Review on Detection and Analysis of Partial Discharge along Power Cables
Abstract
:1. Introduction
2. Partial Discharge Model
2.1. Partial Discharge Phenomenon
2.2. Partial Discharge Model
2.3. Partial Discharge Location and Propagation
3. Partial Discharge Detection
- 1 and 3 kV, IEC 60502-1,
- 6–30 kV, IEC 60502-2/4 and VDE 278,
- 30–150 kV, IEC 60840,
- 150–500 kV, IEC 62067.
3.1. Off-Line Test
3.2. On-Line Test
3.3. Sensors
4. Partial Discharge Analysis
4.1. Quantities and Algorithms for Analysis
4.2. PD Characteristics for Different Cables
4.3. PD with Temperature and Load
4.4. PD under AC and DC
4.5. Experience on PD Development
5. Challenge and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nattrass, D.A. Partial discharge. XVII. The early history of partial discharge research. IEEE Electr. Insul. Mag. 1993, 9, 27–31. [Google Scholar] [CrossRef]
- Kind, D.; Konig, D. AC breakdown of epoxy resins by partial discharges in voids. IEEE Trans. Electr. Insul. 1968, ei-3, 40–46. [Google Scholar] [CrossRef]
- Hussain, M.R.; Refaat, S.S.; Abu-Rub, H. Overview and partial discharge analysis of power transformers: A literature review. IEEE Access 2021, 9, 64587–64605. [Google Scholar] [CrossRef]
- Chen, Z. Review of direction of arrival estimation algorithms for partial discharge localization in transformers. IET Sci. Meas. Technol. 2019, 13, 529–535. [Google Scholar] [CrossRef]
- Metwally, L. Status review on partial discharge measurement techniques in gas-insulated switchgear/lines. Electr. Power Syst. Res. 2004, 69, 25–36. [Google Scholar] [CrossRef]
- Chen, G.; Pan, C.; Tang, J. Numerical modeling of partial discharges in a solid dielectric-bounded cavity: A review. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 981–1000. [Google Scholar]
- Refaat, S.S.; Shams, M.A. A review of partial discharge detection, diagnosis techniques in high voltage power cables. In Proceedings of the 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering, Doha, Qatar, 10–12 April 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Seo, I.J.; Khan, U.A.; Hwang, J.S.; Lee, J.G.; Koo, J.Y. Identification of insulation defects based on chaotic analysis of partial discharge in HVDC superconducting cable. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef]
- Fruth, B. Partial discharge mechanisms in solid insulation systems. In Proceedings of the 4th International Conference on Conduction and Breakdown in Solid Dielectrics, Sestri Levante, Italy, 22–25 June 1992; IEEE: Piscataway, NJ, USA, 1992. [Google Scholar]
- Christophorou, L.G.; Pinnaduwage, L.A. Basic physics of gaseous dielectrics. IEEE Trans. Electr. Insul. 1990, 25, 55–74. [Google Scholar] [CrossRef]
- Morshuis, P. Partial Discharge Mechanisms: Mechanisms Leading to Breakdown, Analyzed by Fast Electrical and Optical Measurements. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1993. [Google Scholar]
- Miyoshi, Y. Electrical breakdown of gases: Edited by J.M. Meek and J.D. Craggs, Wiley, New York, 1978, 878 pages. J. Electrost. 1979, 6, 385391. [Google Scholar] [CrossRef]
- Dissado, L.A.; Fothergill, J.C. Electrical degradation and breakdown in polymers. In IEE Materials and Devices Series; IET Digital Library: London, UK, 1992; pp. 287–355. [Google Scholar]
- Devins, J.C. The 1984 J.B. whitehead memorial lecture the physics of partial discharges in solid dielectrics. IEEE Trans. Electr. Insul. 1984, EI-19, 475–495. [Google Scholar] [CrossRef]
- Bartnikas, R. A commentary on partial discharge measurement and detection. IEEE Trans. Electr. Insul. 1987, EI-22, 629–653. [Google Scholar] [CrossRef]
- Tanaka, T. Internal partial discharge and material degradation. IEEE Trans. Electr. Insul. 1986, EI-21, 899–905. [Google Scholar] [CrossRef]
- Danikas, M.G. The definitions used for partial discharge phenomena. IEEE Trans. Electr. Insul. 1993, 28, 1075–1081. [Google Scholar] [CrossRef]
- Penning, M.F. Electrical discharges in gases. Am. J. Phys. 1958, 26, 651. [Google Scholar] [CrossRef]
- Raether, H. Electron Avalanches and Breakdown in Gases; Butterworths: Washington, WA, USA, 1964; pp. 73–191. [Google Scholar]
- Fromm, U.; Kreuger, F.H. Statistical behaviour of internal partial discharges at DC voltage. Jpn. J. Appl. Physics Pt Regul. Pap. Short Notes 1994, 33, 6708–6715. [Google Scholar] [CrossRef]
- Majidi, M.; Fadali, M.S.; Etezadi-Amoli, M.; Oskuoee, M. Partial discharge pattern recognition via sparse representation and ANN. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1061–1070. [Google Scholar] [CrossRef]
- Shafiq, M.; Hussain, G.A.; Kütt, L.; Lehtonen, M. Effect of geometrical parameters on high frequency performance of Rogowski coil for partial discharge measurements. Measurement 2014, 49, 126–137. [Google Scholar] [CrossRef]
- IEEE. IEEE Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment; IEEE: Piscataway, NJ, USA, 2007; Std 400.3-2006; pp. 1–44. [Google Scholar]
- Luo, J.H.; Shi, J.K.; Cao, J.; Yuan, J. Study on surface discharge of composite dielectric in XLPE power cable joints. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, Cincinnati, OH, USA, 18 October 2001. [Google Scholar]
- Albarracin, R.; Rodriguez-Serna, J.M.; Masud, A.A. Finite-element-analysis models for numerical simulation of partial discharges in spherical cavities within solid dielectrics: A review and a novel method. High Volt. 2020, 5, 556–568. [Google Scholar]
