated Solar Cells and Supercapacitor
4.6. Possible Applications of the Integrated Device
4.7. Challenges in Integrating Solar Cells and Supercapacitors
4.7.1. Compatibility of Materials
4.7.2. Solar Energy Generation and Storage Capacity Mismatch
4.7.3. Leakage of Liquid Electrolyte
4.7.4. Insufficient Data on Long-Term Practical Use of the Integrated Device
4.7.5. Levelized Cost of Energy
5. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gurung, A.; Qiao, Q. Solar Charging Batteries: Advances, Challenges, and Opportunities. Joule 2018, 2, 1217–1230. [Google Scholar] [CrossRef] [Green Version]
- Salameh, T.; Abdelkareem, M.A.; Olabi, A.G.; Sayed, E.T.; Al-Chaderchi, M.; Rezk, H. Integrated Standalone Hybrid Solar PV, Fuel Cell and Diesel Generator Power System for Battery or Supercapacitor Storage Systems in Khorfakkan, United Arab Emirates. Int. J. Hydrogen Energy 2021, 46, 6014–6027. [Google Scholar] [CrossRef]
- Scalia, A.; Bella, F.; Lamberti, A.; Bianco, S.; Gerbaldi, C.; Tresso, E.; Pirri, C.F. A Flexible and Portable Powerpack by Solid-State Supercapacitor and Dye-Sensitized Solar Cell Integration. J. Power Sources 2017, 359, 311–321. [Google Scholar] [CrossRef]
- Sachin, Q.; Pawar, A.; Patil, D.S.; Shin, J.C. Hexagonal Sheets of Co3O4 and Co3O4-Ag for High-Performance Electrochemical Supercapacitors. J. Ind. Eng. Chem. 2017, 54, 162–173. [Google Scholar]
- Yuan, Y.; Lu, Y.; Jia, B.E.; Tang, H.; Chen, L.; Zeng, Y.J.; Hou, Y.; Zhang, Q.; He, Q.; Jiao, L.; et al. Integrated System of Solar Cells with Hierarchical NiCo2O4 Battery-Supercapacitor Hybrid Devices for Self-Driving Light-Emitting Diodes. Nano-Micro Lett. 2019, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Vega-Garita, V.; Ramirez-Elizondo, L.; Narayan, N.; Bauer, P. Integrating a Photovoltaic Storage System in One Device: A Critical Review. Prog. Photovolt. Res. Appl. 2019, 27, 346–370. [Google Scholar] [CrossRef] [Green Version]
- Chuang, W.C.; Lee, C.Y.; Wu, T.L.; Ho, C.T.; Kang, Y.Y.; Lee, C.H.; Meen, T.H. Fabrication of Integrated Device Comprising Flexible Dye-Sensitized Solar Cell and Graphene-Doped Supercapacitor. Sens. Mater. 2020, 32, 2077–2087. [Google Scholar] [CrossRef]
- Zhong, Y.; Xia, X.; Mai, W.; Tu, J.; Fan, H.J. Integration of Energy Harvesting and Electrochemical Storage Devices. Adv. Mater. Technol. 2017, 2, 1700182. [Google Scholar] [CrossRef]
- Li, L.; Wu, Z.; Yuan, S.; Zhang, X.B. Advances and Challenges for Flexible Energy Storage and Conversion Devices and Systems. Energy Environ. Sci. 2014, 7, 2101–2122. [Google Scholar] [CrossRef]
- Yu, L.; Chen, G.Z. Supercapatteries as High-Performance Electrochemical Energy Storage Devices. Electrochem. Energy Rev. 2020, 3, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.J. Recently-Explored Top Electrode Materials for Transparent Organic Solar Cells. Synth. Met. 2021, 271, 116582. [Google Scholar] [CrossRef]
- Skunik-Nuckowska, M.; Grzejszczyk, K.; Kulesza, P.J.; Yang, L.; Vlachopoulos, N.; Häggman, L.; Johansson, E.; Hagfeldt, A. Integration of Solid-State Dye-Sensitized Solar Cell with Metal Oxide Charge Storage Material into Photoelectrochemical Capacitor. J. Power Sources 2013, 234, 91–99. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Yang, Z.; Guan, G.; Zhang, Z.; Qiu, L.; Peng, H. A Novel “Energy Fiber” by Coaxially Integrating Dye-Sensitized Solar Cell and Electrochemical Capacitor. J. Mater. Chem. A 2014, 2, 1897–1902. [Google Scholar] [CrossRef]
- Xu, X.; Li, S.; Zhang, H.; Shen, Y.; Zakeeruddin, S.M.; Graetzel, M.; Cheng, Y.B.; Wang, M. A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor. ACS Nano 2015, 9, 1782–1787. [Google Scholar] [CrossRef] [PubMed]
