Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Plants
2.2. Ash Content and Fixed Carbon
2.3. Elemental Analysis
2.4. Compositional Analysis
2.5. HTL Reaction
2.6. COD, TOC, and TN in Aqueous Phase
2.7. High-Resolution Mass Spectrometry (HRMS) Analysis of the Aqueous Phase
2.8. Statistics
3. Results
3.1. Characterization of Harvested Biomass
3.2. HTL Yields
3.3. Characterization of the HTL Products
3.3.1. Biocrude and Biochar
3.3.2. Aqueous Phase
3.3.3. LC-HRMS Analysis of the Aqueous Phase
3.4. Energy Balance
3.5. Mass Balance
Carbon Balance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Adamo, I.; Morone, P.; Huisingh, D. Bioenergy: A Sustainable Shift. Energies 2021, 14, 5661. [Google Scholar] [CrossRef]
- Birgit, K.; Michel, K.; Patrick, R.G.; Stefan, K. Biorefinery Systems-An Overview. In Biorefineries—Industrial Processes and Products. Status Quo and Future Directions; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 3–39. ISBN 3527310274. [Google Scholar]
- Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; Cohen-Shacham, E., Walters, G., Janzen, C., Maginnis, S., Eds.; IUCN International Union for Conservation of Nature: Gland, Switzerland, 2016; ISBN 9782831718125. [Google Scholar]
- Rodriguez-Dominguez, M.A.; Konnerup, D.; Brix, H.; Arias, C.A. Constructed Wetlands in Latin America and the Caribbean: A Review of Experiences during the Last Decade. Water 2020, 12, 1744. [Google Scholar] [CrossRef]
- Uggetti, E.; Ferrer, I.; Arias, C.; Brix, H.; García, J. Carbon footprint of sludge treatment reed beds. Ecol. Eng. 2012, 44, 298–302. [Google Scholar] [CrossRef]
- Mannino, I.; Franco, D.; Piccioni, E.; Favero, L.; Mattiuzzo, E.; Zanetto, G. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems. Environ. Manag. 2007, 41, 118–129. [Google Scholar] [CrossRef] [Green Version]
- McKinney, R.A.; Raposa, K.B.; Cournoyer, R.M. Wetlands as habitat in urbanizing landscapes: Patterns of bird abundance and occupancy. Landsc. Urban Plan. 2011, 100, 144–152. [Google Scholar] [CrossRef]
- Stefanakis, A. The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef] [Green Version]
- Brix, H.; Sorrell, B.; Lorenzen, B. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat. Bot. 2001, 69, 313–324. [Google Scholar] [CrossRef]
- Brix, H. How “green” are aquaculture, constructed wetlands and conventional wastewater treatment systems? Water Sci. Technol. 1999, 40, 45–50. [Google Scholar] [CrossRef]
- Konnerup, D.; Koottatep, T.; Brix, H. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Wallace, S. Feasibility, Design Criteria, and O & M Requirements for Small Scale Constructed Wetland Wastewater Treatment Systems. Water Intell. Online 2006, 5, 304. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C.A. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecol. Eng. 2005, 25, 491–500. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A. Constructed Wetlands for Management of Urban Stormwater Runoff. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2153–2214. [Google Scholar] [CrossRef]
- Istenič, D.; Arias, C.A.; Matamoros, V.; Vollertsen, J.; Brix, H. Elimination and accumulation of polycyclic aromatic hydrocarbons in urban stormwater wet detention ponds. Water Sci. Technol. 2011, 64, 818–825. [Google Scholar] [CrossRef]
- Istenič, D.; Arias, C.A.; Vollertsen, J.; Nielsen, A.H.; Wium-Andersen, T.; Hvitved-Jacobsen, T.; Brix, H. Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. J. Environ. Sci. Health Part A 2012, 47, 1466–1477. [Google Scholar] [CrossRef]
- Gutiérrez-Sarabia, A.; Fernandez-Villagómez, G.; Martínez-Pereda, P.; Rinderknecht-Seijas, N.; Poggi-Varaldo, H.M. Slaughterhouse wastewater treatment in a full-scale system with constructed wetlands. Water Environ. Res. 2004, 76, 334–343. [Google Scholar] [CrossRef]
- Soroko, M. Treatment of wastewater from small slaughterhouse in hybrid constructed wetlands systems. Ecohydrol. Hydrobiol. 2007, 7, 339–343. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Hadad, H.R.; Mufarrege, M.M.; Pinciroli, M.; Di Luca, G.A.; Maine, M.A. Morphological Response of Typha domingensis to an Industrial Effluent Containing Heavy Metals in a Constructed Wetland. Arch. Environ. Contam. Toxicol. 2010, 58, 666–675. [Google Scholar] [CrossRef]
