Economic and Environmental Aspects of Agriculture in the EU Countries
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- value of agricultural production (million EUR)—the value of everything that the EU’s agricultural industry produced;
- gross value added of agriculture (million EUR)—variable is the net output of a sector after adding up all outputs and subtracting intermediate inputs;
- an area of agricultural land (thousand ha);
- employment in agriculture (thousand Annual Work Unit);
- NPK fertilizers consumption by agriculture (t);
- energy consumption by agriculture (thousand toe)—variable relates only to the direct use of energy (solid fuels, petroleum products, gas, electricity, renewables, heat) by agriculture. The variable does not include indirect energy consumption;
- greenhouse gas emissions by agriculture (emissions are expressed in terms of carbon dioxide equivalents—thousand tonnes of CO2 equivalents)—each country estimates greenhouse gas emissions by measuring the volume of specific activities (for example, livestock numbers or agricultural practices) and multiplying these by associated emission factors. Agricultural emissions of greenhouse gases do not include those from fossil fuel combustion arising from agricultural-related processes such as transport, greenhouse heating or grain drying; these sources are inventoried under the energy section of the Intergovernmental Panel on Climate Change (IPCC).
- GVA—gross value added of agriculture (million EUR),
- E—energy consumption in agriculture (thousand toe).
- GVA—gross value added of agriculture (million EUR),
- GHG emission—greenhouse gas emissions by agriculture (thousand tonnes).
- s—number of effects,
- m—number of inputs,
- yr—the size of the rth effect,
- xi—the size of the ith input,
- μr—weights determining the importance of individual effects,
- υi—weights determining the importance of individual inputs.
- —the optimal technology for the o-th object,
- tj—the empirical technology of the j-th object,
- λoj—the share of the technology of the j-th object in the optimal technology for the o-th object.
4. Results
4.1. Economic and Energy Efficiency of Agriculture in EU Countries
- output y1—value of agricultural production (million EUR);
- input x1—an area of agricultural land (thousand ha);
- input x2—employment in agriculture (thousand AWU);
- input x3—NPK fertilizers consumption by agriculture (t);
- input x4—energy consumption by agriculture (thousand toe).
- It is a deterministic technique that is particularly sensitive to measurement error (input and output specification and sample size).
- It only measures efficiency relative to best practices within a particular sample, and so comparisons of scores between different studies are not meaningful.
- It can be successfully used to estimate the relative efficiency of a DMU, but it converges very slowly to absolute efficiency.
- Being nonparametric, it is difficult to apply it to test statistical hypotheses, which is the focus of ongoing research.
- The DEA model ignores the influence of environmental factors. Efficiency estimation of DMU is applied to a closed system.
4.2. The Eco-Efficiency of EU Agriculture
- Eco-efficiency leaders—a group that includes countries with economic and energy efficiency of agriculture higher than the EU average, and higher than average greenhouse gas emission efficiency (Italy, Greece, Cyprus, The Netherlands, Portugal);
- Eco-efficiency followers—countries distinguished by greenhouse gas emission efficiency higher than the EU average but economic and energy efficiency of agriculture slightly lower than the EU average (Spain, Croatia, France, Austria);
- Environmental slackers—a group of countries distinguished by economic and energy efficiency of agriculture higher than the EU average, but greenhouse gas emission efficiency lower than EU average (Ireland, United Kingdom, Denmark, Germany);
- Eco-efficiency laggards—a group of countries with economic and energy efficiency of agriculture lower than the EU average and greenhouse gas emission efficiency lower than average (Poland, Latvia, Estonia, Czechia, Hungary, Finland, Slovakia, Bulgaria, Sweden, Lithuania, Slovenia, Belgium, Romania).
5. Discussion
6. Conclusions
- First of all, due to the fact that many of the largest agricultural sectors in the EU in terms of agricultural production, i.e., France, Germany and Poland, belong to the group of countries with moderate or low eco-efficiency, it is worth examining these agricultural production systems in a more comprehensive and detailed way;
- An important direction of research would be also to establish the determinants of eco-efficiency of the EU agriculture, taking into account the importance of taxes and subsidies;
- From a methodological point of view, it is advisable to test and compare the results of different methods to assess the eco-efficiency of the EU agricultural sector;
- It also becomes critical to develop methods to reduce GHG emissions from agriculture, and methods to support decision makers in deciding who should bear the burden of the costs of these reductions.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavas, J.-P.; Aliber, M. An Analysis of Economic Efficiency in Agriculture: A Nonparametric Approach. J. Agric. Resour. Econ. 1993, 18, 1–16. [Google Scholar]
- Gaviglio, A.; Filippini, R.; Madau, F.A.; Marescotti, M.E.; Demartini, E. Technical efficiency and productivity of farms: A periurban case study analysis. Agric. Food Econ. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Chetroiu, R.; Ion, C. The concept of economic efficiency in agriculture. Agrar. Econ. Rural Dev. Realities Perspect. Rom. 2013, 4, 258–263. [Google Scholar]
- Guth, M.; Smędzik-Ambroży, K. Economic resources versus the efficiency of different types of agricultural production in regions of the European Union. Econ. Res.-Ekon. Istraživanja 2020, 33, 1036–1051. [Google Scholar] [CrossRef] [Green Version]
- Vicente, J.R. Economic efficiency of agricultural production in Brazil. Rev. Econ. Sociol. Rural 2004, 42, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Alem, H.; Lien, G.; Hardaker, J.B. Economic performance and efficiency determinants of crop-producing farms in Norway. Int. J. Product. Perform. Manag. 2018, 67, 1418–1434. [Google Scholar] [CrossRef] [Green Version]
- Baran, J. Regional differentiation of financial support from the European Union and its impact on agricultural efficiency in Poland. Econ. Sci. Rural Dev. 2015, 38, 227–238. [Google Scholar]
- World Bank (WB). Agriculture for Development. World Development Report 2008; World Bank: Washington, DC, USA, 2007; Available online: https://openknowledge.worldbank.org/handle/10986/5990 (accessed on 5 September 2021).