- Lechêne, B.P.; Cowell, M.; Pierre, A.; Evans, J.W.; Wright, P.K.; Arias, A.C. Organic Solar Cells and Fully Printed Super-Capacitors Optimized for Indoor Light Energy Harvesting. Nano Energy 2016, 26, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ku, Z.; Zhang, Y.; Chao, D.; Fan, H.J. Integrated Photo-Supercapacitor Based on PEDOT Modified Printable Perovskite Solar Cell. Adv. Mater. Technol. 2016, 1, 1600074. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, G.; Lu, Z.; Zhao, P.; Wang, C.; Ma, Y.; Xu, Z.; Wang, Y.; Hu, Y.; Ma, L.; et al. Integrated Perovskite Solar Capacitors with High Energy Conversion Efficiency and Fast Photo-Charging Rate. J. Mater. Chem. A 2018, 6, 2047–2052. [Google Scholar] [CrossRef]
- Shao, H.; Padmanathan, N.; McNulty, D.; O’Dwyer, C.; Razeeb, K.M. Supercapattery Based on Binder-Free Co3(PO4)2·8H2O Multilayer Nano/Microflakes on Nickel Foam. ACS Appl. Mater. Interfaces 2016, 8, 28592–28598. [Google Scholar] [CrossRef] [PubMed]
- Kiran, S.K.; Shukla, S.; Struck, A.; Saxena, S. Surface Enhanced 3D RGO Hybrids and Porous RGO Nano-Networks as High Performance Supercapacitor Electrodes for Integrated Energy Storage Devices. Carbon N. Y. 2020, 158, 527–535. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient Storage Mechanisms for Building Better Supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Hussain, I.; Tran, H.P.; Jaksik, J.; Moore, J.; Islam, N.; Uddin, M.J. Functional Materials, Device Architecture, and Flexibility of Perovskite Solar Cell. Emergent Mater. 2018, 1, 133–154. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, I.; Lim, H.N.; Wan, N.W.K.; Huang, N.M.; Lim, S.P.; Busayaporn, W.; Nakajima, H. Plasmonic Silver Sandwich Structured Photoanode and Reflective Counter Electrode Enhancing Power Conversion Efficiency of Dye-Sensitized Solar Cell. Sol. Energy 2021, 215, 403–409. [Google Scholar] [CrossRef]
- Shin, D.H.; Choi, S.H. Recent Studies of Semitransparent Solar Cells. Coatings 2018, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Ren, Z.; Zhao, Y.; Shen, X.; Wang, A.; Li, Y.Y.; Surya, C.; Chai, Y. Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes. ACS Nano 2016, 10, 5900–5908. [Google Scholar] [CrossRef] [PubMed]
- Westover, A.S.; Share, K.; Carter, R.; Cohn, A.P.; Oakes, L.; Pint, C.L. Direct Integration of a Supercapacitor into the Backside of a Silicon Photovoltaic Device. Appl. Phys. Lett. 2014, 104, 10–13. [Google Scholar] [CrossRef]
- Chien, C.T.; Hiralal, P.; Wang, D.Y.; Huang, I.S.; Chen, C.C.; Chen, C.W.; Amaratunga, G.A.J. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device. Small 2015, 11, 2929–2937. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Wu, Y.; Yang, G.; Mazzarella, L.; Procel-Moya, P.; Tamboli, A.C.; Weber, K.; Boccard, M.; Isabella, O.; et al. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mater. Sci. Eng. R Rep. 2020, 142, 100579. [Google Scholar] [CrossRef]
- Peters, I.M.; Rodriguez Gallegos, C.D.; Sofia, S.E.; Buonassisi, T. The Value of Efficiency in Photovoltaics. Joule 2019, 3, 2732–2747. [Google Scholar] [CrossRef]
- Giannouli, M.; Govatsi, K.; Syrrokostas, G.; Yannopoulos, S.N.; Leftheriotis, G. Factors AFffecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials 2018, 11, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alharbi, F.H.; Kais, S. Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A.W.Y. Solar Cell Efficiency Tables (Version 55). Prog. Photovolt. Res. Appl. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Nakamura, M.; Tada, K.; Kinoshita, T.; Bessho, T.; Nishiyama, C.; Takenaka, I.; Kimoto, Y.; Higashino, Y.; Sugimoto, H.; Segawa, H. IScience Ll Perovskite/CIGS Spectral Splitting Double. Iscience 2020, 23, 101817. [Google Scholar] [CrossRef] [PubMed]
- Brahmendra Kumar, G.V.; Kaliannan, P.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F. Effective Management System for Solar PV Using Real-Time Data with Hybrid Energy Storage System. Appl. Sci. 2020, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Raj, A.; Kumar, A.; Anshul, A. An Optimized Lead-Free Formamidinium Sn-Based Perovskite Solar Cell Design for High Power Conversion Efficiency by SCAPS Simulation. Opt. Mater. (Amst) 2020, 108, 110213. [Google Scholar] [CrossRef]