- Eyring; Henry. Dielectric breakdown of solids (Whitehead, S.). J. Chem. Educ. 1952, 29, 108. [Google Scholar] [CrossRef]
- Kuffel, E.; Kuffel, J.; Zaengl, W.S. High Voltage Engineering Fundamentals; Pergamon Press: Oxford, UK, 1984; pp. 367–394. [Google Scholar]
- Achillides, Z.; Georghiou, G.E.; Kyriakides, E. Partial discharges and associated transients: The induced charge concept versus capacitive modeling. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1507–1516. [Google Scholar] [CrossRef]
- Shi, C.; Czaszejko, T. Partial discharge test circuit as a spark-gap transmitter. IEEE Electr. Insul. Mag. 2011, 27, 36–44. [Google Scholar]
- Hikita, M.; Yamada, K.; Nakamura, A.; Mizutani, T.; Oohasi, A.; Ieda, M. Measurements of partial discharges by computer and analysis of partial discharge distribution by the Monte Carlo method. IEEE Trans. Electr. Insul. 1990, 25, 453–468. [Google Scholar] [CrossRef]
- Uehara, H.; Okamoto, T. Modeling and analysis of partial discharge phenomena using integral equations. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1915–1923. [Google Scholar] [CrossRef]
- Crichton, G.C.; Karlsson, P.W.; Pedersen, A. Partial discharges in ellipsoidal and spheroidal voids. IEEE Trans. Electr. Insul. 1989, 24, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A.; Crichton, G.C.; Mcallister, I.W. The theory and measurement of partial discharge transients. IEEE Trans. Electr. Insul. 1991, 26, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Mcallister, I.W. Electric field theory and the fallacy of void capacitance. IEEE Trans. Electr. Insul. 1991, 26, 458–459. [Google Scholar] [CrossRef] [Green Version]
- Danikas, M.G.; McAllister, I.W.; Crichton, G.C.; Pedersen, A. Discussion: Partial discharges in ellipsoidal and spheroidal voids. IEEE Trans. Electr. Insul. 1991, 26, 537–539. [Google Scholar] [CrossRef]
- Pedersen, A.; Crichton, C.; McAllister, W.I. Partial discharge detection: Theoretical and practical aspects. Sci. Meas. Technol. IEE Proc. 1995, 142, 29–36. [Google Scholar] [CrossRef]
- Danikas, M.G. Discharge studies in solid insulation voids. In Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena, Pocono Manor, PA, USA, 28–31 October 1990; IEEE: Piscataway, NJ, USA, 1990. [Google Scholar]
- Kolev, N.P.; Gadjeva, E.D.; Danikas, M.G.; Gourov, N.R. An approach to develop a partial discharge investigation. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference, Cincinnati, OH, USA, 28 October 1999. [Google Scholar]
- Boggs, S.A. Partial discharge III. Cavity-induced PD in solid dielectrics. IEEE Electr. Insul. Mag. 1990, 6, 11–16. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Saxena, A.; Umbarkar, S.B.; Mangalvedekar, H.A.; Kazi, F.S.; Singh, N.M.; Cheeran, A.N. Electrodynamic analysis and characterisation of void discharge using particle in cell code. In Proceedings of the 2013 19th IEEE Pulsed Power Conference, San Francisco, CA, USA, 16–21 June 2013. [Google Scholar]
- Dawson, J.M. Particle simulation of plasmas. Rev. Mod. Phys. 1983, 55, 403. [Google Scholar] [CrossRef]
- Tskhakaya, D.; Matyash, K.; Schneider, R.; Taccogna, F. The particle-in-cell method. Contrib. Plasma Phys. 2008, 47, 563–594. [Google Scholar] [CrossRef]
- Wu, F.F.; Liao, R.J.; Wang, K.; Yang, L.J.; Grzybowski, S. Numerical simulation of the characteristics of heavy particles in bar-plate dc positive corona discharge based on a hybrid model. IEEE Trans. Plasma Sci. 2014, 42, 868–878. [Google Scholar] [CrossRef]
- Algwari, Q.T.; Saleh, D.N. Numerical modeling of partial discharge in a void cavity within high-voltage cable insulation. IEEE Trans. Plasma Sci. 2021, 49, 1536–1542. [Google Scholar] [CrossRef]
- Illias, H.A.; Tunio, M.A.; Bakar, A.A.; Mokhlis, H.; Chen, G. Partial discharge behaviours within a void-dielectric system under square waveform applied voltage stress. IET Sci. Meas. Technol. 2014, 8, 81–88. [Google Scholar] [CrossRef]
- Illias, H.A.; Chen, G.; Lewin, P.L. Comparison between three-capacitance, analytical-based and finite element analysis partial discharge models in condition monitoring. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 99–109. [Google Scholar] [CrossRef]
- Au, M.; Agba, B.L.; Gagnon, F. A model of electromagnetic interferences induced by corona discharges for wireless channels in substation environments. IEEE Trans. Electromagn. Compat. 2015, 57, 1–10. [Google Scholar] [CrossRef]
- Kogan, V.; Dawson, F.; Gao, G.; Nindra, B. Surface corona suppression in high voltage stator winding end turns. In Proceedings of the Electrical Electronics Insulation Conference, Electrical Manufacturing & Coil Winding Conference, Rosemont, IL, USA, 18–21 September 1995; IEEE: Piscataway, NJ, USA, 1995. [Google Scholar]
- Borghei, M.; Ghassemi, M.; Rodríguez-Serna, J.M.; Albarracín-Sánchez, R. A finite element analysis and an improved induced charge concept for partial discharge modeling. IEEE Trans. Power Deliv. 2020, 36, 2570–2581. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.Y.; Hu, Y.; Zhang, W.D. Microscopic simulation and characteristics analysis of surface discharge based on PIC-MCC method. In Proceedings of the 2018 Condition Monitoring and Diagnosis, Perth, WA, Australia, 23–26 September 2018. [Google Scholar]