- Maine, M.; Sanchez, G.; Hadad, H.; Caffaratti, S.; Pedro, M.; Mufarrege, M.; Di Luca, G. Hybrid constructed wetlands for the treatment of wastewater from a fertilizer manufacturing plant: Microcosms and field scale experiments. Sci. Total. Environ. 2019, 650, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Pozo-Morales, L.; Moron, C.; Garvi, D. Ecologically Designed Sanitary Sewer Based on Constructed Wetlands Technology—Case Study in Managua (Nicaragua). J. Green Eng. 2017, 7, 421–450. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Zhu, N.; An, P.; Krishnakumar, B.; Zhao, L.; Sun, L.; Mizuochi, M.; Inamori, Y. Effect of plant harvest on methane emission from two constructed wetlands designed for the treatment of wastewater. J. Environ. Manag. 2007, 85, 936–943. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Ge, Y.; Dzakpasu, M.; Zhao, Y.; Xiong, J. Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecol. Eng. 2015, 83, 268–275. [Google Scholar] [CrossRef]
- Camelo, A.; Genuino, D.A.; Maglinao, A.L.; Capareda, S.C.; Paes, J.L.; Owkusumsirisakul, J. Pyrolysis of Pearl Millet and Napier Grass Hybrid (PMN10TX15): Feasibility, byproducts, and comprehensive characterization. Int. J. Renew. Energy Res. 2018, 8, 682–691. [Google Scholar]
- Karmee, S.K. Liquid biofuels from food waste: Current trends, prospect and limitation. Renew. Sustain. Energy Rev. 2016, 53, 945–953. [Google Scholar] [CrossRef]
- Kamm, B.; Hille, C.; Schönicke, P.; Dautzenberg, G. Green biorefinery demonstration plant in Havelland (Germany). Biofuels Bioprod. Biorefining 2010, 4, 253–262. [Google Scholar] [CrossRef]
- Balan, V.; Kumar, S.; Bals, B.; Chundawat, S.; Jin, M.; Dale, B.E. Biochemical and Thermochemical Conversion of Switchgrass to Biofuels. In Appraisal: From Theory to Practice; Springer: Singapore, 2012; pp. 153–185. [Google Scholar]
- Biller, P.; Ross, A. Production of biofuels via hydrothermal conversion. In Handbook of Biofuels Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 509–547. [Google Scholar]
- Biller, P.; Sharma, B.K.; Kunwar, B.; Ross, A.B. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel 2015, 159, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Anastasakis, K.; Biller, P.; Madsen, R.B.; Glasius, M.; Johannsen, I. Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation. Energies 2018, 11, 2695. [Google Scholar] [CrossRef] [Green Version]
- Biller, P.; Lawson, D.; Madsen, R.B.; Becker, J.; Iversen, B.B.; Glasius, M. Assessment of agricultural crops and natural vegetation in Scotland for energy production by anaerobic digestion and hydrothermal liquefaction. Biomass Convers. Biorefinery 2017, 7, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, T.H.; Rosendahl, L. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems. Biomass Bioenergy 2015, 83, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Biller, P.; Johannsen, I.; dos Passos, J.S.; Ottosen, L.D.M. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res. 2018, 130, 58–68. [Google Scholar] [CrossRef]
- Conti, F.; Toor, S.S.; Pedersen, T.H.; Nielsen, A.H.; Rosendahl, L.A. Biocrude production and nutrients recovery through hydrothermal liquefaction of wastewater irrigated willow. Biomass Bioenergy 2018, 118, 24–31. [Google Scholar] [CrossRef]
- Tenenbaum, D.J. Biochar: Carbon Mitigation from the Ground Up. Environ. Health Perspect. 2009, 117, A70–A73. [Google Scholar] [CrossRef] [Green Version]
- Kwapinski, W.; Byrne, C.M.P.; Kryachko, E.; Wolfram, P.; Adley, C.; Leahy, J.J.; Novotny, E.H.; Hayes, M.H.B. Biochar from Biomass and Waste. Waste Biomass Valorization 2010, 1, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Qambrani, N.A.; Rahman, M.; Won, S.; Shim, S.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- United Nations Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 4 October 2021).
- Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Nrel, J.W. Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl. Renew. Energy Lab. 2008, 9, 3–5. [Google Scholar]
- Jones, D.B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins; US Department of Agriculture: Washington, DC, USA, 1941; Volume 183, p. 22. [Google Scholar]
- Channiwala, S.; Parikh, P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass—NREL/TP-510-42618. Laboratory Analytical Procedure (LAP). 2012. Available online: nrel.gov/docs/gen/fy13/42618.pdf (accessed on 10 September 2021).
- Tisler, S.; Liang, C.; Carvalho, P.N.; Bester, K. Identification of more than 100 new compounds in the wastewater: Fate of polyethylene/polypropylene oxide copolymers and their metabolites in the aquatic environment. Sci. Total. Environ. 2021, 761, 143228. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; He, Q.; Corscadden, K.; Niu, H.; Lin, J.; Astatkie, T. Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables. Appl. Energy 2019, 233–234, 906–915. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Z.; Zhang, Y.; Savage, P.E. Synergistic and Antagonistic Interactions during Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin. ACS Sustain. Chem. Eng. 2018, 6, 14501–14509. [Google Scholar] [CrossRef]
- Frimmel, F.; Abbt-Braun, G. Sum Parameters: Potential and Limitations. In Treatise on Water Science; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–29. [Google Scholar]
- Thomsen, L.B.S.; Carvalho, P.; dos Passos, J.S.; Anastasakis, K.; Bester, K.; Biller, P. Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing. Water Res. 2020, 183, 116101. [Google Scholar] [CrossRef]
Plant Description | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Protein (%) | Ash (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TW | NC | TW | NC | TW | NC | TW | NC | TW | NC | |||||||
1 | Iris pseudacorus | 37.6 ± 2.6 | = | 38.9 ± 0.4 | 17.8 ± 4.5 | = | 14.6 ± 1.7 | 5.6 ± 0.4 | ↓ | 5.8 ± 0.6 | 4.8 ± 0.5 | ↑ | 3.5 ± 0.3 | 8.6 ± 0.0 | ↑ | 7.0 ± 0.0 |
2 | Juncus effusus | 36.9 ± 2.6 | ↓ | 41.5 ± 4.9 | 32.8 ± 2.1 | = | 32.3 ± 1.0 | 5.8 ± 0.6 | ↓ | 6.2 ± 0.7 | 6.7 ± 0.7 | ↑ | 4.5 ± 0.3 | 5.0 ± 0.2 | ↑ | 3.7 ± 0.0 |
3 | Phragmites australis | 35.0 ± 4.3 | = | 37.2 ± 1.1 | 21.0 ± 4.6 | ↓ | 27.6 ± 2.9 | 5.9 ± 0.5 | ↑ | 5.6 ± 1.0 | 7.2 ± 0.2 | ↑ | 6.4 ± 0.4 | 5.0 ± 0.0 | ↑ | 4.7 ± 0.0 |