- Sharma, G.D.; Suthar, R.; Pestrikova, A.A.; Nikolaev, A.Y.; Chen, F.C.; Keshtov, M.L. Efficient Ternary Polymer Solar Cells Based Ternary Active Layer Consisting of Conjugated Polymers and Non-Fullerene Acceptors with Power Conversion Efficiency Approaching near to 15.5%. Sol. Energy 2021, 216, 217–224. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, J.; Liu, L.; Wang, J.; Duan, Y.; Vaillant-Roca, L.; Yang, X.; Tang, Q. Boosting Power Conversion Efficiency by Hybrid Triboelectric Nanogenerator/Silicon Tandem Solar Cell toward Rain Energy Harvesting. Nano Energy 2021, 82, 105773. [Google Scholar] [CrossRef]
- Eyderman, S.; John, S. Light-Trapping and Recycling for Extraordinary Power Conversion in Ultra-Thin Gallium-Arsenide Solar Cells. Sci. Rep. 2016, 6, 28303. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.; Zhang, Y.; Nie, J.; Zheng, D.; Hu, G.; Liu, R.; Dan, M.; Li, L.; Zhang, Y. High-Performance Piezo-Phototronic Multijunction Solar Cells Based on Single-Type Two-Dimensional Materials. Nano Energy 2020, 76, 105091. [Google Scholar] [CrossRef]
- Kumar, N.; Rani, J.; Kurchania, R. A Review on Power Conversion Efficiency of Lead Iodide Perovskite-Based Solar Cells. Mater. Today Proc. 2021, 46, 5570–5574. [Google Scholar] [CrossRef]
- Vicentini, R.; Da Silva, L.M.; Cecilio, E.P.; Alves, T.A.; Nunes, W.G.; Zanin, H. How to Measure and Calculate Equivalent Series Resistance of Electric Double-Layer Capacitors. Molecules 2019, 24, 1452. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Yun, S.; Yeon, J.S.; Bhattacharya, P.; Wang, L.; Lee, S.W.; Hu, X.; Park, H.S. Emergent Pseudocapacitance of 2D Nanomaterials. Adv. Energy Mater. 2018, 8, 1702930. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Mahmood, A.; khan, Q.; Zhang, Y.; Ouyang, Z.; Guo, Z.; Zhang, H. Going Green with Batteries and Supercapacitor: Two Dimensional Materials and Their Nanocomposites Based Energy Storage Applications. Prog. Solid State Chem. 2020, 58, 100254. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Karim, W.O.; Kadir, M.F.Z.; Brza, M.A.; Abdullah, O.G. High Proton Conducting Polymer Blend Electrolytes Based on Chitosan: Dextran with Constant Specific Capacitance and Energy Density. Biomolecules 2019, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Denge, N. Study of Hybrid Super-Capacitor. Int. Res. J. Eng. Technol. 2016, 3, 1012–1016. [Google Scholar]
- Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of Carbon Nanotubes Depends on Their Chemical Structures. Nat. Commun. 2019, 10, 3040. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon Nanotube- and Graphene-Based Nanomaterials and Applications in High-Voltage Supercapacitor: A Review. Carbon N. Y. 2019, 141, 467–480. [Google Scholar] [CrossRef]
- Zeng, Q.; Lai, Y.; Jiang, L.; Liu, F.; Hao, X.; Wang, L.; Green, M.A. Integrated Photorechargeable Energy Storage System: Next-Generation Power Source Driving the Future. Adv. Energy Mater. 2020, 10, 1903930. [Google Scholar] [CrossRef]
- Allen, J.M.; Vincent, T.C.; Richard, K.B. Honeycomb Carbon: A Review of Graphene What Is Graphene ? Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Jing, K. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef]
- Park, S.; Ruoff, R.S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Xin, G.; Hwang, W.; Kim, N.; Cho, S.M.; Chae, H. A Graphene Sheet Exfoliated with Microwave Irradiation and Interlinked by Carbon Nanotubes for High-Performance Transparent Flexible Electrodes. Nanotechnology 2010, 21, 405201. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.I.; Sunarso, J.; Wong, B.T.; Lin, H.; Yu, A.; Jia, B. Towards Enhanced Energy Density of Graphene-Based Supercapacitors: Current Status, Approaches, and Future Directions. J. Power Sources 2018, 396, 182–206. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, S.; Wu, Z.S.; Bao, X. Recent Advances of Graphene-Based Materials for High-Performance and New-Concept Supercapacitors. J. Energy Chem. 2018, 27, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.C.; Lim, H.N.; Ravoof, T.B.S.A.; Yaacob, M.H.; Grant, D.M.; MacKenzie, R.C.I.; Harrison, I.; Huang, N.M. A Three-Electrode Integrated Photo-Supercapacitor Utilizing Graphene-Based Intermediate Bifunctional Electrode. Electrochim. Acta 2017, 238, 178–184. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.B.; Xie, X.; Yang, R.; Liu, Z.; Liu, Y.; Yu, Z.Z. Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. Small 2018, 14, 1802479. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.L.; Hantanasirisakul, K.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.T.; May, S.J.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ Electronic Properties through Termination and Intercalation. Nat. Commun. 2019, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Jiang, J.; Tao, Q.; Wang, C.; Persson, I.; Fahlman, M.; Persson, P.O.A.; Hou, L.; Rosen, J.; Zhang, F. A Flexible Semitransparent Photovoltaic Supercapacitor Based on Water-Processed MXene Electrodes. J. Mater. Chem. A 2020, 8, 5467–5475. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, L.; Zhao, L.; Wang, K.; Zheng, Y.; Yuan, Z.; Wang, D.; Fu, X.; Shen, G.; Han, W. Flexible Self-Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@MXene Thin-Films. Adv. Mater. 2021, 33, 2007890. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Q.; Wang, J.; Huang, X.; Bai, H. A Self-Assembly Route to Porous Polyaniline/Reduced Graphene Oxide Composite Materials with Molecular-Level Uniformity for High-Performance Supercapacitors. Energy Environ. Sci. 2018, 11, 1280–1286. [Google Scholar] [CrossRef]
- Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.; Lian, K. Polyoxometalates; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Makgopa, K.; Bello, A.; Raju, K.; Modibane, K.D.; Hato, M.J. Nanostructured Metal Oxides for Supercapacitor Applications. In Emerging Nanostructured Materials for Energy and Environmental Science; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal Oxide-Based Supercapacitors: Progress and Prospectives. Nanoscale Adv. 2019, 1, 4644–4658. [Google Scholar] [CrossRef] [Green Version]
- Baena-Moncada, A.M.; Quispe-Garrido, V.; Antonio Cerron-Calle, G.; Bazan-Aguilar, A.; Ruiz-Montoya, J.G.; López, E.O. Advances in the Design and Application of Transition Metal Oxide-Based Supercapacitors. Open Chem. 2021, 19, 709–725. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, X. Recent Advances in Dual-Functional Devices Integrating Solar Cells and Supercapacitors. Sol. RRL 2017, 1, 1700002. [Google Scholar] [CrossRef]
- Brahmendra Kumar, G.V.; Anil Kumar, G.; Eswararao, S.; Gehlot, D. Modelling and Control of BESS for Solar Integration for PV Ramp Rate Control. In Proceedings of the 7th 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, India, 28–29 March 2018; pp. 368–374. [Google Scholar] [CrossRef]
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Fan, R.K.; Chen, Q.Y.; Zhang, X.Y.; Huang, Y.M.; et al. A Brief Review of High Efficiency III-V Solar Cells for Space Application. Front. Phys. 2021, 8, 631925. [Google Scholar] [CrossRef]
- Luo, B.; Ye, D.; Wang, L. Recent Progress on Integrated Energy Conversion and Storage Systems. Adv. Sci. 2017, 4, 1700104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyasaka, T.; Murakami, T.N. The Photocapacitor: An Efficient Self-Charging Capacitor for Direct Storage of Solar Energy. Appl. Phys. Lett. 2004, 85, 3932–3934. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, C.; Zhang, S.; Fang, Y.; Zou, D. Application of Carbon Fibers to Flexible, Miniaturized Wire/Fiber-Shaped Energy Conversion and Storage Devices. J. Mater. Chem. A 2017, 5, 2444–2459. [Google Scholar] [CrossRef]
- Paquin, F.; Rivnay, J.; Salleo, A.; Stingelin, N.; Silva, C. Multi-Phase Semicrystalline Microstructures Drive Exciton Dissociation in Neat Plastic Semiconductors. J. Mater. Chem. C 2015, 3, 10715–10722. [Google Scholar] [CrossRef] [Green Version]
- Sonigara, K.K.; Machhi, H.K.; Vaghasiya, J.V.; Gibaud, A.; Tan, S.C.; Soni, S.S. A Smart Flexible Solid State Photovoltaic Device with Interfacial Cooling Recovery Feature through Thermoreversible Polymer Gel Electrolyte. Small 2018, 14, 1800842. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Deng, J.; Zhang, Y.; Guan, G.; Peng, H. Stretchable Polymer Solar Cell Fibers. Small 2015, 11, 675–680. [Google Scholar] [CrossRef]
