Evidence from the Changing Carbon Isotopic of Kerogen, Oil, and Gas during Hydrous Pyrolysis from Pinghu Formation, the Xihu Sag, East China Sea Basin
Abstract
:1. Introduction
2. Geological Setting
3. Experimental and Analytical Methods
3.1. Representative Sample Selection
3.2. Simulation Experiments
4. Results
4.1. Pyrolysis Products
4.2. Stable Carbon Isotope Composition
5. Discussion
5.1. Division of Thermal Evolution Stages Based on the Pyrolysis Products
5.2. Changing Carbon Isotopes in Kerogen, Bitumen, Expelled Oil, and Gaseous Hydrocarbons during Thermal Evolution Stages
(generated + residual) + C2+ (generated + residual) + CH4 (generated)
5.3. Genetic Analysis of Methane Based on the Variation Characteristics of Gas Isotope Fractionation
5.4. Ascribing Meaning to the Formation and Exploration of Oil and Gas
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Li, Y.; Zhou, J.; Gu, S. Geochemical characteristics of Tertiary coal-bearing source rocks in Xihu depression, East China Sea basin. Mar. Pet. Geol. 2012, 35, 154–165. [Google Scholar] [CrossRef]
- Ju, C.X.; Dong, C.M.; Zhang, X.G.; Dong, Y.X. Study on the pore structure of low permeability reservoir of the Huagang Formation in Xihu Depression area. Mar. Geol. Front. 2016, 32, 32–40, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.Z.; Xu, Z.X.; Xu, G.S.; Xu, F.H.; Liu, J.S. Coupling relationship between abnormal overpressure and hydrocarbon accumulation in a central overturned structural belt, Xihu Sag, East China Sea Basin. Oil Gas. Geol. 2017, 38, 570–581, (In Chinese with English Abstract). [Google Scholar]
- Hao, L.; Wang, Q.; Tao, H.; Li, X.; Ma, D.; Ji, H. Geochemistry of Oligocene Huagang Formation clastic rocks, Xihu Sag, the East China Sea Shelf Basin: Provenance, source weathering, and tectonic setting. Geol. J. 2017, 53, 397–411. [Google Scholar] [CrossRef]
- Zhu, W.; Zhong, K.; Fu, X.; Chen, C.; Zhang, M.; Gao, S. The formation and evolution of the East China Sea Shelf Basin: A new view. Earth Sci. Rev. 2019, 190, 89–111. [Google Scholar]
- Su, A.; Chen, H.; Chen, X.; He, C.; Liu, H.; Li, Q.; Wang, C. The characteristics of low permeability reservoirs, gas origin, generation and charge in the central and western Xihu depression, East China Sea Basin. J. Nat. Gas. Sci. Eng. 2018, 53, 94–109. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, J.; Wu, X.W. Oil and gas migration periods and accumulation process in central anticlinal zone in the Xihu sag, the East China Sea Basin. Petrol. Geol. Exp. 2006, 28, 30–37, (In Chinese with English Abstract). [Google Scholar]
- Lin, C.Y.; Sun, X.L.; Ma, C.F.; Zhang, X.G.; Zhao, Z.X. Physical property evolution of Huagang formation in central inversion tectonic belt in Xihu depression. J. China Inst. Min. Technol. 2017, 46, 700–709, (In Chinese with English Abstract). [Google Scholar]
- Xie, G.; Shen, Y.; Liu, S.; Hao, W. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu For-mation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate. Mar. Petrol. Geol. 2018, 92, 20–36. [Google Scholar] [CrossRef]
- Cheng, X.; Hou, D.; Zhao, Z.; Chen, X.; Diao, H. Sources of Natural Gases in the Xihu Sag, East China Sea Basin: Insights from Stable Carbon Isotopes and Confined System Pyrolysis. Energy Fuels 2019, 33, 2166–2175. [Google Scholar] [CrossRef]
- Wang, W.; Lin, C.; Zhang, X.; Dong, C.; Ren, L.; Lin, J. Provenance, clastic composition and their impact on diagenesis: A case study of the Oligocene sandstone in the Xihu sag, East China Sea Basin. Mar. Pet. Geol. 2021, 126, 104890. [Google Scholar] [CrossRef]
- Jiang, S.; Li, S.; Chen, X.; Zhang, H.; Wang, G. Simulation of oil-gas migration and accumulation in the East China Sea con-tinental Shelf basin: A case study from the Xihu depression. Geol. J. 2016, 51, 229–243. [Google Scholar] [CrossRef]
- Cheng, X.; Hou, D.J.; Zhao, Z.; Jiang, Y.H.; Zhou, X.H.; Diao, H. Higher Landplant–Derived biomarkers in light oils and condensates from the coal-bearing Eocene Pinghu formation, Xihu Sag, East China sea shelf basin. J. Pet. Geol. 2020, 43, 437–451. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Lei, M.; Li, Q.; Wang, C. Paleo-pressure evolution and its origin in the Pinghu slope belt of the Xihu De-pression, East China Sea Basin. Mar. Petrol. Geol. 2019, 107, 198–213. [Google Scholar] [CrossRef]