- Nemecek, T.; Dubois, D.; Huguenin, O.; Gaillard, G. Life cycle assessment of Swiss framing systems. Agric. Syst. 2011, 104, 217–232. [Google Scholar] [CrossRef]
- Moutinho, V.; Robaina, M.; Macedo, P. Economic-environmental efficiency of European agriculture—A generalized maximum entropy approach. Agric. Econ. Czech 2018, 64, 423–435. [Google Scholar]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food security supplementary material. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change; Springer: New York, NY, USA, 2019; pp. 437–550. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.X.; Huard, F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop. Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybaczewska-Błażejowska, M.; Gierulski, W. Eco-Efficiency Evaluation of Agricultural Production in the EU-28. Sustainability 2018, 10, 4544. [Google Scholar] [CrossRef] [Green Version]
- EU (the European Parliament and the Council), Decision No. 1386/2013/EU on a General Union Environment Action Programme to 2020 Living Well, within the Limits of Our Planet; EU: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D1386&from=EN (accessed on 20 July 2021).
- Godard, C.; Bamière, L.; Debove, E.; De Cara, S.; Jayet, P.A.; Niang, N.B. Interface between Agriculture and the Environment: Integrating Yield Response Functions in an Economic Model of EU Agriculture. Modelling Agricultural Policies: State of the Art and New Challenges; University of Parma: Parma, Italy, 2005; pp. 475–494. [Google Scholar]
- Huppes, G.; Ishikawa, M. A framework for quantified eco-efficiency analysis. J. Ind. Ecol. 2005, 9, 25–41. [Google Scholar] [CrossRef]
- Prasada Rao, D.S.; Coelli, T.J. Catch-up and convergence in global agricultural productivity. Indian Economic Review. J. Delhi Sch. Econ. 2014, 39, 123–148. [Google Scholar]
- Baran, J. Changes in productivity of agriculture after Polish accession to the European Union. Acta Sci. Pol. Oecon. 2014, 13, 5–15. [Google Scholar]
- Alene, A.D.; Manyong, V.M.; Gockowski, J. The production efficiency of intercroping annual and perennial crops in southern Ethiopia: A comparison of distance functions and production frontiers. Agric. Syst. 2006, 91, 51–70. [Google Scholar] [CrossRef]
- Błażejczyk-Majka, L.; Kala, R.; Maciejewski, K. Productivity and efficiency of large and small field crop farms and mixed farms of the old and new EU regions. Agric. Econ. Czech 2011, 58, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Latruffe, L.; Balcombe, K.; Davidova, S.; Zawalińska, K. Technical and scale efficiency of crop and livestock farms in Poland: Does specialization matter? Agric. Econ. 2005, 32, 281–296. [Google Scholar] [CrossRef]
- Galanopoulos, K.; Aggelopoulos, S.; Kamenidou, I.; Mattas, K. Assessing the effects of managerial and production practices on the efficiency of commercial pig farming. Agric. Syst. 2006, 88, 125–141. [Google Scholar] [CrossRef]
- Schaltegger, S.; Sturm, A. Ökologische Rationalität. Unternehm 1990, 4, 273–290. [Google Scholar]
- Schidemeny, S. With the Business Council for Sustainable Development (BCSD). In Changing Course: A Global Business Perspective on Development and the Environment; MIT Press: Cambridge, UK, 1992. [Google Scholar]
- World Business Council for Sustainable Development (WBCSD). Measuring Ecoefficiency. A Guide to Reporting Company Performance; WBCSD: London, UK, 2000. [Google Scholar]
- Organisation for Economic Cooperation and Development (OECD). Eco-Efficiency; OECD Publishing: Paris, France, 1998. [Google Scholar]
- Picazo-Tadeo, A.J.; Gómez-Limón, J.A.; Reig-Martinez, E. Assessing farming eco-efficiency: A data envelopment analysis approach. J. Environ. Manag. 2011, 92, 1154–1164. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.A.K.; Thijssen, G. Analysis of environmental efficiency variation. Am. J. Agric. Econ. 2002, 84, 1054–1065. [Google Scholar] [CrossRef]
- Greene, W. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. J. Econom. 2005, 126, 269–303. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Lauwers, L. Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecol. Econ. 2009, 68, 1605–1614. [Google Scholar] [CrossRef]
- Pérez Domínguez, I.; Fellmann, T.; Weiss, F.; Witzke, P.; Barreiro-Hurlé, J.; Himics, M.; Jansson, T.; Salputra, G.; Leip, A. An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture (EcAMPA 2); JRC Science for Policy Report; Publications Office of the European Union: Seville, Spain, 2016. [Google Scholar]
- Huppes, G.; Ishikawa, M. A Quantified Eco-Efficiency an Introduction with Applications; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- World Business Council for Sustainable Development (WBCSD). Eco-Efficiency Learning Module. 2006, pp. 1–231. Available online: https://www.wbcsd.org/Projects/Education/Resources/Eco-efficiency-Learning-Module (accessed on 30 September 2021).