- Bergonzini, C.; Brunelli, D.; Benini, L. Comparison of Energy Intake Prediction Algorithms for Systems Powered by Photovoltaic Harvesters. Microelectron. J. 2010, 41, 766–777. [Google Scholar] [CrossRef]
- Hande, A.; Polk, T.; Walker, W.; Bhatia, D. Indoor Solar Energy Harvesting for Sensor Network Router Nodes. Microprocess. Microsyst. 2007, 31, 420–432. [Google Scholar] [CrossRef]
- Wee, G.; Salim, T.; Lam, Y.M.; Mhaisalkar, S.G.; Srinivasan, M. Printable Photo-Supercapacitor Using Single-Walled Carbon Nanotubes. Energy Environ. Sci. 2011, 4, 413–416. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S.S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Sahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A Review on Supercapacitor Materials and Developments. Turk. J. Mater. 2020, 5, 10–24. [Google Scholar]
- Mitkowski, W.; Skruch, P. Fractional-Order Models of the Supercapacitors in the Form of RC Ladder Networks. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 581–587. [Google Scholar] [CrossRef]
- Thostenson, J.O.; Li, Z.; Kim, C.H.J.; Ajnsztajn, A.; Parker, C.B.; Liu, J.; Peterchev, A.V.; Glass, J.T.; Goetz, S.M. Integrated Flexible Conversion Circuit between a Flexible Photovoltaic and Supercapacitors for Powering Wearable Sensors. J. Electrochem. Soc. 2018, 165, B3122–B3129. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Zou, H.; Song, T.; Sun, B. Integrated Solar Capacitors for Energy Conversion and Storage. Nano Res. 2017, 10, 1545–1559. [Google Scholar] [CrossRef]
- Lo, C.W.; Li, C.; Jiang, H. Direct Solar Energy Conversion and Storage through Coupling between Photoelectrochemical and Ferroelectric Effects. AIP Adv. 2011, 1, 042104. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Li, C.; Jiang, H. Dye-Sensitized Solar Cell with Energy Storage Function through PVDF/ZnO Nanocomposite Counter Electrode. Adv. Mater. 2013, 25, 4093–4096. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.S.; Anandan, S. Fabrication of Dye Sensitized Solar Cells with Different Anchoring Mode Based Triphenylamine Dyes. Appl. Sol. Energy (Engl. Transl. Geliotekhnika) 2015, 51, 120–128. [Google Scholar] [CrossRef]
- Thimmappa, R.; Paswan, B.; Gaikwad, P.; Devendrachari, M.C.; Makri Nimbegondi Kotresh, H.; Rani Mohan, R.; Pattayil Alias, J.; Thotiyl, M.O. Chemically Chargeable Photo Battery. J. Phys. Chem. C 2015, 119, 14010–14016. [Google Scholar] [CrossRef]
- Paolella, A.; Faure, C.; Bertoni, G.; Marras, S.; Guerfi, A.; Darwiche, A.; Hovington, P.; Commarieu, B.; Wang, Z.; Prato, M.; et al. Light-Assisted Delithiation of Lithium Iron Phosphate Nanocrystals towards Photo-Rechargeable Lithium Ion Batteries. Nat. Commun. 2017, 8, 14643. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Vo, Q.S.; Prokhorov, A.V. Stability Improvement of a Multimachine Power System Connected With a Large-Scale Hybrid Wind-Photovoltaic Farm Using a Supercapacitor. IEEE Trans. Ind. Appl. 2018, 54, 50–60. [Google Scholar] [CrossRef]
- Chen, H.W.; Hsu, C.Y.; Chen, J.G.; Lee, K.M.; Wang, C.C.; Huang, K.C.; Ho, K.C. Plastic Dye-Sensitized Photo-Supercapacitor Using Electrophoretic Deposition and Compression Methods. J. Power Sources 2010, 195, 6225–6231. [Google Scholar] [CrossRef]
- Li, C.; Islam, M.M.; Moore, J.; Sleppy, J.; Morrison, C.; Konstantinov, K.; Dou, S.X.; Renduchintala, C.; Thomas, J. Wearable Energy-Smart Ribbons for Synchronous Energy Harvest and Storage. Nat. Commun. 2016, 7, 13319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Dong, H.; Zhu, R.; Li, H.; Sun, Y.; Xu, D.; Zhao, Q.; Yu, D. An “All-in-One” Mesh-Typed Integrated Energy Unit for Both Photoelectric Conversion and Energy Storage in Uniform Electrochemical System. Nano Energy 2015, 13, 670–678. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, J.S.; Noh, J.; Lee, I.; Kim, H.J.; Choi, S.; Seo, J.; Jeon, S.; Kim, T.S.; Lee, J.Y.; et al. Wearable Textile Battery Rechargeable by Solar Energy. Nano Lett. 2013, 13, 5753–5761. [Google Scholar] [CrossRef]