- Zhu, T.; Wang, S.; Guo, Z.; Wang, S.; Zhang, N. Study on the corona discharge ionized field of UHVdc based on particle-in-cell iterative method. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Li, X.; Sun, A.; Teunissen, J. A Computational study of negative surface discharges: Characteristics of surface streamers and surface charges. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1178–1186. [Google Scholar] [CrossRef]
- Pan, C.; Meng, Y.P.; Wu, K.; Han, Z.H.; Qin, K.; Cheng, Y.H. Simulation of partial discharge sequences using fluid equations. J. Phys. d-Appl. Phys. 2011, 44, 1417–1425. [Google Scholar] [CrossRef]
- Pan, C.; Tang, J.; Zeng, F.P. Numerical Modeling of Partial Discharge Development Process. In Plasma Science and Technology—Basic Fundamentals and Modern Applications; Jelassi, H., Benredjem, D., Eds.; IntechOpen: London, UK, 2018; pp. 110–127. [Google Scholar]
- Lee, S.H.; Lee, S.Y.; Chung, Y.K.; Park, I.H. Finite-element analysis of corona discharge onset in air with artificial diffusion scheme and under fowler–nordheim electron emission. IEEE Trans. Magn. 2007, 43, 1453–1456. [Google Scholar] [CrossRef]
- Bouazabia, S.; Hadjout, L.; Boulahbal, M. Modelling of a surface discharge in a concentric circle system under alternating voltage. In Proceedings of the Electrical Insulation Conference, Montreal, QC, Canada, 31 May–3 June 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Cao, J.P.; Wang, S.H.; Li, N.Y.; Huang, B.; Zhu, Y.Z.; Chen, J.; Liu, Y.; Wang, X.; Lian, R. Analysis on buffer layer discharges below the corrugated aluminum sheath of XLPE cables and comparison with other metal sheath structures. In Proceedings of the 2019 IEEE 3rd International Conference on Circuits, Systems and Devices, Chengdu, China, 23–25 August 2019. [Google Scholar]
- Du, B.X.; Du, X.Y.; Kong, X.X.; Li, J.; Li, Z.J.; Li, X. An investigation on discharge fault in buffer layer of 220kV XLPE AC cable. IET Sci. Meas. Technol. 2021, 15, 508–516. [Google Scholar] [CrossRef]
- Petzold, F.; Beigert, M. Experiences of PD diagnosis on mv cables using oscillating voltages (owts). In Proceedings of the 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, 18 August 2005; pp. 1–7. [Google Scholar]
- Mami, M.S.; Kksal, M. Remark on the lumped parameter modeling of transmission lines. Electr. Mach. Power Syst. 2000, 28, 565–575. [Google Scholar]
- Suyaroj, N.; Premrudeepreechacharn, S.; Watson, N.R. Transient state estimation with the Bergeron transmission line model. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 806–819. [Google Scholar] [CrossRef]
- Abdullah, H.; Uwe, S. A full frequency-dependent cable model for the calculation of fast transients. Energies 2017, 10, 1158. [Google Scholar]
- Wagenaars, P.; Wouters, P.; van der Wielen, P.C.J.M.; Steennis, E.F. Measurement of transmission line parameters of three-core power cables with common earth screen. IET Sci. Meas. Technol. 2010, 4, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Bartnikas, R.; Novak, J.P. On the spark to pseudoglow and glow transition mechanism and discharge detectability. IEEE Trans. Electr. Insul. 1992, 27, 3–14. [Google Scholar] [CrossRef]
- Gamez-Garcia, M.; Bartnikas, R.; Wertheimer, M.R. Synthesis Reactions Involving XLPE Subjected to partial Discharges. IEEE Trans. Electr. Insul. 2007, EI-22, 199–205. [Google Scholar]
- Gamez-Garcia, M.; Bartnikas, R. Modification of XLPE exposed to partial discharges at elevated temperature. IEEE Trans. Electr. Insul. 1990, 25, 688–692. [Google Scholar] [CrossRef]
- Wu, R.N.; Chang, C.K. The use of partial discharges as an online monitoring system for underground cable joints. IEEE Trans. Power Deliv. 2011, 26, 1585–1591. [Google Scholar] [CrossRef]
- Wester, F.J.; Gulski, E.; Smit, J.J. Condition based maintenance of MV power cable systems on the basis of advanced PD diagnostics. In Proceedings of the 16th International Conference and Exhibition on Electricity Distribution, 2001. Part 1: Contributions, Amsterdam, The Netherlands, 18–21 June 2001; IET: London, UK, 2001. [Google Scholar]
- Gargari, S.M.; Wouters, P.; Wielen, P.; Steennis, E.F. Statistical analysis of partial discharge patterns and knowledge extraction in MV cable systems. In Proceedings of the 10th International Conference on Probablistic Methods Applied to Power Systems, Rincon, PR, USA, 25–29 May 2008. [Google Scholar]
- Bartnikas, R. Partial discharges. Their mechanism, detection and measurement. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 763–808. [Google Scholar] [CrossRef]
- Stone, G.C.; Boggs, S.A. Propagation of partial discharge pulses in shielded power cable. In Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena—Annual Report 1982, Amherst, MA, USA, 17–21 October 1982. [Google Scholar]
- Blackburn, T.R.; Liu, Z.; Phung, B.T.; Morrow, R. Investigation of partial discharge mechanisms in a void under AC electric stress. In Proceedings of the 1999 Eleventh International Symposium on High Voltage Engineering, London, UK, 27–23 August 1999; IET: London, UK, 2001. [Google Scholar]
- Gulski, E.; Cichecki, P.; Wester, F.; Smit, J.J.; Bodega, R.; Hermans, T.J.W.H.; Seitz, P.P.; Quak, B.; Vries, F.D. On-site testing and PD diagnosis of high voltage power cables. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1691–1700. [Google Scholar] [CrossRef]