- Yu, Y.; Chen, D.; Zhu, B.; Hu, S. Eco-efficiency trends in China, 1978–2010: Decoupling environmental pressure from economic growth. Ecol. Indic. 2013, 24, 177–184. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Kortelainen, M. Measuring eco-efficiency of production with data envelopment analysis. J. Ind. Ecol. 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Pereira, C.P.; Prata, D.M.; Santos, L.S.; Monteiro, L.P.C. Development of eco-efficiency comparison index through eco-indicators for industrial applications. Braz. J. Chem. Eng. 2018, 35, 69–89. [Google Scholar] [CrossRef]
- Tyteca, D. On the measurement of the environmental performance of firms—A literature review and a productive efficiency perspective. J. Environ. Manag. 1996, 46, 281–308. [Google Scholar] [CrossRef]
- Saling, P.; Kicherer, A.; Dittrich-Krämer, B.; Wittlinger, R.; Zombik, W.; Schmidt, I.; Schrott, W.; Schmidt, S. Eco-efficiency analysis by BASF: The method. Int. J. Life Cycle Assess. 2002, 7, 203–218. [Google Scholar] [CrossRef]
- Czaplicka-Kolarz, K.; Burchart-Korol, D.; Krawczyk, P. Metodyka analizy ekoefektywności. J. Ecol. Health 2010, 14, 267–271. [Google Scholar]
- International Organization for Standardization (ISO). ISO/TC 207/SC 1, Environmental Management Systems. 2012. Available online: https://committee.iso.org/home/tc207sc1 (accessed on 15 September 2021).
- Joachimiak-Lechman, K. Środowiskowa ocena cyklu życia (LCA) i rachunek kosztów cyklu życia (LCC). Aspekty porównawcze. Ekon. Sr. 2014, 1, 80–96. [Google Scholar]
- Wagner, M.; Lewandowski, I. Life-cycle sustainability assessment. In Bieconomy. Shaping the Transition to a Sustainable, Biobased Economy; Lewandowski, I., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–354. [Google Scholar]
- Samson-Bręk, I. Zastosowanie metody oceny cyklu życia LCA do oszacowania wpływu na środowisko wytwarzania paliwa biogazowego do silników spalinowych. Arch. Motoryz. 2011, 2, 181–191. [Google Scholar]
- Kuosmanen, T. Measurement and Analysis of Eco-efficiency: An Economist’s Perspective. J. Ind. Ecol. 2005, 9, 15–18. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Dyckhoff, H.; Allen, K. Measuring ecologic al efficiency with data envelopment analysis. Eur. J. Oper. Res. 2001, 132, 312–325. [Google Scholar] [CrossRef]
- Huang, J.; Yang, H.; Cheng, G.; Wang, S. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J. Clean. Prod. 2014, 67, 228–238. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Picazo-Tadeo, A.J.; Reig-Martinez, E. Eco-efficiency assessment of olive farms in Andalusia. Land Use Policy 2012, 29, 395–406. [Google Scholar] [CrossRef]
- Jan, P.; Dux, D.; Lips, M.; Alig, M.; Dumondel, M. On the link between economic and environmental performance of Swiss dairy farms of the alpine area. Int. J. Life Cycle Assess. 2012, 17, 706–719. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Chen, X.; Zhang, Z.; Li, H. Measuring eco-efficiency of agriculture in China. Sustainability 2016, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Orea, L.; Wall, A. Measuring ecoefficiency using the stochastic frontier analysis approach, international series in operations research & management science. In Advances in Efficiency and Productivity; Aparicio, J., Knox Lovell, C.A., Pastor, J.T., Eds.; Springer: Cham, Switzerland, 2016; pp. 275–297. [Google Scholar]
- Callens, I.; Tyteca, D. Towards indicators of sustainable development for firms: A productive efficiency perspective. Ecol. Econ. 1999, 28, 41–53. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Beltrán-Esteve, M.; Gómez-Limón, J.A. Assessing eco-efficiency with directional distance functions. Eur. J. Oper. Res. 2012, 220, 798–809. [Google Scholar] [CrossRef]
- Wursthorn, S.; Poganietz, W.-R.; Schebek, L. Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency. Ecol. Econ. 2011, 70, 487–496. [Google Scholar] [CrossRef]
- Suzigan, L.H.; Peña, C.R.; Guarnieri, P. Eco-efficiency Assessment in Agriculture: A Literature Review Focused on Methods and Indicators. J. Agric. Sci. 2020, 12, 118–134. [Google Scholar] [CrossRef]
- Pacini, C.; Wossinka, A.; Giesena, G.; Vazzanac, C.; Huirn, R. Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agric. Ecosyst. Environ. 2003, 95, 273–288. [Google Scholar] [CrossRef]
- Reinhard, S.; Thijssen, G. Nitrogen efficiency of Dutch dairy farms: A shadow cost system approach. Eur. Rev. Agric. Econ. 2000, 27, 167–186. [Google Scholar] [CrossRef]