- Thekkekara, L.V.; Jia, B.; Zhang, Y.; Qiu, L.; Li, D.; Gu, M. Fabrication and Characterization of Solar Supercapcitors Integrated with a Laser Scribed Graphene Oxide Film. In Proceedings of the Frontiers in Optics 2015, San Jose, CA, USA, 18–22 October 2015; pp. 3–5. [Google Scholar] [CrossRef]
- Lee, F.W.; Ma, C.W.; Lin, Y.H.; Huang, P.C.; Su, Y.L.; Yang, Y.J. A Micromachined Photo-Supercapacitor Integrated with CdS-Sensitized Solar Cells and Buckypaper. Sens. Mater. 2016, 28, 749–756. [Google Scholar] [CrossRef]
- Cohn, A.P.; Erwin, W.R.; Share, K.; Oakes, L.; Westover, A.S.; Carter, R.E.; Bardhan, R.; Pint, C.L. All Silicon Electrode Photocapacitor for Integrated Energy Storage and Conversion. Nano Lett. 2015, 15, 2727–2731. [Google Scholar] [CrossRef]
- Narayanan, R.; Kumar, P.N.; Deepa, M.; Srivastava, A.K. Combining Energy Conversion and Storage: A Solar Powered Supercapacitor. Electrochim. Acta 2015, 178, 113–126. [Google Scholar] [CrossRef]
- Agbo, S.N.; Merdzhanova, T.; Yu, S.; Tempel, H.; Kungl, H.; Eichel, R.A.; Rau, U.; Astakhov, O. Development towards Cell-to-Cell Monolithic Integration of a Thin-Film Solar Cell and Lithium-Ion Accumulator. J. Power Sources 2016, 327, 340–344. [Google Scholar] [CrossRef]
- Um, H.D.; Choi, K.H.; Hwang, I.; Kim, S.H.; Seo, K.; Lee, S.Y. Monolithically Integrated, Photo-Rechargeable Portable Power Sources Based on Miniaturized Si Solar Cells and Printed Solid-State Lithium-Ion Batteries. Energy Environ. Sci. 2017, 10, 931–940. [Google Scholar] [CrossRef]
- Gao, Z.; Bumgardner, C.; Song, N.; Zhang, Y.; Li, J.; Li, X. Cotton-Textile-Enabled Flexible Self-Sustaining Power Packs via Roll-to-Roll Fabrication. Nat. Commun. 2016, 7, 11586. [Google Scholar] [CrossRef] [PubMed]
- Başoʇlu, M.E.; Çakir, B. Comparisons of MPPT Performances of Isolated and Non-Isolated DC-DC Converters by Using a New Approach. Renew. Sustain. Energy Rev. 2016, 60, 1100–1113. [Google Scholar] [CrossRef]
- Watanabe, H.; Itoh, J.I.; Koike, N.; Nagai, S. PV Micro-Inverter Topology Using LLC Resonant Converter. Energies 2019, 12, 3106. [Google Scholar] [CrossRef] [Green Version]
- Palacín, M.R.; De Guibert, A. Batteries: Why Do Batteries Fail? Science 2016, 351, 6273. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Fan, L.; Pham, N.D.; Yao, D.; Wang, T.; Wang, Z.; Wang, H. Self-Charging Flexible Solar Capacitors Based on Integrated Perovskite Solar Cells and Quasi-Solid-State Supercapacitors Fabricated at Low Temperature. J. Power Sources 2020, 479, 229046. [Google Scholar] [CrossRef]
- Vlad, A.; Singh, N.; Galande, C.; Ajayan, P.M. Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Adv. Energy Mater. 2015, 5, 1402115. [Google Scholar] [CrossRef]
- Schmidt, D.; Hager, M.D.; Schubert, U.S. Photo-Rechargeable Electric Energy Storage Systems. Adv. Energy Mater. 2016, 6, 1500369. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Guo, S.; Zhou, H. Solar Energy Storage in the Rechargeable Batteries. Nano Today 2017, 16, 46–60. [Google Scholar] [CrossRef]
- Yu, L.; Chen, G.Z. Redox Electrode Materials for Supercapatteries. J. Power Sources 2016, 326, 604–612. [Google Scholar] [CrossRef]
- Sarif Ullah Patwary, M.S. Smart Textiles and Nano-Technology: A General Overview. J. Text. Sci. Eng. 2015, 05, 1–7. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, W. Toward Soft Skin-like Wearable and Implantable Energy Devices. Adv. Energy Mater. 2017, 7, 1700648. [Google Scholar] [CrossRef] [Green Version]
- Varma, S.J.; Sambath Kumar, K.; Seal, S.; Rajaraman, S.; Thomas, J. Fiber-Type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications. Adv. Sci. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef]
- Zurbuchen, A.; Haeberlin, A.; Bereuter, L.; Wagner, J.; Pfenniger, A.; Omari, S.; Schaerer, J.; Jutzi, F.; Huber, C.; Fuhrer, J.; et al. The Swiss Approach for a Heartbeat-Driven Lead- and Batteryless Pacemaker. Hear. Rhythm 2017, 14, 294–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, A.; Zi, W.; Guanzhou, L.; Xinfang, J.; Ertan, A.; Fuqiang, L. An Integrated Solar Cell with Built-In Energy Storage Capability. Electrochim. Acta 2020, 349, 136368. [Google Scholar] [CrossRef]
