Nitrogen-Doped and Carbon-Coated Activated Carbon as a Conductivity Additive-Free Electrode for Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.3. Characterizations
2.4. Electrochemical Performance
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhang, L.; Hou, H.; Xu, W.; Duan, G.; He, S.; Liu, K.; Jiang, S. Recent progress in carbon-based materials for supercapacitor electrodes: A review. J. Mater. Sci. 2021, 56, 173–200. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Navarro, G.; Torres, J.; Blanco, M.; Nájera, J.; Santos-Herran, M.; Lafoz, M. Present and future of supercapacitor technology applied to powertrains, renewable generation and grid connection applications. Energies 2021, 14, 3060. [Google Scholar] [CrossRef]
- Chae, J.S.; Kang, W.-S.; Roh, K.C. sp2–sp3 hybrid porous carbon materials applied for supercapacitors. Energies 2021, 14, 5990. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, J.; Fan, Z. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762. [Google Scholar] [CrossRef]
- Raymundo-Piñero, E.; Cadek, M.; Béguin, F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 2009, 19, 1032–1039. [Google Scholar] [CrossRef]
- Jang, S.-J.; Kang, Y.C.; Roh, K.C. Preparation of activated carbon decorated with carbon dots and its electrochemical performance. J. Ind. Eng. Chem. 2020, 82, 383–389. [Google Scholar] [CrossRef]
- Na, R.; Lu, N.; Li, L.; Liu, Y.; Luan, J.; Wang, G. A robust conductive polymer network as a multi-functional binder and conductive additive for supercapacitors. Chem. Electro. Chem. 2020, 7, 3056–3064. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, K.-Y.; Yoon, J.-R. Binder-and conductive additive-free laser-induced graphene/LiNi 1/3 Mn 1/3 Co 1/3 O 2 for advanced hybrid supercapacitors. NPG Asia Mater. 2020, 12, 28. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.-C. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 2011, 49, 2917–2925. [Google Scholar] [CrossRef]
- Mirzaeian, M.; Abbas, Q.; Hunt, M.; Hall, P. Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitors. Energies 2020, 13, 5577. [Google Scholar] [CrossRef]
- Zhang, R.; Jing, X.; Chu, Y.; Wang, L.; Kang, W.; Wei, D.; Li, H.; Xiong, S. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 17730–17739. [Google Scholar] [CrossRef]
- Le Comte, A.; Pognon, G.; Brousse, T.; Belanger, D. Determination of the quinone-loading of a modified carbon powder-based electrode for electrochemical capacitor. Electrochemistry 2013, 81, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.M.; Lee, J.W.; Shin, W.H.; Choi, Y.J.; Shin, H.J.; Kang, J.K.; Choi, J.W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472–2477. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, H.; Oh, S.M. Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries. J. Power Sources 2001, 94, 68–73. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, M.; Qi, L.; Qi, Y. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization. RSC Adv. 2016, 6, 20814–20823. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.; Wang, H.; Ding, J.; Zahiri, B.; Holt, C.M.; Tan, X.; Mitlin, D. Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 2014, 7, 1708–1718. [Google Scholar] [CrossRef]
- Jang, M.; Ko, D.; Choi, Y.; Yan, B.; Jin, X.; Kim, D.K.; Piao, Y. Self-organized hierarchically porous carbon coated on carbon cloth for high-performance freestanding supercapacitor electrodes. J. Electroanal. Chem. 2021, 895, 115456. [Google Scholar] [CrossRef]
- Kim, S.-K.; Park, H.S. Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors. RSC Adv. 2014, 4, 47827–47832. [Google Scholar] [CrossRef]
- Jung, D.E.; Chung, D.; Yoon, S.-H.; Kim, B.C. The preparation and properties of isotropic pitch-based carbon felt prepared by solvent-supported dual concentric electrospinning. Macromol. Res. 2019, 27, 1024–1029. [Google Scholar] [CrossRef]
- Kim, B.-J.; Kil, H.; Watanabe, N.; Seo, M.-H.; Kim, B.-H.; Yang, K.S.; Kato, O.; Miyawaki, J.; Mochida, I.; Yoon, S.-H. Preparation of novel isotropic pitch with high softening point and solvent solubility for pitch-based electrospun carbon nanofiber. Curr. Org. Chem. 2013, 17, 1463–1468. [Google Scholar] [CrossRef]
- Kim, B.-J.; Kotegawa, T.; Eom, Y.; An, J.; Hong, I.-P.; Kato, O.; Nakabayashi, K.; Miyawaki, J.; Kim, B.C.; Mochida, I. Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon 2016, 99, 649–657. [Google Scholar] [CrossRef]