4 | Typha latifolia | 41.4 ± 4.0 | = | 37.9 ± 3.8 | 17.2 ± 4.7 | ↓ | 22.2 ± 5.3 | 7.1 ± 2.4 | ↑ | 5.8 ± 1.9 | 5.8 ± 0.6 | ↑ | 4.7 ± 0.2 | 8.5 ± 0.1 | ↑ | 5.8 ± 0.1 |
Plant Description | C [%] | H [%] | O [%] | N [%] | S [%] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TW | NC | TW | NC | TW | NC | TW | NC | TW | NC | |||||||
1 | Iris pseudacorus | 42.4 ± 0.2 | = | 41.4 ± 0.1 | 6.4 ± 0.1 | = | 6.5 ± 0.0 | 41.8 ± 0.2 | ↓ | 44.6 ± 0.2 | 0.7 ± 0.0 | ↑ | 0.5 ± 0.0 | 0.2 ± 0.1 | ↑ | 0.0 ± 0.0 |
2 | Juncus effusus | 43.9 ± 0.1 | ↓ | 45.5 ± 0.2 | 6.5 ± 0.1 | = | 6.7 ± 0.1 | 43.4 ± 0.3 | = | 43.4 ± 0.2 | 1.1 ± 0.1 | ↑ | 0.7 ± 0.0 | 0.1 ± 0.0 | = | 0.1 ± 0.0 |
3 | Phragmites australis | 44.9 ± 0.0 | ↓ | 46.1 ± 0.1 | 6.4 ± 0.1 | ↓ | 6.7 ± 0.0 | 42.4 ± 0.0 | = | 41.2 ± 0.1 | 1.2 ± 0.0 | ↑ | 1.1 ± 0.0 | 0.2 ± 0.1 | = | 0.2 ± 0.0 |
4 | Typha latifolia | 41.9 ± 0.2 | ↓ | 45.4 ± 3.5 | 6.1 ± 0.1 | ↓ | 6.6 ± 0.5 | 42.6 ± 0.2 | = | 41.4 ± 4.2 | 0.9 ± 0.0 | ↑ | 0.8 ± 0.0 | 0.1 ± 0.0 | = | 0.0 ± 0.0 |
Plant Description | Biocrude (%) | Biochar (%) | AqP (%) | Gas (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TW | NC | TW | NC | TW | NC | TW | NC | ||||
1 | Iris pseudacorus | 25.6 ±1.2 | = | 29.6 ± 6.5 | 12.4 ± 2.4 | ↓ | 22.0 ± 3.3 | 16.5 ± 8.4 | 16.7 ± 3.5 | 26.6 ± 3.7 | 32.0 ± 5.8 |
2 | Juncus effusus | 31.7 ± 2.6 | = | 33.9 ± 3.1 | 14.5 ± 0.7 | ↓ | 17.4 ± 1.4 | 31.2 ± 18.7 | 22.7 ± 18.8 | 22.6 ± 18.4 | 27.1 ± 13.7 |
3 | Phragmites australis | 26.3 ± 6.2 | = | 28.6 ± 0.5 | 23.3 ± 1.7 | ↑ | 19.3 ± 3.0 | 21.6 ± 6.4 | 20.8 ± 6.2 | 26.8 ± 3.1 | 31.4 ± 5.4 |
4 | Typha latifolia | 31.6 ± 8.9 | ↓ | 37.6 ± 7.9 | 18.7 ± 0.2 | = | 19.3 ± 6.2 | 20.1 ± 6.5 | 15.5 ± 6.9 | 30.3 ± 5.1 | 47.9 ± 7.7 |
Plant Description | C [%] | H [%] | O [%] | N [%] | S [%] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TW | NC | TW | NC | TW | NC | TW | NC | TW | NC | ||
1 | Iris pseudacorus | 66.9 ± 11.4 | 58.3 ± 24.0 | 7.37 ± 0.6 | 9.4 ± 3.1 | 22.9 ± 12.0 | 30.8 ± 27.8 | 2.6 ± 0.0 | 1.5 ± 0.6 | 0.3 ± 0.0 | 0.1 ± 0.1 |
2 | Juncus effusus | 61.4 ± 3.8 | 49.1 ± 27.4 | 8.61 ± 0.5 | 5.1 ± 2.8 | 27.6 ± 3.9 | 44.0 ± 31.2 | 1.6 ± 0.1 | 1.6 ± 0.9 | 0.8 ± 0.4 | 0.2 ± 0.2 |
3 | Phragmites australis | 69.4 ± 4.3 | 63.2 ± 6.2 | 8.47 ± 0.9 | 7.6 ± 0.7 | 18.7 ± 4.2 | 26.9 ± 6.7 | 3.2 ± 0.1 | 2.1 ± 0.4 | 0.3 ± 0.2 | 0.2 ± 0.0 |