- Mashikian, M.S.; Szarkowski, A. Medium voltage cable defects revealed by off-line partial discharge testing at power frequency. IEEE Electr. Insul. Mag. 2006, 22, 24–32. [Google Scholar] [CrossRef]
- Mashikian, M.S. Preventive maintenance testing of shielded power cable systems. IEEE Trans. Ind. Appl. 2002, 38, 736–743. [Google Scholar] [CrossRef]
- Kreutzer, M.; Schlapp, H.; Waeben, P.M. On site MV-cable testing with AC-voltages. In Proceedings of the 12th International Conference on Electricity Distribution, Birmingham, UK, 17–21 May 1993; IET: London, UK, 2001. [Google Scholar]
- Montanari, G.C.; Cavallini, A.; Puletti, F. A new approach to partial discharge testing of HV cable systems. IEEE Electr. Insul. Mag. 2006, 22, 14–23. [Google Scholar] [CrossRef]
- Ota, H.; Ichihara, M.; Miyamoto, N.; Kitai, S.; Maruyama, Y.; Fukasawa, M.; Takenhana, H. Application of advanced after-laying test to long-distance 275 KV XLPE cable lines. IEEE Trans. Power Deliv. 1995, 10, 567–579. [Google Scholar] [CrossRef]
- Gerlach, H.G. Resonant power supply kit system for high voltage testing. Power Eng. Rev. IEEE 1991, 11, 35. [Google Scholar] [CrossRef]
- Pultrum, E.; Boone, W.; Steennis, E.F. Dutch distribution cable performance. In Proceedings of the IEE Colloquium on MV Paper Cables: Asset or Liability, Capenhurst, UK, 21 April 1998; IET: London, UK, 2001. [Google Scholar]
- IEEE. IEEE Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF); IEEE: Piscataway, NJ, USA, 2004; Std 400.2-2004; pp. 1–60. [Google Scholar]
- Wang, X.; Taylor, N.; Edin, H. Enhanced distinction of surface and cavity discharges by trapezoid-based arbitrary voltage waveforms. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 435–443. [Google Scholar] [CrossRef]
- Oyegoke, B.; Hyvonen, P.; Aro, M.; Gao, N. Selectivity of damped ac (dac) and vlf voltages in after-laying tests of extruded mv cable systems. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 874–882. [Google Scholar] [CrossRef]
- Niasar, M.G.; Wang, X.; Kiiza, R.C. Review of partial discharge activity considering very-low frequency and damped applied voltage. Energies 2021, 14, 440. [Google Scholar] [CrossRef]
- Gulski, E.; Smit, J.J.; Seitz, P.N.; Smit, J.C.; Turner, M. On-site PD diagnostics of power cables using oscillating wave test system. In Proceedings of the 1999 Eleventh International Symposium on High Voltage Engineering, London, UK, 23–27 August 1999; IET: London, UK, 1999. [Google Scholar]
- Lemke, E.; Schmiegel, P.; Elze, H.; Russwurm, D. Procedure for evaluation of dielectric properties based on complex discharge analyzing (CDA). In Proceedings of the Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, QC, Canada, 16–19 June 1996. [Google Scholar]
- Gulski, E.; Smit, J.; Seitz, P.; Smit, J.C. Pd measurements on-site using oscillating wave test system. In Proceedings of the Conference Record of the 1998 IEEE International Symposium on Electrical Insulation, Arlington, VA, USA, 7–10 June 1998. [Google Scholar]
- Cavallini, A.; Krotov, V.; Montanari, G.C.; Morshuis, P.H.F.; Mariut, L.E. The role of supply frequency in the evaluation of partial discharge inception voltage in XLPE-embedded cavities. In Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 14–17 October 2012. [Google Scholar]
- Pultrum, E.; Hetzel, E. Dutch experience with VLF partial discharge detection. In Proceedings of the IEE Colloquium on MV Paper Cables: Asset or Liability? (Digest No. 1998/290), Capenhurst, UK, 21 April 1998; IET: London, UK, 1998. [Google Scholar]
- Mohaupt, P.; Baur, M.; Schlick, T. Vlf testing and diagnosis on medium voltage power cables. In Proceedings of the 2003 IEEE 10th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance, Orlando, FL, USA, 6–10 April 2003. [Google Scholar]
- Kalkner, W.; Bach, R. Comparative study on alternative test voltages for layed medium voltage cables. In Proceedings of the International Symposium on High Voltage Engineering, Dresden, Germany, 26–30 August 1991. [Google Scholar]
- Cavallini, A.; Montanari, G.C.; Mariut, L.E. The influence of test voltage waveforms on partial discharge activity in XLPE. In Proceedings of the 2012 IEEE International Symposium on Electrical Insulation, San Juan, PR, USA, 10–13 June 2012. [Google Scholar]
- Cichecki, P.; Gulski, E.; Smit, J.J.; Hermans, T.; Bodega, R.; Seitz, P.P. Conventional and unconventional partial discharges detection in power cables using different AC voltages. In Proceedings of the 2009 IEEE Electrical Insulation Conference, Montreal, QC, Canada, 31 May–3 June 2009. [Google Scholar]
- Brettschneider, S.; Lemke, E.; Hinkle, J.L.; Schneider, M. Recent field experience in PD assessment of power cables using oscillating voltage waveforms. In Proceedings of the Conference Record of the 2002 IEEE International Symposium on Electrical Insulation, Boston, MA, USA, 7–10 April 2002. [Google Scholar]
- Bodega, R.; Morshuis, P.H.F.; Lazzaroni, M.; Wester, F.J. Pd recurrence in cavities at different energizing methods. IEEE Trans. Instrum. Meas. 2004, 53, 251–258. [Google Scholar] [CrossRef]
