Analysis of the Wind Turbine Selection for the Given Wind Conditions
Abstract
:1. Introduction
2. Problem Description
3. Energy Analysis of Selected Wind Turbines
3.1. Wind Power
3.2. Wind Speed Distribution in Selected Locations
3.3. Wind Turbine Selection
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Af | area of air flow, m2 |
A | Weibull scale parameter, m/s |
wind energy for the i-th speed range, Wh | |
total wind energy, Wh | |
wind power, W | |
unit wind power obtained in the i-th speed range, W/m2 | |
p | air pressure change, kPa |
R | gas constant 287.03, J/(kg K) |
T | one year expressed in hours, 8760 h |
fi | frequency of wind speed falling within the i-th range |
h | height, m |
href | height of wind measurement, m |
k | Weibull shape factor, |
vav | average wind speed range, m/s |
vi | i-th wind speed range, m/s |
v | wind speed, m/s |
v1 | wind speed at height h, m/s |
vref | mean wind speed at height href, m/s |
z0 | terrain roughness parameter |
Greek symbols | |
Γ | the Gamma function, |
α | time exponent, parameter that depends on the terrain type, |
ρ | air density, m3/kg |
References
- ECA. Wind and Solar Power for Electricity Generation: Significant Action Needed If EU Targets to be Met. Special Report No 08/2019; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Kuang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Cao, Y.; Li, L.; Zeng, L. A review of renewable energy utilization in islands. Renew. Sustain. Energy Rev. 2016, 59, 504–513. [Google Scholar] [CrossRef]
- Boczar, T. Wind Power. Current Potential; Measurement Automation and Monitoring: Gliwice, Poland, 2008. [Google Scholar]
- U.S. EIA. International Energy Outlook 2019 with Projections to 2050; Office of Energy Analysis U.S. Department of Energy: Washington, DC, USA, 2019.
- BP. BP Statistical Review of World Energy 2019, 68th ed.; Pureprint Group Limited: London, UK, 2019. [Google Scholar]
- GWEC. Global Wind Statistics 2017; Global Wind Energy Council: Brussels, Belgium, 2018. [Google Scholar]
- Kurpas, D.; Mroczek, B.; Karakiewicz, B.; Kassolik, K.; Andrzejewski, W. Health impact of wind farms. Ann. Agric. Environ. Med. 2013, 20, 595–605. [Google Scholar]
- Letcher, T.M. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, 1st ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ehrlich, R.; Geller, H.A. Renewable Energy: A First Course, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Drewitt, A.L.; Langston, R.H.W. Assessing the impact of wind farms on birds. Int. J. Avian Sci. 2006, 148, 29–42. [Google Scholar] [CrossRef]
- Zagubień, A.; Ingielewicz, R. The analysis of similarity of calculation results and local measurements of wind farm noise. Measurement 2017, 106, 211–220. [Google Scholar] [CrossRef]
- Zagubień, A.; Wolniewicz, K. The impact of supporting tower on wind turbine noise emission. Appl. Acoust. 2019, 5, 260–270. [Google Scholar] [CrossRef]
- Liu, W.Y. A review on wind turbine noise mechanism and de-noising techniques. Renew. Energy 2017, 108, 311–320. [Google Scholar] [CrossRef]
- Zagubień, A. Analysis of acoustic pressure fluctuation around wind farms. Pol. J. Environ. Stud. 2018, 27, 2843–2849. [Google Scholar] [CrossRef]
- Celik, A. Energy output estimation for small scale wind power generators using Weibull representative wind data. J. Wind Eng. Ind. Aerodyn. 2003, 91, 693–707. [Google Scholar] [CrossRef]
- Wais, P. Two and three-parameter Weibull distribution in available wind power analysis. Renew. Energy 2017, 103, 15–29. [Google Scholar] [CrossRef]
- World-Wind-Atlas: 60+ Years Wind Data. Available online: https://sander-partner.com/en/products/wwa.html (accessed on 20 May 2021).
