Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method
Abstract
:1. Introduction
2. Review of Rational Fitting Algorithms
2.1. Review of the LM Algorithm
2.2. RKFIT Algorithm
2.3. Review of the RKFIT Algorithm
RKFIT with MIMO Data
3. Numerical Results
3.1. Measured Four Port Network
3.2. 18-Port Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LM | Loewner Matrix |
RAD | Rational Arnoldi Decomposition |
RKFIT | Rational Krylov Fitting |
RVF | Relaxed Vector Fitting |
VF | Vector Fitting |
References
- Grivet-Talocia, S.; Gustavsen, B. Passive Macromodeling: Theory and Applications; Wiley Series in Microwave and Optical Engineering; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gustavsen, B.; Semlyen, A. Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 1999, 14, 1052–1061. [Google Scholar] [CrossRef] [Green Version]
- Gustavsen, B. Relaxed Vector Fitting Algorithm for Rational Approximation of Frequency Domain Responses. In Proceedings of the 2006 IEEE Workship on Signal Propagation on Interconnects, Berlin, Germany, 9–12 May 2006; pp. 97–100. [Google Scholar] [CrossRef]
- Lefteriu, S.; Antoulas, A.C. A New Approach to Modeling Multiport Systems From Frequency-Domain Data. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2010, 29, 14–27. [Google Scholar] [CrossRef]
- Ionita, A. Lagrange Rational Interpolation and Its Applications to Approximation of Large-Scale Dynamical Systems. Ph.D. Thesis, Rice University, Houston, TX, USA, 2013. [Google Scholar]
- Achar, R.; Nakhla, M.S. Simulation of high-speed interconnects. Proc. IEEE 2001, 89, 693–728. [Google Scholar] [CrossRef] [Green Version]
- Semlyen, A.; Gustavsen, B. Vector fitting by pole relocation for the state equation approximation of nonrational transfer matrices. Circuits Syst. Signal Process. 2000, 19, 549–566. [Google Scholar] [CrossRef]
- Gustavsen, B. Improving the pole relocating properties of vector fitting. IEEE Trans. Power Deliv. 2006, 21, 1587–1592. [Google Scholar] [CrossRef]
- Deschrijver, D.; Haegeman, B.; Dhaene, T. Orthonormal Vector Fitting: A Robust Macromodeling Tool for Rational Approximation of Frequency Domain Responses. IEEE Trans. Adv. Packag. 2007, 30, 216–225. [Google Scholar] [CrossRef]
- Grivet-Talocia, S.; Bandinu, M. Improving the convergence of vector fitting for equivalent circuit extraction from noisy frequency responses. IEEE Trans. Electromagn. Compat. 2006, 48, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Ferranti, F.; Rolain, Y.; Knockaert, L.; Dhaene, T. Variance Weighted Vector Fitting for Noisy Frequency Responses. IEEE Microw. Wirel. Components Lett. 2010, 20, 187–189. [Google Scholar] [CrossRef]
- Beygi, A.; Dounavis, A. An Instrumental Variable Vector-Fitting Approach for Noisy Frequency Responses. IEEE Trans. Microw. Theory Tech. 2012, 60, 2702–2712. [Google Scholar] [CrossRef]
- Kassis, M.T.; Kabir, M.; Xiao, Y.Q.; Khazaka, R. Passive Reduced Order Macromodeling Based on Loewner Matrix Interpolation. IEEE Trans. Microw. Theory Tech. 2016, 64, 2423–2432. [Google Scholar] [CrossRef]
- Berljafa, M.; Güttel, S. Generalized rational Krylov decompositions with an application to rational approximation. SIAM J. Matrix Anal. Appl. 2015, 36, 894–916. [Google Scholar] [CrossRef] [Green Version]
- Berljafa, M. Rational Krylov Decompositions: Theory and Applications. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2017. [Google Scholar]
- Börner, R.U.; Ernst, O.G.; Güttel, S. Three-dimensional transient electromagnetic modelling using Rational Krylov methods. Geophys. J. Int. 2015, 202, 2025–2043. [Google Scholar] [CrossRef]
- Druskin, V.; Güttel, S.; Knizhnerman, L. Compressing Variable-Coefficient Exterior Helmholtz Problems via RKFIT. MIMS EPrint 2016.53. 2016, p. 1. Available online: http://eprints.ma.man.ac.uk/2511/ (accessed on 20 October 2021).
- Mouhaidali, A.; Dervout, D.T.; Chadebec, O.; Guichon, J.M.; Silvant, S. Electromagnetic Transient Analysis of Transmission line based on rational Krylov approximation. IEEE Trans. Power Deliv. 2020. [Google Scholar] [CrossRef]
- Morales, J.; Mahseredjian, J.; Ramirez, A.; Sheshyekani, K.; Kocar, I. A Loewner/MPM—VF Combined Rational Fitting Approach. IEEE Trans. Power Deliv. 2020, 35, 802–808. [Google Scholar] [CrossRef]
- Kabir, M.; Khazaka, R. Macromodeling of Distributed Networks From Frequency-Domain Data Using the Loewner Matrix Approach. IEEE Trans. Microw. Theory Tech. 2012, 60, 3927–3938. [Google Scholar] [CrossRef]
- Kabir, M.; Khazaka, R. Loewner Matrix Macromodeling for Y-Parameter Data With a Priori D Matrix Extraction. IEEE Trans. Microw. Theory Tech. 2016, 64, 4098–4107. [Google Scholar] [CrossRef]
- Rational Krylov Toolbox for MATLAB. Available online: http://guettel.com/rktoolbox/index.html (accessed on 1 October 2021).
- The Vector Fitting Website. Available online: https://www.sintef.no/projectweb/vectorfitting/ (accessed on 1 October 2021).
- Cangellaris, A.C.; Ruehli, A.E. Model order reduction techniques applied to electromagnetic problems. In Proceedings of the IEEE 9th Topical Meeting on ElectricaPerformance of Electronic Packaging (Cat. No.00TH8524), Scottsdale, AZ, USA, 23–25 October 2000; pp. 239–242. [Google Scholar] [CrossRef]
Example | Method | Time (s) |
---|---|---|
4-Port | RVF | |
RKFIT | ||
18-Port | RVF | |
RKFIT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahouli, M.; Dounavis, A. Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method. Energies 2021, 14, 7318. https://doi.org/10.3390/en14217318
Sahouli M, Dounavis A. Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method. Energies. 2021; 14(21):7318. https://doi.org/10.3390/en14217318
Chicago/Turabian StyleSahouli, Mohamed, and Anestis Dounavis. 2021. "Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method" Energies 14, no. 21: 7318. https://doi.org/10.3390/en14217318
APA StyleSahouli, M., & Dounavis, A. (2021). Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method. Energies, 14(21), 7318. https://doi.org/10.3390/en14217318