- Cavallini, A.; Montanari, G. Effect of supply voltage frequency on testing of insulation system. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 111–121. [Google Scholar] [CrossRef]
- Hauschild, W.; Cavallini, A.; Montanari, G. Effect of supply voltage frequency on testing of insulation system. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1189–1191. [Google Scholar] [CrossRef]
- Sumereder, C. A comparison of partial discharge detection with 50 Hz and 0.1 Hz at XLPE Cables. In Proceedings of the 2012 IEEE International Symposium on Electrical Insulation, San Juan, PR, USA, 10–13 June 2012. [Google Scholar]
- Colloca, V.; Fara, A.; Nigris, M.D.; Rizzi, G. Comparison among different diagnostic systems for medium voltage cable lines. In Proceedings of the 16th International Conference and Exhibition on Electricity Distribution, 2001. Part 1: Contributions. CIRED, Amsterdam, The Netherlands, 18–21 June 2001; IET: London, UK, 2001. [Google Scholar]
- Ekberg, M.; Gustafsson, A.; Leijon, M.; Bengtsson, T.; Eriksson, T.; Tornkvist, C.; Johansson, K.; Li, M. Recent results in hv measurement techniques. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 906–914. [Google Scholar] [CrossRef]
- Van der Wielen, P.C.J.M.; Steennis, E.F. Risk-controlled application of current MV cable feeders in the future by intelligent continuous diagnostics. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar]
- Steenis, E.F.; Ross, R.; Schaik, N.V.; Boone, W.; Aartrijk, D.M.V. Partial discharge diagnostics of long and branched medium-voltage cables. ICSD’01. In Proceedings of the 2001 IEEE 7th International Conference on Solid Dielectrics, Eindhoven, The Netherlands, 25–29 June 2001. [Google Scholar]
- Renforth, L.; Seltzer-Grant, M.; Mackinlay, R.; Goodfellow, S.; Clark, D.; Shuttleworth, R. Experiences from over 15 years of on-line partial discharge (OLPD) testing of in-service MV and HV cables, switchgear, transformers and rotating machines. In Proceedings of the IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, Bogota, Colombia, 1–4 October 2011. [Google Scholar]
- Steennis, F.; Wagenaars, P.; Wielen, P.; Wouters, P.; Li, Y.; Broersma, T.; Bleeker, P. Guarding MV cables on-line: With travelling wave based temperature monitoring, fault location, PD location and PD related remaining life aspects. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Kreuger, F. Partial Discharge Detection in High-Voltage Equipment; Butterworths: Oxford, UK, 1989; pp. 29–72. [Google Scholar]
- Pommerenke, D.; Strehl, T.; Heinrich, R.; Kalkner, W.; Schmidt, F.; Weissenberg, W. Discrimination between internal PD and other pulses using directional coupling sensors on hv cable systems. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 814–824. [Google Scholar] [CrossRef]
- Morin, R.; Bartnikas, R.; Lessard, G. In-service location of partial discharge sites in polymeric distribution cables using capacitive and inductive probes. In Proceedings of the 1999 IEEE Transmission and Distribution Conference, New Orleans, LA, USA, 11–16 April 1999. [Google Scholar]
- Schwarz, R.; Judendorfer, T.; Muhr, M. Review of partial discharge monitoring techniques used in high voltage equipment. In Proceedings of the 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Quebec, QC, Canada, 26–29 October 2008. [Google Scholar]
- Cheng, C.; Fan, C.L.; Hsiao, H.C.; Wang, W.M. On-site partial discharge measurement of underground cable system. In Proceedings of the 2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 1–4 November 2011. [Google Scholar]
- Romano, P.; Imburgia, A.; Ala, G. Partial discharge detection using a spherical electromagnetic sensor. Sensors 2019, 19, 1014. [Google Scholar] [CrossRef] [Green Version]
- Si, W.; Fu, C.; Yuan, P. An integrated sensor with AE and UHF methods for partial discharges detection in transformers based on oil valve. IEEE Sens. Lett. 2019, 3, 1–3. [Google Scholar] [CrossRef]
- Zachariades, C.; Shuttleworth, R.; Giussani, R.; MacKinlay, R. Optimization of a high-frequency current transformer sensor for partial discharge detection using finite-element analysis. IEEE Sens. J. 2016, 16, 7526–7533. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.Z.; Rohani, M.N.K.H.; Isa, M.; Hamid, H.; Arshad, S.N.M.; Othman, M. Real on-site partial discharge measurement technique in medium voltage power cable. In Proceedings of the 2018 IEEE 7th International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, 3–4 December 2018. [Google Scholar]
- Pavan Kumar, C.L.G.; Abdul Khalid, N.H.; Ahmad, M.H.; Nawawi, Z.; Sidik, M.A.B.; Jambak, M.I.; Kurnia, R.F.; Waldi, E.P. Development and validation of rogowski coil with commercial high frequency current transformer for partial discharge detection. In Proceedings of the 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal, Indonesia, 2–4 October 2018. [Google Scholar]
- Rodrigo, A.; Llovera, P.; Fuster, V.; Quijano, A. High performance broadband capacitive coupler for partial discharge cable tests. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 479–487. [Google Scholar] [CrossRef]
- Technical paper A Guide for Partial Discharge Measurements on medium voltage (MV) and High Voltage (HV) Apparatus Part 1—Introduction. Available online: https://www.omicronenergy.com/download/file/fb29b0a044fcf4cb50e54e8a7a97d04e/ (accessed on 16 November 2021).