- Jakubowski, M.; Mech, Ł.; Wolniewicz, K. A methodology of wind turbines selection for the given wind conditions. J. Mech. Energy Eng. 2017, 1, 171–178. [Google Scholar]
- Emeksiz, C.; Cetin, T. In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics. Sustain. Energy Technol. Assess. 2019, 35, 148–159. [Google Scholar] [CrossRef]
- Wolniewicz, K.; Kuczyński, W.; Zagubień, A. Method for wind turbine selection basing on in-field measurements. J. Mech. Energy Eng. 2019, 3, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Wharton, S.; Lundquist, J.K. Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy 2012, 15, 525–546. [Google Scholar] [CrossRef]
- IEC 61400-12-1:2005. Wind Turbines: Part 21-1: Power Performance of Electricity Producing Wind Turbines; IEC: Geneva, Switzerland, 2005. [Google Scholar]
- Sanchez Gomez, M.; Lundquist, J. The effect of wind direction shear on turbine performance in a wind farm in central Iowa. Wind Energy Sci. Discuss. 2020, 5, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Jimoh, A.G.; Munda, J.L.; Agee, J. Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa. Energy Convers. Manag. 2012, 64, 614–625. [Google Scholar] [CrossRef]
- Adaramola, M.S.; Agelin-Chaab, M.; Paul, S.S. Assessment of wind power generation along the coast of Ghana. Energy Convers. Manag. 2014, 77, 61–69. [Google Scholar] [CrossRef]
- Quan, P.; Thananchai, L. Assessment of wind energy potential for selecting wind turbines: An application to Thailand. Sustain. Energy Technol. Assess. 2015, 11, 17–26. [Google Scholar] [CrossRef]
- Solangi, Y.; Tan, Q.; Waris, M.; Mirjat, N.; Ahmad, I. The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application. Energies 2018, 11, 1940. [Google Scholar] [CrossRef] [Green Version]
- Zalewska, J.; Damaziak, K.; Malachowski, J. An Energy Efficiency Estimation Procedure for Small Wind Turbines at Chosen Locations in Poland. Energies 2021, 14, 3706. [Google Scholar] [CrossRef]
- Yang, K. Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization. Energies 2020, 13, 2320. [Google Scholar] [CrossRef]
- Wolniewicz, K.; Zagubień, A.; Wesolowski, M. Energy and Acoustic Environmental Effective Approach for a Wind Farm Location. Energies 2021, 14, 7290. [Google Scholar] [CrossRef]
- WWW.dtu.dk. Available online: https://windenergy.dtu.dk/english/research/publicationslist?dtulistcode=ISTLIST46&fr=1&mr=100&ptype=all&qt=DtuPublicationQuery (accessed on 27 October 2021).
- Sedaghat, A.; Alkhatib, F.; Eilaghi, A.; Sabati, M.; Borvayeh, L.; Mostafaeipour, A. A new strategy for wind turbine selection using optimization based on rated wind speed. Energy Procedia 2019, 160, 582–589. [Google Scholar] [CrossRef]
- Burton, T.; Sharoe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Wais, P. Wind Energy and Wind Turbine Selection. In Energy Science and Technology; Wind Energy; Studium Press LLC: Houston, TX, USA, 2015; Volume 8, pp. 168–193. [Google Scholar]
- Bianchi, F.D.; de Battista, H.; Mantz, R.J. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design; Springer: London, UK, 2007. [Google Scholar]
- Wu, X.; Hu, W.; Huang, Q.; Chen, C.; Chen, Z.; Blaabjerg, F. Optimized Placement of Onshore Wind Farms Considering Topography. Energies 2019, 12, 2944. [Google Scholar] [CrossRef] [Green Version]
- Wais, P. A review of Weibull functions in wind sector. Renew. Sustain. Energy Rev. 2017, 70, 1099–1107. [Google Scholar] [CrossRef]
- Jain, P. Wind Energy Engineering; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Vestas. Document No. 0062-4192 V01; VESTAS: Copenhagen, Denmark, 2018. [Google Scholar]
- Vestas. Document No. 0062-4191 V04; VESTAS: Copenhagen, Denmark, 2017. [Google Scholar]