- Zhai, P.; Lee, H.; Huang, Y.T.; Wei, T.C.; Feng, S.P. Study on the Blocking Effect of a Quantum-Dot TiO2 Compact Layer in Dye-Sensitized Solar Cells with Ionic Liquid Electrolyte under Low-Intensity Illumination. J. Power Sources 2016, 329, 502–509. [Google Scholar] [CrossRef]
- Luo, J.; Yao, X.; Yang, L.; Han, Y.; Chen, L.; Geng, X.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D.; et al. Free-Standing Porous Carbon Electrodes Derived from Wood for High-Performance Li-O2 Battery Applications. Nano Res. 2017, 10, 4318–4326. [Google Scholar] [CrossRef]
- Shamshiri, M.; Gan, C.K.; Sardi, J.; Au, M.T.; Tee, W.H. Design of Battery Storage System for Malaysia Low Voltage Distribution Network with the Presence of Residential Solar Photovoltaic System. Energies 2020, 13, 4887. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Tian, Z.; Sun, J. Solar-Driven Integrated Energy Systems: State of the Art and Challenges. J. Power Sources 2020, 478, 228762. [Google Scholar] [CrossRef]
- Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion. Chem. Soc. Rev. 2015, 44, 699–728. [Google Scholar] [CrossRef]
- Dong, P.; Rodrigues, M.F.; Zhang, J.; Borges, R.S.; Kalaga, K.; Reddy, A.L.M.; Silva, G.G.; Ajayan, P.M.; Lou, J. A Fl Exible Solar Cell/Supercapacitor Integrated Energy Device. Nano Energy 2017, 42, 181–186. [Google Scholar] [CrossRef]
- Teo, J.C.; Tan, R.H.G.; Mok, V.H.; Ramachandaramurthy, V.K.; Tan, C. Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String. Energies 2018, 11, 1860. [Google Scholar] [CrossRef] [Green Version]
- Salameh, W.; Castelain, C.; Faraj, J.; Murr, R.; El Hage, H.; Khaled, M. Improving the Efficiency of Photovoltaic Panels Using Air Exhausted from HVAC Systems: Thermal Modelling and Parametric Analysis. Case Stud. Therm. Eng. 2021, 25, 100940. [Google Scholar] [CrossRef]
Energy Storage Device | Storage Efficiency (%) | Overall Efficiency (%) | Refs. |
---|---|---|---|
Ruthenium(IV) Oxide (RuO2)//RuO2 Supercapacitors (SCs) | 26.67 | 0.8 | [12] |
Titanium@Titanium dioxide//Carbon nanotube (Ti@TiO2//CNT) SCs | 75.7 | 1.2 | [13] |
Ti@TiO2//Multiwalled carbon nanotube (MWCNT) SCs | 65.6 | 0.82 | [14] |
Carbon//carbon SCs | 46.77 | 2.9 | [15] |
Poly(3,4-ethylenedioxythiophene (PEDOT)//carbon SCs | 73.78 | 4.7 | [16] |
Carbon//carbon SCs | 79.78 | 7.1 | [17] |
NiCo2O4//active carbon SCs | 74.24 | 8.1 | [5] |
Material | Power Conversion Efficiency (%) | Reference |
---|---|---|
Perovskite/Cu (In, Ga) Se2 (CIGS) | 28 | [32] |
Organic–inorganic perovskite formamidinium tin iodide | 19.08 | [33,34] |
Ternary polymer solar cell | 15.5 | [35] |
Triboelectric nanogenerator/silicon (TENG/Si) tandem hybrid solar cell | 22.4 | [36] |
Gallium arsenide solar cell | 30.6 | [37] |
Silicon heterojunction solar cells | 26 | [27] |
Piezo-phototronic multijunction solar cells | 33 | [38] |
Lead iodide perovskite-based solar cells | 25 | [39] |
Types | Operating Voltage (V) | Energy Density (Wh/kg) | Power Density (W/kg) | Refs. |
---|---|---|---|---|
Electric double-layer capacitor | Up to 3.5 | ~3–5 | ~900–10,000 | [40] |
Pseudocapacitor | Up to 2.3 | ~1–10 | ~500–5000 | [43] |
Hybrid capacitor | ~3.8–19 | ~8–80 | ~200–1500 | [44] |
Electrode Material | Examples | Properties |
---|---|---|
Nanocarbons | CNT, Activated Carbon (AC), Graphene | Chemical stability, high exohedral surface area, high electrical conductivity due to covalent sp2 bonds, high cost |
Conducting polymers | Polypyrrole (Ppy), Polyaniline (PANI), Poly(3,4-ethylenedioxythiophene (PEDOT) | More versatile, outstanding specific energies |
Metal oxides | MnO2, Nb2O5, V2O5 | High theoretical capacitance, rapid faraday redox reaction, high cost, toxicity concern |
Metal nitrides | Vanadium Nitride (VN), TiN, Fe2N | Outstanding electrochemical properties, high chemical stability, standard technological approach |