- Lemke, E.; Strehl, T.; Markalous, S.; Weissenberg, W. Ultra-wide-band PD diagnostics of power cable terminations in service. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1570–1575. [Google Scholar] [CrossRef]
- Cavallini, A.; Conti, M.; Contin, A.; Montanari, G.C. Advanced PD inference in on-field measurements. ii. Identification of defects in solid insulation systems. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 528–538. [Google Scholar] [CrossRef]
- Hoof, M.; Patsch, R. Voltage-difference analysis, a tool for partial discharge source identification. In Proceedings of the Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, QC, Canada, 16–19 June 1996. [Google Scholar]
- Dezenzo, T.; Betz, T.; Schwarzbacher, A. The different stages of PRPD pattern for negative point to plane corona driven by a DC voltage containing a ripple. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 47–53. [Google Scholar] [CrossRef]
- Herold, C.; Leibfried, T. Advanced signal processing and modeling for partial discharge diagnosis on mixed power cable systems. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 791–800. [Google Scholar] [CrossRef]
- Sahoo, N.C.; Salama, M.; Bartnikas, R. Trends in partial discharge pattern classification: A survey. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 248–264. [Google Scholar] [CrossRef]
- Ashtiani, M.B.; Shahrtash, S.M. Partial discharge de-noising employing adaptive singular value decomposition. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 775–782. [Google Scholar] [CrossRef]
- Lin, Y. Using K-means clustering and parameter weighting for partial-discharge noise suppression. IEEE Trans. Power Deliv. 2011, 26, 2380–2390. [Google Scholar] [CrossRef]
- Lu, L.; Zhou, K.; Zhu, G.Y.; Chen, B.D.; Yana, X.M. Partial discharge signal denoising with recursive continuous S-shaped algorithm in cables. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1802–1809. [Google Scholar] [CrossRef]
- Salama, M.; Bartnikas, R. Fuzzy logic applied to PD pattern classification. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 118–123. [Google Scholar] [CrossRef]
- Rosle, N.; Muhamad, N.A.; Rohani, M.N.K.H.; Jamil, M.K.M. Partial Discharges Classification Methods in XLPE Cable: A Review. IEEE Access 2021, 9, 133258–133273. [Google Scholar] [CrossRef]
- Peng, X.S.; Wen, J.Y.; Li, Z.H.; Yang, G.Y.; Zhou, C.K.; Reid, A.; Hepburn, D.M.; Judd, M.D.; Siew, W.H. Rough set theory applied to pattern recognition of Partial Discharge in noise affected cable data. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.S.; Yang, F.; Wang, G.J.; Wu, Y.J.; Li, L.; Li, Z.H.; Bhatti, A.A.; Zhou, C.K.; Hepburn, D.M.; Reid, A.J.; et al. A convolutional neural network-based deep learning methodology for recognition of partial discharge patterns from high-voltage cables. IEEE Trans. Power Deliv. 2019, 34, 1460–1469. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.I. Partial discharge online detection for long-term operational sustainability of on-site low voltage distribution network using CNN transfer learning. Sustainability 2021, 13, 4692. [Google Scholar] [CrossRef]
- Wagenaars, P.; Wouters, P.; Wielen, P.C.J.M.V.D.; Steennis, E.F. Accurate estimation of the time-of-arrival of partial discharge pulses in cable systems in service. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1190–1199. [Google Scholar] [CrossRef]
- Kim, Y.H.; Youn, Y.W.; Yi, S.H.; Hwang, D.H.; Sun, J.H.; Lee, J.H. High-resolution partial discharge location estimation in power cables. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 758–765. [Google Scholar] [CrossRef]
- Steiner, J.P.; Reynolds, P.H. Estimating the location of partial discharges in cables. IEEE Trans. Electr. Insul. 1992, 27, 44–59. [Google Scholar] [CrossRef]
- Lan, S.; Hu, Y.Q.; Kuo, C.C. Partial discharge location of power cables based on an improved phase difference method. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1612–1619. [Google Scholar] [CrossRef]
- Raymond, W.J.K.; Illias, H.A.; Abu Bakar, A.H. High noise tolerance feature extraction for partial discharge classification in XLPE cable joints. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 66–74. [Google Scholar] [CrossRef]
- Chan, J.C.; Duffy, P.; Hiivala, L.J.; Wasik, J. Partial discharge. VIII. PD testing of solid dielectric cable. IEEE Electr. Insul. Mag. 1991, 7, 9–16. [Google Scholar] [CrossRef]
- Robinson, G. Ageing characteristics of paper-insulated power cables. Power Eng. J. 1990, 4, 95–100. [Google Scholar] [CrossRef]
- Megahed, I. The discharge-repetition rate in cavities in epoxy resin, polyethylene, and mica under alternating voltage conditions. IEEE Trans. Electr. Insul. 1975, 10, 69–74. [Google Scholar] [CrossRef]
- Gutfleisch, F.; Niemeyer, L. Measurement and simulation of PD in epoxy voids. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 729–743. [Google Scholar] [CrossRef]
- Illias, H.; Chen, G.; Lewin, P. Partial discharge behavior within a spherical cavity in a solid dielectric material as a function of frequency and amplitude of the applied voltage. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 432–443. [Google Scholar] [CrossRef]
- Morshuis, P.H.F. Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 905–913. [Google Scholar] [CrossRef]
- Ahmed, N.; Srinivas, N. Can the operating conditions of the cable system effect the data of the field PD testing? In Proceedings of the 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Kitchener, ON, Canada, 14–17 October 2001. [Google Scholar]