4 | Typha latifolia | 64.9 ± 5.3 | 63.5 ± 10.9 | 8.38 ± 0.4 | 8.4 ± 0.7 | 24.0 ± 6.2 | 26.3 ± 12.1 | 2.5 ± 0.9 | 1.6 ± 0.5 | 0.2 ± 0.1 | 0.2 ± 0.1 |
Plant Description | C [%] | H [%] | O [%] | N [%] | S [%] | Ash [%] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TW | NC | TW | NC | TW | NC | TW | NC | TW | NC | TW | NC | ||
1 | Iris pseudacorus | 61.9 ± 1.6 | 63.8 ± 1.4 | 4.4 ± 0.2 | 4.7 ± 0.2 | 11.0 ± 5.5 | 21.3 ± 0.6 | 2.7 ± 0.2 | 1.8 ± 0.1 | 1.6 ± 0.2 | 0.2 ± 0.1 | 17.8 ± 3.5 | 11.9 ± 2.4 |
2 | Juncus effusus | 70.4 ± 0.1 | 70.5 ± 0.1 | 4.6 ± 0.2 | 4.5 ± 0.1 | 13.0 ± 0.4 | 13.3 ± 0.6 | 2.2 ± 0.1 | 2.7 ± 0.1 | 0.3 ± 0.1 | 0.7 ± 0.1 | 8.2 ± 1.0 | 11.1 ± 6.2 |
3 | Phragmites australis | 67.7 ± 1.2 | 70.5 ± 1.2 | 4.6 ± 0.1 | 4.7 ± 0.4 | 15.6 ± 1.4 | 21.6 ± 1.3 | 3.6 ± 0.1 | 2.8 ± 0.4 | 0.2 ± 0.0 | 0.4 ± 0.1 | 9.5 ± 0.9 | 7.5 ± 0.1 |
4 | Typha latifolia | 69.0 ± 1.1 | 69.0 ± 1.5 | 4.6 ± 0.2 | 4.9 ± 0.3 | 23.8 ± 1.6 | 24.0 ± 1.4 | 2.3 ± 0.5 | 1.9 ± 0.6 | 0.2 ± 0.1 | 0.2 ± 0.1 | 8.3 ± 0.4 | 7.7 ± 1.8 |
Plant Description | COD (g/L) | TOC (g/L) | TN (g/L) | IC (g/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TW | NC | TW | NC | TW | NC | TW | NC | |||||
1 | Iris pseudacorus | 47.0 ± 4 | ↓ | 69.0 ± 3 | 18.8 ± 0 | ↑ | 17.6 ± 1 | 1.1 ± 0.1 | = | 1.0 ± 0.1 | BLD | BLD |
2 | Juncus effusus | 57.0 ± 2 | ↑ | 49.5 ± 2 | 17.4 ± 1 | ↓ | 19.4 ± 1 | 0.9 ± 0.1 | ↓ | 1.1 ± 0.4 | BLD | BLD |
3 | Phragmites australis | 54,5 ± 2 | ↑ | 48.7 ± 4 | 21.0 ± 2 | ↑ | 18.1 ± 0 | 1.3 ± 0.8 | ↑ | 0.7 ± 0.0 | BLD | BLD |
4 | Typha latifolia | 57.7 ± 2 | = | 55.2 ± 7 | 18.3 ± 1 | ↑ | 17.5 ± 1 | 1.3 ± 0.2 | ↑ | 0.9 ± 0.4 | BLD | BLD |
Feed Biomass | Biocrude | Biochar | Biocrude Energy Yield | Biochar Energy Yield | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Description | HHV (MJ/kg) | HHV (MJ/kg) | HHV (MJ/kg) | ηth | ηth | ||||||||
TW | TW | TW | TW | TW | NC | TW | NC | TW | NC | ||||
1 | Iris pseudacorus | 17.8 ± 0.1 | 17.3 ± 0.1 | 29.7 ± 5.9 | 28.2 ± 14.9 | 25.4 ± 1.2 | 25.3 ± 0.6 | 42.8 ± 10.0 | = | 33.4 ± 7.4 | 17.9 ± 4.4 | ↓ | 32.2 ± 5.3 |
2 | Juncus effusus | 18.3 ± 0.2 | 19.2 ± 0.1 | 28.8 ± 2.2 | 27.8 ± 2.9 | 28.5 ± 0.5 | 28.4 ± 0.2 | 49.7 ± 3.4 | = | 49.1 ± 4.5 | 22.4 ± 1.5 | = | 25.8 ± 2.1 |