- Vand der Werf, H.; Petit, J. Evaluation of the environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Agric. Ecosyst. Environ. 2002, 93, 131–145. [Google Scholar] [CrossRef]
- Abay, A.; Assefa, A. The Role of Education on the Adoption of Chemical Fertilizer under different Socioeconomic Environments in Ethiopia. Agric. Econ. 2004, 30, 215–228. [Google Scholar]
- Hoang, V.N.; Alauddin, M. Input-orientated data envelopment analysis framework of measuring and decomposing economic, environmental and ecological efficiency: An application to OECD agriculture. Environ. Resour. Econ. 2012, 51, 431–452. [Google Scholar] [CrossRef]
- Hoang, V.N.; Coelli, T. Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach. J. Environ. Econ. Manag. 2011, 62, 462–474. [Google Scholar] [CrossRef] [Green Version]
- Asmild, M.; Hougaard, J.L. Economic versus environmental improvement potentials of Danish pig farms. Agric. Econ. 2006, 35, 171–181. [Google Scholar] [CrossRef]
- Lozano, S.; Iribarren, D.; Moreira, M.T.; Feijoo, G. The link between operational efficiency and environmental impacts. Sci. Total Environ. 2009, 407, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, D.; Hospido, A.; Moreira, M.T.; Feijoo, G. Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. Sci. Total Environ. 2011, 409, 1786–1798. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Teresa Moreira, M.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rias Baixasappellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Mohseni, P.; Borghei, A.M.; Khanali, M. Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production. J. Clean. Prod. 2018, 197, 937–947. [Google Scholar] [CrossRef]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Ullah, A.; Perret, S.R.; Gheewala, S.H.; Soni, P. Eco-efficiency of cotton-cropping systems in Pakistan: An integrated approach of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 134, 623–632. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Dalgaard, T.; Knudsen, M.T.; Keyhani, A.; Mousavi-Avval, S.; Hermansen, J. Potential greenhouse gas emission reductions in soybean farming: A combined use of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2013, 54, 89–100. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Nguyen, T.; Borek, R.; Hermansen, J. Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Ledgard, S.; Boyes, M. Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol. Econ. 2009, 68, 1615–1625. [Google Scholar] [CrossRef]
- Mouron, P.; Scholz, R.W.; Nemecek, T.; Weber, O. Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing. Ecol. Econ. 2006, 58, 561–578. [Google Scholar] [CrossRef]
- Forleo, B.; Palmieri, N.; Suardi, A.; Coaloa, D.; Pari, L. The eco-efficiency of rapeseed and sunflower cultivation in Italy. Joining environmental and economic assessment. J. Clean. Prod. 2018, 172, 3138–3153. [Google Scholar] [CrossRef]
- Coelli, T.; Lauwers, L.; Van Huylenbroeck, G. Environmental efficiency measurement and the materials balance condition. J. Product. Anal. 2007, 28, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Van Passel, S.; Nevens, F.; Mathijs, E.; Van Huylenbroeck, G. Measuring farm sustainability and explaining differences in sustainable efficiency. Ecol. Econ. 2007, 62, 149–161. [Google Scholar] [CrossRef]
- Barba-Guitierrez, Y.; Adenso-Diaz, B.; Lozano, S. Eco-efficiency of electric and electronic appliances: A data envelopment analysis (DEA). Environ. Model. Assess. 2009, 14, 439–447. [Google Scholar] [CrossRef]
- Van Meensel, J.; Lauwers, L.; Van Huylenbroeck, G.; Van Passel, S. Comparing frontier methods for economic-environmental trade-off analysis. Eur. J. Oper. Res. 2010, 207, 1027–1040. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafieed, S.; Musazadeh, H. Environmental impact assessment of open field and greenhouse strawberry production. Eur. J. Agron. 2013, 50, 29–37. [Google Scholar] [CrossRef]
- Sulewski, P.; Wąs, A.; Kłoczko-Gajewska, A.; Kobus, P.; Pogodzińska, K.; Gołaś, M. Ekoefektywność Towarowych Gospodarstw Rolnych w Polsce; Wydawnictwo SGGW: Warsaw, Poland, 2020; pp. 1–158. [Google Scholar]
- Shorthall, O.K.; Barnes, A.P. Greenhouse gas emissions and the technical efficiency of dairy farmers. Ecol. Indic. 2013, 29, 478–488. [Google Scholar] [CrossRef]
- Bieńkowski, J.; Baum, R.; Holka, M. Eco-Efficiency of Milk Production in Poland Using the Life Cycle Assessment Methodologies. Eur. Res. Stud. J. 2021, 24, 890–912. [Google Scholar] [CrossRef]