- Feng, X.Y.; Xiong, Q.; Gattozzi, A.L.; Hebner, R.E. Partial discharge experimental study for medium voltage DC cables. IEEE Trans. Power Deliv. 2020, 36, 99. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, G.; Hao, M.; Pu, L.; Zhao, X.F.; Sun, H.F.; Wang, S.; Guo, A.X.; Liu, J. Comparison of two models on simulating electric field in HVDC cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1107–1115. [Google Scholar] [CrossRef]
- Seri, P.; Naderiallaf, H.; Montanari, G.C. Modelling of supply voltage frequency effect on partial discharge repetition rate and charge amplitude from AC to DC at room temperature. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 764–772. [Google Scholar] [CrossRef]
- Morshuis, P.; Smit, J.J. Partial discharges at DC voltage: Their mechanism, detection and analysis. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Montanari, G.C.; Hebner, R.; Seri, P.; Naderiallaf, H. Partial Discharge Inception Voltage and Magnitude in Polymeric Cables under AC and DC Voltage Supply; Jicable: Varsailles, France, 2019. [Google Scholar]
- Montanari, G.C.; Seri, P.; Bononi, S.F.; Albertini, M. Partial discharge behavior and accelerated aging upon repetitive DC cable energization and voltage supply polarity inversion. IEEE Trans. Power Deliv. 2020, 36, 99. [Google Scholar] [CrossRef]
- Tokunaga, S.; Tsurusaki, T.; Arief, Y.Z.; Ohtsuka, S.; Mizuno, T.; Hikita, M. Partial discharge characteristics till breakdown for XLPE cable joint with an artificial defect. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 1–5 June 2003. [Google Scholar]
- Olsson, L.; Bengtsson, G. PD-mapping of paper insulated MV cables in Gothenburg. In Proceedings of the 14th International Conference and Exhibition on Electricity Distribution. Part 1. Contributions, Birmingham, UK, 2–5 June 1997; IET: London, UK, 1997. [Google Scholar]
- Densley, J. Ageing mechanisms and diagnostics for power cables—An overview. IEEE Electr. Insul. Mag. 2001, 17, 14–22. [Google Scholar] [CrossRef]
- Mladenovic, I.; Weindl, C. Artificial aging and diagnostic measurements on medium-voltage, paper-insulated, lead-covered cables. IEEE Electr. Insul. Mag. 2012, 28, 20–26. [Google Scholar] [CrossRef]
- Walton, C.M. Detecting and locating MV failure before it occurs. Experience with live line partial discharge detection on underground paper insulated 11 kV cables in London. In Proceedings of the 16th International Conference and Exhibition on Electricity Distribution, 2001. Part 1: Contributions. CIRED, Amsterdam, The Netherlands, 18–21 June 2001; IET: London, UK, 2001. [Google Scholar]
- Alsharif, M.; Wallace, P.A.; Hepburn, D.M.; Zhou, C.K. Partial discharge resulting from internal degradation in underground MV cables: Modelling and analysis. In Proceedings of the 2009 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009. [Google Scholar]
- Wester, F.; Gulski, E.; Smit, J.; Groot, E. Aspect of on-line and offline PD diagnosis of distribution power cables. In Proceedings of the Conference Record of the 2002 IEEE International Symposium on Electrical Insulation, Boston, MA, USA, 7–10 April 2002. [Google Scholar]
- Smit, J. Insulation condition estimation of distribution power cables by on-line and off-line diagnostics. In Proceedings of the 2001 International Symposium on Electrical Insulating Materials, Himeji, Japan, 22–22 November 2001. [Google Scholar]
- Cuppen, A.N.; Steennis, E.F.; van der Wielen, P.C.J.M. Partial discharge trends in medium voltage cables measured while in-service with PDOL. In Proceedings of the IEEE PES T&D 2010, New Orleans, LA, USA, 19–22 April 2010. [Google Scholar]
- Callender, G. Critical analysis of partial discharge dynamics in air filled spherical voids. J. Phys. 2018, 51, 125601. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.; Kim, H.; Lee, B. Novel diagnostic method of DC void discharge in high temperature superconducting cable based on pulse sequence analysis. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Zhou, L.J.; Bai, L.L.; Zhang, J.K.; Cao, W.D.; Xiang, E.X. Measurement and diagnosis of PD characteristics of industrial cable terminations in extreme cold environment. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
Model | PD Type | Advantages and Disadvantages |
---|---|---|
abc-model | Internal PD | + Easy to understand and implement. − Cannot represent the physics behind the discharge. |
Induced charge | Internal PD | + Analytical solutions can be derived. − The model is developed with the following restrictions: uniform electric field inside the void. The electric field in the bulk of the solid dielectric remains the same during a PD event [49]. |
RC network | Corona [47] and surface PD [48] | + Simple implementation. − Circuit model cannot completely reveal the physical process. |
Particle in cell (PIC) | Surface PD [50], corona PD [51], and internal PD [40] | + Clear physical interpretation and easy implementation. − The method requires a large amount of computation resources and converges slowly [43]. |
Fluid model | Surface PD [52], corona PD [43], and internal PD [53] | + Microscopic physical processes of a PD can be obtained. − The stochastic characters are not taken into account [54]. Large computation consumption. Impractical in ageing and multiple PD analysis where simulations for a large number of power frequency AC cycles are required [25]. |
Finite element analysis | Corona PD [55], surface PD [56], and internal PD | + Electric field in geometry can be derived without restrictions on the geometry or uniformity of electric field distribution. Non-linear or anisotropic media could be considered [25]. − Time consuming and there is lack of reliable knowledge on input parameters. |