3 | Phragmites australis | 18.8 ± 0.1 | 19.7 ± 0.1 | 32.3 ± 1.7 | 28.3 ± 3.0 | 27.2 ± 0.6 | 27.5 ± 1.3 | 44.9 ± 8.6 | = | 41.1 ± 4.8 | 33.8 ± 3.0 | ↑ | 27.0 ± 5.1 |
4 | Typha latifolia | 17.2 ± 0.2 | 19.2 ± 2.3 | 30.1 ± 3.0 | 29.4 ± 5.8 | 26.9 ± 0.7 | 27.1 ± 1.0 | 42.8 ± 10.0 | = | 33.4 ± 7.4 | 29.2 ± 1.0 | = | 27.9 ± 11.5 |
Plant Description | Biocrude | Biochar | AqP 3 | Gas 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TW | NC | TW | NC | TW | NC | TW | NC | ||||
Iris pseudacorus | 40.5 ± 8.5 | = | 44.1 ± 28.5 | 18.2 ± 4.0 | ↓ | 33.9 ± 5.7 | 20.1 ± 0.4 | ↑ | 18.4 ± 0.7 | 21.2 ± 4.7 | 3.5 ± 24.0 |
Volatile C | 10.2 ± 1.7 | 20.2 ± 3.7 | |||||||||
Fixed C | 7.6 ± 2.3 | ↓ | 13.0 ± 2.0 | ||||||||
Juncus effusus | 44.3 ± 2.4 | = | 35.4 ± 18.2 | 23.2 ± 1.3 | = | 27.1 ± 2.2 | 16.7 ± 1.4 | ↓ | 18.3 ± 0.5 | 15.8 ± 4.0 | 19.2 ± 17.6 |
Volatile C | 12.2 ± 1.2 | 13.2 ± 1.3 | |||||||||
Fixed C | 10.7 ± 2.5 | ↓ | 13.6 ± 0.9 | ||||||||
Phragmites australis | 40.2 ± 7.0 | = | 39.1 ± 4.4 | 35.2 ± 3.0 | ↑ | 29.5 ± 5.0 | 19.5 ± 1.7 | ↑ | 16.8 ± 1.3 | 5.1 ± 6.3 | 14.6 ± 0.9 |
Volatile C | 18.3 ± 2.0 | 15.2 ± 2.1 | |||||||||
Fixed C | 16.5 ± 0.9 | ↑ | 13.8 ± 2.8 | ||||||||
Typha latifolia | 49.6 ± 17.4 | = | 53.4 ± 16.6 | 30.8 ± 0.6 | = | 29.7 ± 11.4 | 18.5 ± 0.2 | ↓ | 19.5 ± 5.9 | 1.1 ± 17.1 | 0.6 ± 21.8 |
Volatile C | 15.9 ± 0.5 | 15.1 ± 4.9 | |||||||||
Fixed C | 14.4 ± 0.2 | = | 14.1 ± 6.1 | ||||||||
Mean | 43.4 | 28.5 | 18.5 | 10.1 | |||||||
SD | 13.9 | 6.9 | 2.3 | 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Dominguez, M.A.; Biller, P.; Carvalho, P.N.; Brix, H.; Arias, C.A. Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform. Energies 2021, 14, 8157. https://doi.org/10.3390/en14238157
Rodriguez-Dominguez MA, Biller P, Carvalho PN, Brix H, Arias CA. Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform. Energies. 2021; 14(23):8157. https://doi.org/10.3390/en14238157
Chicago/Turabian StyleRodriguez-Dominguez, Marco Antonio, Patrick Biller, Pedro N. Carvalho, Hans Brix, and Carlos Alberto Arias. 2021. "Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform" Energies 14, no. 23: 8157. https://doi.org/10.3390/en14238157
APA StyleRodriguez-Dominguez, M. A., Biller, P., Carvalho, P. N., Brix, H., & Arias, C. A. (2021). Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform. Energies, 14(23), 8157. https://doi.org/10.3390/en14238157