- Hochman, Z.; Prestwidge, D.; Carberry, P.S. Crop sequences in Australia’s northern grain zone are less agronomically efficient than implied by the sum of their parts. Agric. Syst. 2014, 129, 124–132. [Google Scholar] [CrossRef]
- Bieńkowski, J.; Baum, R. Eco-Efficiency in Measuring the Sustainable Production of Agricultural Crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- Kulak, M.; Nemecek, T.; Frossard, E.; Chable, V.; Gaillard, G. Life cycle assessment of bread from several alternative food networks in Europe. J. Clean. Prod. 2015, 90, 104–113. [Google Scholar] [CrossRef]
- Pereira, A.; Carballo-Penela, A.; González-López, M.; Vence, X. A case study of servicizing in the farming-livestock sector: Oganisational change and potential environmental improvement. J. Clean. Prod. 2016, 124, 84–93. [Google Scholar] [CrossRef]
- Polcyn, J. Eco-Efficiency and Human Capital Efficiency: Example of Small- and Medium-Sized Family Farms in Selected European Countries. Sustainability 2021, 13, 6846. [Google Scholar] [CrossRef]
- Stępień, S.; Czyżewski, B.; Sapa, A.; Borychowski, M.; Poczta, W.; Poczta-Wajda, A. Eco-efficiency of small-scale farming in Poland and its institutional drivers. J. Clean. Prod. 2021, 279, 123721. [Google Scholar] [CrossRef]
- Gołaś, M.; Sulewski, P.; Wąs, A.; Kłoczko-Gajewska, A.; Pogodzińska, K. On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms. Agriculture 2020, 10, 438. [Google Scholar] [CrossRef]
- Hoang, V.-N.; Rao, D.S.P. Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach. Ecol. Econ. 2010, 69, 1765–1776. [Google Scholar] [CrossRef]
- Vlontzos, G.; Niavis, S.; Manos, B. DEA approach for estimating the agricultural energy and environmental efficiency of EU countries. Renew. Sustain. Energy Rev. 2014, 40, 91–96. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G.; Kourtzidis, S.A. Measuring Sustainability Efficiency Using a Two-Stage Data Envelopment Analysis Approach. J. Ind. Ecol. 2016, 20, 1159–1175. [Google Scholar] [CrossRef]
- Fang, Y.L.; Zeng, X.L. Evaluation and improvement of agricultural eco-efficiency in China. J. Agric. Resour. Environ. 2021, 38, 135–142. [Google Scholar]
- Richterová, E.; Richter, M.; Sojková, Z. Regional eco-efficiency of the agricultural sector in V4 regions, its dynamics in time and decomposition on the technological and pure technical eco-efficiency change. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 553–576. [Google Scholar] [CrossRef]
- Wysokiński, M.; Domagała, J.; Gromada, A.; Golonko, M.; Trębska, P. Economic and energy efficiency of agriculture. Agric. Econ. Czech 2020, 66, 355–364. [Google Scholar] [CrossRef]
- Wysokiński, M.; Golonko, M.; Gromada, A.; Trębska, P.; Jun Jiang, Q. Economic and energy efficiency of agriculture in Poland compared to other European Union countries. Acta Sci. Pol. Oecon. 2020, 19, 97–105. [Google Scholar] [CrossRef]
- Schmidheiny, S.; Zorraquin, J.L. Financing Change, the Financial Community, Eco-Efficiency and Sustainable Development; MIT Press: Cambridge, UK, 1996. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis. A Comprehensive Text with Models. Applications. References and DEA-Solver Software; Kluwer Academic Publishers: New York, NY, USA, 2007. [Google Scholar]
- Coelli, T.J.; Prasada Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiency in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, A. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Guzik, B. Podstawowe Modele DEA w Badaniu Efektywności Gospodarczej i Społecznej; Wydawnictwo UE w Poznaniu: Poznan, Poland, 2009. [Google Scholar]
- Baran, J. Efektywność polskiego rolnictwa na tle pozostałych krajów Unii Europejskiej. Wieś Rol. 2016, 3, 69–85. [Google Scholar] [CrossRef]
- Wysokiński, M.; Klepacki, B.; Gradziuk, P.; Golonko, M.; Gołasa, P.; Bieńkowska-Gołasa, W.; Gradziuk, B.; Trębska, P.; Lubańska, A.; Guzal-Dec, D.; et al. Economic and Energy Efficiency of Farms in Poland. Energies 2021, 14, 5586. [Google Scholar] [CrossRef]
- Bartolini, F.; Viaggi, D. The Common Agricultural Policy and the determinants of changes in EU Farm Size. Land Use Policy 2013, 31, 126–135. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament; The European Council; The Council; The European Economic and Social Committee; The Committee of the Regions and the European Investment Bank. A Clean Planet for All—A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; COM: Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0773 (accessed on 30 September 2021).