System | Source | Main Parameters |
---|---|---|
AC voltage test | Alternating current voltage with resonant test system | Test voltage and test frequency |
VLF test | Very low frequencies down to 0.01 Hz | Test voltage and test duration |
Damped AC test | Damped alternating current at frequencies between 20 and 500 Hz | Test voltage, frequency, and damping |
Test Object | Result |
---|---|
6 kV plastic insulated cable accessories with realistic internal defects: bad contact between semiconducting layer and the stress cone, bad adjustment of the stress cone and internal cavities [85] | 50 Hz AC power frequency and oscillating wave voltages of 1066 Hz gave PDIV and PD magnitude in the same range without a consistent difference. |
10 kV cable sample [87] | Higher PDIV for OWTS than 50 Hz. |
Dielectric cavities embedded in an XLPE sandwich [88] | PDIV values with OWTS significantly exceeded those obtained with sinusoidal voltage waveforms. PDIV with 0.1 Hz was on average lower than those obtained for higher frequencies. |
Electrical treeing on an XLPE cable sample [90] | A widespread electrical tree for 50 Hz while a straight channel with VLF. Tree growth rate for VLF was faster. Number of PD per second for VLF was much lower. |
Needle and water tree damage [91] | Oscillating voltages lead to higher electrical tree inception voltage than 50 and 0.1 Hz while 0.1 Hz tests indicate higher tree ignition voltage than 50 Hz. |
Three layers of polyethylene [92] | 0.1 Hz VLF with sinusoidal waveform, 50 Hz AC and OWTS using frequencies of 200, 500, and 1000 Hz were performed. PDIV increased slightly with frequency and PDIV for OWTS was in general much higher than the ones derived with sinusoidal waveforms. |
Full size test setup of 100 m 150 kV XLPE cable with defect created in cable joint [93] | Continuous 50 Hz AC voltage and Damped AC voltage (60 Hz, 400 Hz) were applied, and similar PD characteristics was observed. |
A spherical air-filled cavity between two brass electrodes cast in polyester resin [95] | DAC, VLF, and 50 (60) Hz test were performed. PDIV is not dependent on the voltage frequency shape. The PD level measured at frequencies above 200 Hz was slightly lower than that with the 50 Hz AC energizing; both the PD magnitude and the PD pattern demonstrated that the PD process at VLF frequencies can be either very close to that at 50 Hz or quite different. The main reason is supposed to be that the deposited charge decay time can vary over several orders of magnitude depending on the condition of the cavity surface. |
Spherical electrode on a 1 mm thick LDPE disc placed on a grounded plane electrode activating surface discharges on the LDPE disc. Three 1 mm thick PE foils, the layer in the middle had a punched hole [97] | 25–30% differences can be observed when testing PDIV and PDEV at different frequencies. In general, both PDIV and PDEV had a non-monotone behavior from 0.01 to 1000 Hz for internal and surface PD activities. |
Two XLPE cables consisting of 168 and 233 m were connected by a defective cable joint. Artificial defects were made to generate internal and surface PD [98] | PDIV at 50 Hz is about 80% of 0.1 Hz measurement. |
Five cables made of paper, EPR, and XLPE with terminations having artificial defects in laboratory and 18 field cable circuits (paper and EPR) [99] | For the laboratory test, 0.1 Hz VLF gave higher PDIV result than 50 Hz AC, however, it is not always the case in the field. Neither 0.1 Hz nor DAC can always give close inception PD voltage compared with 50 Hz and the maximum difference is about 200%. |
Sensor Type | Advantages | Disadvantages |
---|---|---|
AE sensor | Immune to electromagnetic noise | High attenuation [111] |
HFCT | Non-intruding installation, wide bandwidth [112] | Material saturation caused by large current at power frequency Current loop is needed |
Rogowski coil | Light weight, low cost compared with HFCT [113] | Narrow frequency band [114] Current loop is needed |
Coupling capacitor | High sensitivity, possible to be integrated in cable [115] | The size and cost of a coupling capacitor can become problematic for onsite measurement [116] Installing can be an issue, safety risk due to galvanic contact needs to be considered |
UHF | Good anti-disturbance performance [111] | Strong attenuation, cannot be calibrated [117] Cable shielding effect |
Ultraviolet imager | Easy to use | Can only detect corona discharge at cable termination |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Pang, B.; Liu, Y.; Liu, S.; Xu, P.; Li, Y.; Liu, Y.; Qi, L.; Xie, Q. Review on Detection and Analysis of Partial Discharge along Power Cables. Energies 2021, 14, 7692. https://doi.org/10.3390/en14227692
Zhang X, Pang B, Liu Y, Liu S, Xu P, Li Y, Liu Y, Qi L, Xie Q. Review on Detection and Analysis of Partial Discharge along Power Cables. Energies. 2021; 14(22):7692. https://doi.org/10.3390/en14227692
Chicago/Turabian StyleZhang, Xiaohua, Bo Pang, Yaxin Liu, Shaoyu Liu, Peng Xu, Yan Li, Yifan Liu, Leijie Qi, and Qing Xie. 2021. "Review on Detection and Analysis of Partial Discharge along Power Cables" Energies 14, no. 22: 7692. https://doi.org/10.3390/en14227692
APA StyleZhang, X., Pang, B., Liu, Y., Liu, S., Xu, P., Li, Y., Liu, Y., Qi, L., & Xie, Q. (2021). Review on Detection and Analysis of Partial Discharge along Power Cables. Energies, 14(22), 7692. https://doi.org/10.3390/en14227692