MXenes | Ti3C2Tx | High number of active groups, large surface area, high chemical reactivity |
Metal-organic frameworks | Cu-catecholate (Cu-CAT) | Large surface area, three-dimensional porous architecture, permeability to foreign entities, structural tailorability |
Black phosphorus | Large theoretical capacity, high carrier mobility, low redox potential | |
Polyoxometalates | PMo12, PV2Mo10 | High stability of redox states, able to participate in fast reversible multielectron transfer reactions |
PV Cell | Storage | PV Maximum Voltage (V) | Capacitance | Refs. | |
---|---|---|---|---|---|
Electrode | Electrolyte | ||||
Dye sensitized solar cell (DSSC) | Ferroelectric membrane Polyvinylidene fluoride (PVDF) | 1M LiPF6 EC:DMC 1:1 (v/v) | 0.47 | 37.62 mC/cm2 | [83] |
DSSC | PVDF/ZnO nanowire array | LiI:I2:guanidinium thiocyanate:3-dimethylimidazolium iodide:TBP in 3-methoxyproionitrile in AcN | −0.9 | 1.4 mWh/kg, 2.14 C/g | [84] |
DSSC | Poly(3,4-ethylenedioxypyrrole)/V2O5 | 1 M LiClO4/PC | −1.9 | 224 F/g | [85] |
Photoelectrochemical system | KFe[Fe(CN)6] with TiN | Na2S2O8 | −0.9 | 77.8 mAh/g | [86] |
Polymer c-Si solar cell | Li-O2 battery | I3−/I− electrolyte | 0.8 | 47 mWh/cm2 | [70] |
Organic solar cell | Carbon black electrode | N-methyl-2-pyrrolidone gel | 0.92 | 130 mF/cm2 | [15] |
DSSC | LiFePO4/CNTs | LiPF6 EC:DEC:vinylene carbonate | 3.75 | 104 mAh/g | [87] |
Photoelectrochemical system | Bismuth oxyiodide/ZnO nanorod array | 0.1 M phosphate-buffered saline with glucose | 0.48 | 155 mW/cm2 | [88] |
Organic solar cell | CNT | PVA with 1 M H3PO4 | 0.6 | 28 F/g, 17.5 C/g | [77] |
DSSC | PEDOT | 0.5 M LiClO4 in 3-methoxypropionitrile | 0.71 | 0.52 F/cm2 | [89] |
Perovskite solar cell | CuOH nanotubes | PVA with KOH | −0.8 | 1.15 mWh/cm3 | [90] |
Organic solar cell | Graphene ink/PEDOT:PSS | Et4NBF4-PC | 2.0 | 2.5 mF/cm2 | [26] |
Quantum dot solar cell | Carbon mesh with Cu2S film | 0.8 M Na2S, 0.8 M S, 2M KCl | 0.6 | 56.4 µJ | [91] |
Polymer solar cell | Ni yarn with composite | 1 M LiPF6 EC:DMC 1:1 (v/v) | 2.4 | 85 mAh | [92] |
c-Si solar cell | Laser-scribed graphene oxide | Ionogel-silica-1-butyl-3-methylimidazolium bis (trifluor-omethylsulfonyl) imide | 0.38 | 4.6 W/cm2, 1 mF/cm2 | [93] |
Perovskite solar cell | WO3 | PVA with H3PO | 0.61 | 430.7 F/m2 | [24] |
DSSC | Single-walled CNT/buckypaper | PVA KOH | −1.0 | 95.25 F/g | [94] |
DSSC | Porous Si | PEO-EMIBF4 1:3 (w/w) | 0.64 | 0.17 mWh/cm2, 22 mW/cm2 | [95] |
DSSC | MWCNT | LiCF3SO3/PC/poly(methylmethacrylate) | 0.5 | 150 F/g | [96] |
Thin film | LiFePO4/C with Li4Ti5O12 | 1 M LiPF6 EC:DMC 1:1 (v/v) | 2.09 | 1.6 mAh/cm2 | [97] |
c-Si solar cell | LIB LiCoO2/Li4Ti5O12 | 1 M LiPF6 EC:PC 1:1 (v/v) | 5.4 | 0.5 mAh/cm2 | [98] |
Perovskite solar cell | Bacterial cellulose/PPy | Nanofibers/MWCNTs | 1.45 | 572 mF/cm2 | [14] |
a-Si solar cell | Activated cotton textiles/graphene | PVA with KOH | 1.6 | 55.04 Wh/kg | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nordin, N.A.; Mohamed Ansari, M.N.; M. Nomanbhay, S.; A. Hamid, N.; Tan, N.M.L.; Yahya, Z.; Abdullah, I. Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review. Energies 2021, 14, 7211. https://doi.org/10.3390/en14217211
Nordin NA, Mohamed Ansari MN, M. Nomanbhay S, A. Hamid N, Tan NML, Yahya Z, Abdullah I. Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review. Energies. 2021; 14(21):7211. https://doi.org/10.3390/en14217211
Chicago/Turabian StyleNordin, Noor Afeefah, Mohamed Nainar Mohamed Ansari, Saifuddin M. Nomanbhay, Nasri A. Hamid, Nadia M. L. Tan, Zainudin Yahya, and Izhan Abdullah. 2021. "Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review" Energies 14, no. 21: 7211. https://doi.org/10.3390/en14217211
APA StyleNordin, N. A., Mohamed Ansari, M. N., M. Nomanbhay, S., A. Hamid, N., Tan, N. M. L., Yahya, Z., & Abdullah, I. (2021). Integrating Photovoltaic (PV) Solar Cells and Supercapacitors for Sustainable Energy Devices: A Review. Energies, 14(21), 7211. https://doi.org/10.3390/en14217211