- Food and Agricultural Organization of the United Nations (FAO); International Fund for Agricultural Development (IFAD); United Nations Children’s Fund (UNICEF); World Food Programme (WFP); World Health Organization (WHO). The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Wirsenius, S.; Hedenus, F.; Mohlin, K. Greenhouse gas taxes on animal food products: Rationale, tax scheme and climate mitigation effects. Clim. Chang. 2010, 108, 159–184. [Google Scholar] [CrossRef]
- Edjabou, L.D.; Smed, S. The effect of using consumption taxes on foods to promote climate friendly diets—The case of Denmark. Food Policy 2013, 39, 84–96. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E. Assessment of various practices of the mitigation of N2O emissions from the arable soils of Poland. Soil Sci. Annu. 2017, 68, 55–64. [Google Scholar] [CrossRef]
- MacLeod, M.; Eory, V.; Gruère, G.; Lankoski, J. Cost-Effectiveness of Greenhouse Gas Mitigation Measures for Agriculture. A Literature Review. OECD Food Agric. Fish. Pap. 2015, 89. [Google Scholar] [CrossRef]
- Piechota, G.; Igliński, B. Biomethane in Poland—Current status, potential, perspective and development. Energies 2021, 14, 1517. [Google Scholar] [CrossRef]
- Syp, A.; Faber, A. Zastosowanie Modelu DNDC do Symulacji Plonów Roślin i Oceny Wpływu Zmian na Środowisko w Zmieniających Się Warunkach Klimatycznych i Różnych Systemach Uprawy. Rocz. Nauk. Stowarzyszenia Ekon. Rol. Agrobiz. 2012, 14, 183–187. [Google Scholar]
- Soto Embodas, I.; Barnes, A.; Balafoutis, A.; Beck, B.; Sanchez Fernandez, B.; Vangeyte, J.; Fountas, S.; Van DerWal, T.; Eory, V.; Gomez Barbero, M. The Contribution of Precision Agriculture Technologies to Farm Productivity and the Mitigation of Greenhouse Gas Emissions in the EU; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Monarch Tractor: The World’s Smartest, Fully Electric, Autonomous Tractor. Available online: https://www.monarchtractor.com/monarch-blogs/#/news/1toEOumnkEksWakieoeC6M (accessed on 19 September 2021).
- Regulation (EU) 2016/1628 of the European Parliament and of the Council of 14 September 2016 on Requirements Relating to Gaseous and Particulate Pollutant Emission Limits and Type-Approval for Internal Combustion Engines for Non-Road Mobile Machinery, Amending Regulations (EU) No. 1024/2012 and (EU) No. 167/2013, and Amending and Repealing Directive 97/68/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R1628&from=EN (accessed on 23 September 2021).
- Baran, J.; Górecka, A.K. Economic and environmental aspects of inland transport in EU countries. Economic Research-Ekonomska Istraživanja 2019, 32, 1037–1059. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.S.; Rodrigues, I.A.; de Almeida Buschinelli, C.C.; De Barros, I. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 2010, 30, 229–239. [Google Scholar] [CrossRef]
- Bengtsson, J.; Seddon, J. Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. J. Clean. Prod. 2013, 41, 291–300. [Google Scholar] [CrossRef]
- Todorovic, M.; Mehmeti, A.; Scardigno, A. Eco-efficiency of agricultural water systems: Methodological approach and assessment at meso-level scale. J. Environ. Manag. 2016, 165, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Corrado, S.; Castellani, V.; Zampori, L.; Sala, S. Systematic analysis of secondary life cycle inventories when modelling agricultural production: A case study for arable crops. J. Clean. Prod. 2018, 172, 3990–4000. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, J.; Zhang, J. Expansion of environmental impact assessment for eco-efficiency evaluation of China’s economic sectors: An economic input-output based frontier approach. Sci. Total Environ. 2018, 635, 284–293. [Google Scholar] [CrossRef] [PubMed]