- Kim, B.-J.; Eom, Y.; Kato, O.; Miyawaki, J.; Kim, B.C.; Mochida, I.; Yoon, S.-H. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon 2014, 77, 747–755. [Google Scholar] [CrossRef]
- Lee, K.-C.; Lim, M.S.W.; Hong, Z.-Y.; Chong, S.; Tiong, T.J.; Pan, G.-T.; Huang, C.-M. Coconut shell-derived activated carbon for high-performance solid-state supercapacitors. Energies 2021, 14, 4546. [Google Scholar] [CrossRef]
- Mitravinda, T.; Anandan, S.; Sharma, C.S.; Rao, T.N. Design and development of honeycomb structured nitrogen-rich cork derived nanoporous activated carbon for high-performance supercapacitors. J. Energy Storage 2021, 34, 102017. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, L.; Zhu, H.; Guan, Y.; Zhang, Q. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418. [Google Scholar] [CrossRef]
- Li, Z.; Lu, C.; Xia, Z.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Altinci, O.C.; Demir, M. Beyond conventional activating methods, a green approach for the synthesis of biocarbon and its supercapacitor electrode performance. Energy Fuels 2020, 34, 7658–7665. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, X.; Zhang, S.; Lu, W. Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J. Power Sources 2020, 450, 227678. [Google Scholar] [CrossRef]
- Gengenbach, T.R.; Major, G.H.; Linford, M.R.; Easton, C.D. Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum. J. Vac. Sci. Technol. A Vac. Surf. Film. 2021, 39, 013204. [Google Scholar] [CrossRef]
- Dettlaff, A.; Sawczak, M.; Klugmann-Radziemska, E.; Czylkowski, D.; Miotk, R.; Wilamowska-Zawłocka, M. High-performance method of carbon nanotubes modification by microwave plasma for thin composite films preparation. RSC Adv. 2017, 7, 31940–31949. [Google Scholar] [CrossRef] [Green Version]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Dychalska, A.; Popielarski, P.; Franków, W.; Fabisiak, K.; Paprocki, K.; Szybowicz, M. Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater. Sci.-Pol. 2015, 33, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Skorupska, M.; Kamedulski, P.; Lukaszewicz, J.P.; Ilnicka, A. The improvement of energy storage performance by sucrose-derived carbon foams via incorporating nitrogen atoms. Nanomaterials 2021, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.D.d. Anisotropy and mesophase formation towards carbon fibre production from coal tar and petroleum pitches: A review. J. Braz. Chem. Soc. 2006, 17, 1096–1108. [Google Scholar] [CrossRef]
- Yuan, G.; Xue, Z.; Cui, Z.; Westwood, A.; Dong, Z.; Cong, Y.; Zhang, J.; Zhu, H.; Li, X. Constructing the bridge from isotropic to anisotropic pitches for preparing pitch-based carbon fibers with tunable structures and properties. ACS Omega 2020, 5, 21948–21960. [Google Scholar] [CrossRef]
Surface Atomic Composition (at.%) | Electrical Conductivity (S cm−1) | SBET (m2 g−1) | Total Pore Volume (cm3 g−1) | Pore Volume Ratio (%) | |||||
---|---|---|---|---|---|---|---|---|---|
C | O | N | VTotal | Vmicro | Vmeso | Vmacro | |||
CAC | 96.9 | 3.1 | - | 0.69 | 2060 | 0.92 | 85.1% | 11.0% | 3.9% |
AC-MS | 98.5 | 1.0 | 0.5 | 3.0 | 1700 | 0.76 | 86.1% | 9.9% | 4.0% |
AC-MP | 98.2 | 1.2 | 0.6 | 2.1 | 1620 | 0.73 | 85.6% | 10.2% | 4.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.-J.; Lee, J.H.; Kang, S.H.; Kang, Y.C.; Roh, K.C. Nitrogen-Doped and Carbon-Coated Activated Carbon as a Conductivity Additive-Free Electrode for Supercapacitors. Energies 2021, 14, 7629. https://doi.org/10.3390/en14227629
Jang S-J, Lee JH, Kang SH, Kang YC, Roh KC. Nitrogen-Doped and Carbon-Coated Activated Carbon as a Conductivity Additive-Free Electrode for Supercapacitors. Energies. 2021; 14(22):7629. https://doi.org/10.3390/en14227629
Chicago/Turabian StyleJang, Su-Jin, Jeong Han Lee, Seo Hui Kang, Yun Chan Kang, and Kwang Chul Roh. 2021. "Nitrogen-Doped and Carbon-Coated Activated Carbon as a Conductivity Additive-Free Electrode for Supercapacitors" Energies 14, no. 22: 7629. https://doi.org/10.3390/en14227629
APA StyleJang, S. -J., Lee, J. H., Kang, S. H., Kang, Y. C., & Roh, K. C. (2021). Nitrogen-Doped and Carbon-Coated Activated Carbon as a Conductivity Additive-Free Electrode for Supercapacitors. Energies, 14(22), 7629. https://doi.org/10.3390/en14227629