- GE. Commercial Documentation Wind Turbine Generator Systems GE 2.5–100 m rotor 50 Hz & 60 Hz; GE: Fairfield, CT, USA, 2010. [Google Scholar]
- W2E. General Description W2E-100/2.5; W2E: Rostock, German, 2008. [Google Scholar]
- Enercon. Document No. SIAS-04-SPL E-82 E2 OM I 2.3 MW; Enercon: Berlin, German, 2010. [Google Scholar]
- Gamesa. Document No. GD086484; Gamesa: Zamudio, Spain, 2010. [Google Scholar]
Vendor/Model | Vestas/V100 | Vestas/V90 | Gamesa/G97 | Enercon/E82 | General Electric/GE2.5 | Wind to Energy/W2E-100/2.55 |
---|---|---|---|---|---|---|
Power, [MW] | 2.0 | 2.0 | 2.0 | 2.3 | 2.5 | 2.5 |
Impeller diameter, [m] | 100 | 90 | 97 | 82 | 88 | 100 |
Farm A | Farm B | ||
---|---|---|---|
Measuring Height, m | Wind Speed, m/s | Measuring Height, m | Wind Speed, m/s |
35 | 495 | 30 | 493 |
65 | 579 | 58 | 576 |
98 | 644 | 60 | 583 |
100 | 658 | - | - |
Wind Speed, [m/s] | Power, [kW] | |||||
---|---|---|---|---|---|---|
V100 | V90 | G97 | E82 | GE2.5 | W2E-100/2.55 | |
0.50 | - | - | - | - | - | - |
1.50 | - | - | - | - | - | - |
2.50 | - | - | - | - | - | - |
3.50 | 62 | 91 | 94 | 82 | 53 | 43 |
4.50 | 192 | 200 | 236 | 174 | 153 | 93 |
5.50 | 371 | 362 | 438 | 321 | 304 | 229 |
6.50 | 612 | 588 | 714 | 532 | 517 | 434 |
7.50 | 955 | 889 | 1084 | 815 | 800 | 713 |
8.50 | 1398 | 1256 | 1507 | 1180 | 1156 | 1086 |
9.50 | 1835 | 1637 | 1817 | 1580 | 1616 | 1562 |
10.50 | 1980 | 1904 | 1951 | 1890 | 2061 | 2061 |
11.50 | 1999 | 1988 | 1990 | 2100 | 2366 | 2411 |
12.50 | 2000 | 1999 | 1998 | 2250 | 2477 | 2500 |
13.50 | 2000 | 2000 | 2000 | 2350 | 2498 | 2500 |
14.50 | 2000 | 2000 | 2000 | 2350 | 2500 | 2500 |
15.50 | 2000 | 2000 | 2000 | 2350 | 2500 | 2500 |
16.50 | 2000 | 2000 | 2000 | 2350 | 2500 | 2500 |
17.50 | 2000 | 2000 | 2000 | 2350 | 2500 | 2500 |
18.50 | 2000 | 2000 | 2000 | 2350 | 2500 | 2500 |
19.50 | 2000 | 2000 | 2000 | 2350 | 2500 | 2500 |
20.50 | 2000 | 2000 | 2000 | 2350 | 2500 | 2500 |
21.50 | 2000 | 2000 | 1906 | 2350 | 2500 | 2500 |
22.50 | 2000 | 2000 | 1681 | 2350 | 2500 | 2500 |
Location | Performance Coefficient, [%] | |||||
---|---|---|---|---|---|---|
V100 | V90 | G97 | E82 | GE2.5 | W2E-100/2.55 | |
k = 2.1 | ||||||
Farm A | 39.5 | 34.1 | 38.3 | 28.7 | 27.1 | 25.5 |
Farm B | 40.4 | 35.0 | 39.2 | 29.5 | 28.2 | 26.5 |
k = 2.3 | ||||||
Farm A | 39.6 | 33.9 | 38.3 | 28.1 | 26.5 | 24.7 |
Farm B | 40.8 | 35.0 | 39.4 | 29.2 | 27.5 | 25.7 |
k = 2.5 | ||||||
Farm A | 39.6 | 33.5 | 38.2 | 27.6 | 25.7 | 23.8 |
Farm B | 40.8 | 34.7 | 39.4 | 28.6 | 26.9 | 25.0 |
Location | Income, [Thousand $] | |||||
---|---|---|---|---|---|---|
V100 | V90 | G97 | E82 | GE2.5 | W2E-100/2.55 | |
k = 2.1 | ||||||
Farm A | 372 | 355 | 397 | 349 | 356 | 335 |
Farm B | 384 | 367 | 408 | 348 | 370 | 348 |
k = 2.3 | ||||||
Farm A | 371 | 352 | 397 | 342 | 348 | 324 |
Farm B | 383 | 364 | 409 | 355 | 362 | 338 |
k = 2.5 | ||||||
Farm A | 367 | 348 | 395 | 334 | 338 | 313 |
Farm B | 381 | 361 | 409 | 348 | 353 | 328 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuczyński, W.; Wolniewicz, K.; Charun, H. Analysis of the Wind Turbine Selection for the Given Wind Conditions. Energies 2021, 14, 7740. https://doi.org/10.3390/en14227740
Kuczyński W, Wolniewicz K, Charun H. Analysis of the Wind Turbine Selection for the Given Wind Conditions. Energies. 2021; 14(22):7740. https://doi.org/10.3390/en14227740
Chicago/Turabian StyleKuczyński, Waldemar, Katarzyna Wolniewicz, and Henryk Charun. 2021. "Analysis of the Wind Turbine Selection for the Given Wind Conditions" Energies 14, no. 22: 7740. https://doi.org/10.3390/en14227740
APA StyleKuczyński, W., Wolniewicz, K., & Charun, H. (2021). Analysis of the Wind Turbine Selection for the Given Wind Conditions. Energies, 14(22), 7740. https://doi.org/10.3390/en14227740