Country | Share of Greenhouse Gas Emissions from Agriculture in the Total Greenhouse Emissions from EU Agriculture (%) | Country | Share of Greenhouse Gas Emissions from Agriculture in the Total Greenhouse Emissions in Country (%) |
---|---|---|---|
France | 17.1 | Sweden | 45 |
Germany | 14.5 | Ireland | 32 |
United Kingdom | 9.8 | Lithuania | 28 |
Spain | 8.8 | Romania | 23 |
Poland | 7.7 | Denmark | 23 |
Italy | 6.9 | Latvia | 22 |
Ireland | 4.8 | France | 18 |
Romania | 4.4 | Finland | 17 |
The Netherlands | 4.1 | Croatia | 15 |
Denmark | 2.5 | Spain | 14 |
Belgium | 2.2 | Bulgaria | 13 |
Czechia | 1.9 | Hungary | 12 |
Greece | 1.8 | Portugal | 12 |
Austria | 1.7 | Estonia | 11 |
Hungary | 1.7 | The Netherlands | 10 |
Sweden | 1.6 | Greece | 10 |
Portugal | 1.6 | Austria | 10 |
Finland | 1.5 | Slovenia | 10 |
Bulgaria | 1.5 | United Kingdom | 9 |
Lithuania | 1.0 | Poland | 9 |
Slovakia | 0.6 | Germany | 8 |
Croatia | 0.6 | Italy | 8 |
Latvia | 0.5 | Belgium | 8 |
Slovenia | 0.4 | Slovakia | 8 |
Estonia | 0.4 | Luxembourg | 7 |
Luxembourg | 0.2 | Czechia | 6 |
Cyprus | 0.1 | Cyprus | 6 |
Malta | 0.02 | Malta | 4 |
Agricultural Sector in Country | Agricultural Production Value as Percent of Total EU Agricultural Production | Agricultural Sector in Country | Value Added in the Agricultural Sector as Percent of GDP in the EU | Agricultural Sector in Country | Employment in Agriculture as Percent of Total Employment in the EU |
---|---|---|---|---|---|
France | 18.44 | Romania | 4.13 | Romania | 21.24 |
Germany | 14.01 | Greece | 3.78 | Greece | 11.6 |
Italy | 13.84 | Latvia | 3.73 | Poland | 9.15 |
Spain | 12.37 | Hungary | 3.32 | Latvia | 7.29 |
The Netherlands | 6.98 | Bulgaria | 3.24 | Bulgaria | 6.62 |
Poland | 6.31 | Lithuania | 3.22 | Lithuania | 6.44 |
Romania | 4.54 | Croatia | 2.92 | Croatia | 6.19 |
Greece | 2.84 | Spain | 2.59 | Portugal | 5.5 |
Denmark | 2.65 | Estonia | 2.51 | Hungary | 4.72 |
Hungary | 2.09 | Slovakia | 2.48 | Ireland | 4.43 |
Belgium | 2.09 | Finland | 2.46 | Slovenia | 4.28 |
Ireland | 2.04 | Finland | 2.35 | Spain | 4.03 |
Portugal | 1.94 | Portugal | 2.05 | Italy | 3.89 |
Austria | 1.79 | Slovenia | 1.96 | Finland | 3.78 |
Sweden | 1.44 | Italy | 1.91 | Austria | 3.66 |
Czechia | 1.32 | Czechia | 1.86 | Estonia | 3.17 |
Finland | 1.14 | Cyprus | 1.74 | Slovakia | 2.79 |
Bulgaria | 1.03 | The Netherlands | 1.64 | Czechia | 2.66 |
Lithuania | 0.77 | France | 1.52 | France | 2.53 |
Croatia | 0.58 | Sweden | 1.39 | Cyprus | 2.41 |
Slovakia | 0.54 | Denmark | 1.22 | Denmark | 2.22 |
Latvia | 0.39 | Austria | 1.09 | The Netherlands | 2.08 |
Slovenia | 0.32 | Ireland | 0.90 | Sweden | 1.69 |
Estonia | 0.24 | Germany | 0.78 | Germany | 1.21 |
Cyprus | 0.18 | Malta | 0.71 | Malta | 1.02 |
Luxembourg | 0.11 | Belgium | 0.63 | Belgium | 0.92 |
Malta | 0.03 | Luxembourg | 0.23 | Luxembourg | 0.68 |
Average | 3.70 | Average | 2.09 | Average | 4.67 |
Country | Labour Productivity (Thousand EUR/AWU *) | Land Productivity (Thousand EUR/ha) | Productivity of Energy Consumption (Million EUR/Thousand Toe) |
---|---|---|---|
Austria | 64 | 2.82 | 5.89 |
Belgium | 157 | 6.41 | 2.77 |
Bulgaria | 23 | 0.86 | 10.02 |
Croatia | 14 | 1.61 | 5.14 |
Cyprus | 35 | 6.03 | 7.63 |
Czechia | 54 | 1.56 | 2.77 |
Denmark | 212 | 4.21 | 5.02 |
Estonia | 53 | 1.01 | 2.49 |
Finland | 77 | 2.09 | 2.05 |
France | 106 | 2.65 | 7.88 |
Germany | 126 | 3.51 | 6.22 |
Greece | 28 | 2.31 | 22.13 |
Hungary | 24 | 1.64 | 5.31 |
Ireland | 53 | 1.88 | 12.93 |
Italy | 52 | 4.40 | 12.11 |
Latvia | 23 | 0.83 | 2.73 |
Lithuania | 24 | 1.08 | 11.13 |
The Netherlands | 186 | 16.04 | 2.84 |
Poland | 16 | 1.81 | 2.67 |
Portugal | 34 | 2.25 | 8.31 |
Romania | 14 | 1.37 | 15.77 |
Slovakia | 51 | 1.18 | 4.03 |
Slovenia | 17 | 2.76 | 7.66 |
Spain | 60 | 2.12 | 10.74 |
Sweden | 109 | 2.00 | 2.47 |
United Kingdom | 104 | 1.76 | 9.54 |
Average | 68 | 3.00 | 7.19 |
Inefficient Agricultural Sectors in the Countries | Efficient Agricultural Sectors (Benchmarks) | ||||||
---|---|---|---|---|---|---|---|
Denmark | Ireland | Greece | Italy | Cyprus | The Netherlands | United Kingdom | |
Austria | 0.20 | 0.08 | 0.03 | ||||
Belgium | 0.36 | 0.43 | 0.15 | ||||
Bulgaria | 0.30 | 0.15 | |||||
Croatia | 0.05 | 0.03 | |||||
Czechia | 0.43 | 0.04 | 0.03 | ||||
Estonia | 0.05 | 0.01 | 0.01 | ||||
Finland | 0.27 | 0.01 | 0.04 | ||||
France | 4.67 | 0.10 | 0.50 | 0.60 | |||
Germany | 4.69 | 0.12 | 0.09 | ||||
Hungary | 0.24 | 0.29 | 0.05 | ||||
Latvia | 0.07 | 0.04 | 0.02 | 0.01 | |||
Lithuania | 0.13 | 0.18 | |||||
Poland | 0.10 | 0.22 | 16.63 | ||||
Portugal | 0.18 | 0.02 | 6.14 | ||||
Romania | 1.60 | ||||||
Slovakia | 0.01 | 0.06 | 0.01 | 0.05 | |||
Slovenia | 0.03 | 0.02 | |||||
Spain | 3.15 | 1.32 | 0.02 | ||||
Sweden | 0.44 | 0.01 | 0.03 |
Inefficient Agricultural Sectors in the Countries | Utilised Agricultural Area (%) | Labour (%) | Fertilisers (%) | Energy Consumption (%) |
---|---|---|---|---|
Belgium | −7 | −7 | 62 | 7 |
Bulgaria | 58 | 42 | 52 | 42 |
Czechia | −58 | −58 | −59 | −58 |
Germany | −15 | −15 | −17 | −15 |
Estonia | −60 | −60 | −60 | −60 |
Spain | −37 | −14 | −14 | −14 |
France | −11 | −11 | −11 | −11 |
Croatia | −55 | −68 | −74 | −55 |
Latvia | −68 | −68 | −68 | −68 |
Lithuania | −50 | −30 | −55 | −30 |
Hungary | −49 | −49 | −63 | −49 |
Austria | −41 | −15 | −15 | −15 |
Poland | −64 | −64 | −82 | −64 |
Portugal | −45 | −2 | −2 | −2 |
Romania | −41 | −53 | −53 | −21 |
Slovenia | −24 | −61 | −48 | −24 |
Slovakia | −36 | −36 | −36 | −36 |
Finland | −60 | −50 | −50 | −50 |
Sweden | −57 | −40 | −40 | −40 |
Country | Efficiency of GHG Emissions, 2010 (EUR/t GHG) | Efficiency of GHG Emissions, 2019 (EUR/t GHG) | Change of Efficiency of GHG Emissions (2019/2010) (%) |
---|---|---|---|
Italy | 874 | 889 | 102 |
Greece | 668 | 747 | 112 |
Cyprus | 593 | 615 | 104 |
Spain | 618 | 592 | 96 |
The Netherlands | 546 | 543 | 99 |
Croatia | 452 | 508 | 112 |
Portugal | 421 | 398 | 95 |
France | 368 | 381 | 104 |
Austria | 363 | 360 | 99 |
Romania | 378 | 350 | 93 |
Hungary | 347 | 276 | 80 |
Germany | 268 | 273 | 102 |
Belgium | 260 | 266 | 102 |
Poland | 258 | 252 | 98 |
Denmark | 246 | 245 | 99 |
Slovenia | 240 | 234 | 97 |
Sweden | 226 | 223 | 98 |
Finland | 217 | 218 | 100 |
Bulgaria | 256 | 217 | 85 |
United Kingdom | 190 | 187 | 98 |
Estonia | 187 | 157 | 84 |
Lithuania | 157 | 153 | 98 |
Slovakia | 151 | 130 | 86 |
Czechia | 128 | 118 | 92 |
Latvia | 126 | 107 | 85 |
Ireland | 76 | 68 | 90 |
EU-28 | 362 | 358 | 99 |
Pearson’s CORRELATION COEFFICIENTS | ||
---|---|---|
Tested Parameters | Correlation COEFFICIENTS between EFFICIENCY of GHG Emissions and | |
rxy | p-Value | |
Economic and energy efficiency (DEA method) | 0.405 | 0.040 |
Productivity of energy consumption | 0.456 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domagała, J. Economic and Environmental Aspects of Agriculture in the EU Countries. Energies 2021, 14, 7826. https://doi.org/10.3390/en14227826
Domagała J. Economic and Environmental Aspects of Agriculture in the EU Countries. Energies. 2021; 14(22):7826. https://doi.org/10.3390/en14227826
Chicago/Turabian StyleDomagała, Joanna. 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries" Energies 14, no. 22: 7826. https://doi.org/10.3390/en14227826
APA StyleDomagała, J. (2021). Economic and Environmental Aspects of Agriculture in the EU Countries. Energies, 14(22), 7826. https://doi.org/10.3390/en14227826