- Xu, H.; George, S.C.; Hou, D.; Cao, B.; Chen, X. Petroleum sources in the Xihu Depression, East China Sea: Evidence from stable carbon isotopic compositions of individual n-alkanes and isoprenoids. J. Pet. Sci. Eng. 2020, 190, 107073. [Google Scholar] [CrossRef]
- Tissot, B.P.; Durand, B.; Espitalie, J.; Combaz, A. Influence of mature and diagenesis of organic matter in the formation of petroleum. AAPG Bull. 1974, 58, 499–506. [Google Scholar]
- Lewan, M. Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta 1997, 61, 3691–3723. [Google Scholar] [CrossRef]
- Braun, R.L.; Bumham, A.K. Mathematical model of oil generation, degradation and expulsion. Energy Fuel 1990, 121, 132–146. [Google Scholar] [CrossRef]
- Schimmelmann, A.; Boudou, J.-P.; Lewan, M.D.; Wintsch, R.P. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis. Org. Geochem. 2001, 32, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.J.; Jarvie, D.M.; Zumberge, J.; Henry, M.; Pollastro, R.M. Oil and gas geochemistry and petroleum systems of the Fort Worth Basin. AAPG Bull. 2007, 91, 445–473. [Google Scholar] [CrossRef] [Green Version]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen. Mar. Pet. Geol. 1995, 12, 291–319. [Google Scholar] [CrossRef]
- Pepper, A.S.; Dodd, T.A. Simple kinetic models of petroleum formation. Part II: Oil-gas cracking. Mar. Pet. Geol. 1995, 12, 321–340. [Google Scholar] [CrossRef]
- Rahmani, O.; Aali, J.; Junin, R.; Mohseni, H.; Padmanabhan, E.; Azdarpour, A.; Zarza, S.; Moayyed, M.; Ghazanfari, P. The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf. Acta Diabetol. 2013, 102, 1337–1355. [Google Scholar] [CrossRef]
- Shoieb, M.A.; Gebretsadik, H.T.; Rahmani, O.; Ismail, M.S.; Ibad, S.M. Geochemical characteristics of the Silurian-Devonian Kroh black shales, Peninsular Malaysia: An implication for hydrocarbon exploration. J. Geochem. Explor. 2022, 232, 106891. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Sun, L.; Li, Y.; Su, L.; Li, X.; Xu, H.; Tu, Y. The effect of pressure and hydrocarbon expulsion on hydrocarbon generation during pyrolyzing of continental type-III kerogen source rocks. J. Petrol. Sci. Eng. 2018, 170, 958–966. [Google Scholar] [CrossRef]
- Zheng, D.; Pang, X.; Ma, X.; Li, C.; Zheng, T.; Zhou, L. Hydrocarbon generation and expulsion characteristics of the source rocks in the third member of the Upper Triassic Xujiahe Formation and its effect on conventional and unconventional hydrocarbon resource potential in the Sichuan Basin. Mar. Pet. Geol. 2019, 109, 175–192. [Google Scholar] [CrossRef]
- Behar, F.; Kressmann, S.; Rudkiewicz, J.; Vandenbroucke, M. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Org. Geochem. 1992, 19, 173–189. [Google Scholar] [CrossRef]
- Leif, R.N.; Simoneit, B.R. The role of alkenes produced during hydrous pyrolysis of a shale. Org. Geochem. 2000, 31, 1189–1208. [Google Scholar] [CrossRef]
- Sun, L.; Tuo, J.; Zhang, M.; Wu, C.; Wang, Z.; Zheng, Y. Formation and development of the pore structure in Chang 7 Member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis. Fuel 2015, 158, 549–557. [Google Scholar] [CrossRef]
- Sun, L.; Tuo, J.; Zhang, M.; Wu, C.; Chai, S. Impact of Water Pressure on the Organic Matter Evolution from Hydrous Pyrolysis. Energy Fuels 2019, 33, 6283–6293. [Google Scholar] [CrossRef]
- Castelli, A.; Chiaramonte, M.; Beltrame, P.; Carniti, P.; Del Bianco, A.; Stroppa, F. Thermal degradation of kerogen by hydrous pyrolysis. A kinetic study. Org. Geochem. 1990, 16, 75–82. [Google Scholar] [CrossRef]
- Sun, L.; Tuo, J.; Zhang, M.; Wu, C.; Chai, S. Pore structures and fractal characteristics of nano-pores in shale of Lucaogou formation from Junggar Basin during water pressure-controlled artificial pyrolysis. J. Anal. Appl. Pyrolysis 2019, 140, 404–412. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Zhao, J.-X.; Zhang, T.-W.; Feng, Y.-X.; Wang, C. Natural gas washing induces condensate formation from coal measures in the Pinghu Slope Belt of the Xihu Depression, East China Sea Basin: Insights from fluid inclusion, geochemistry, and rock gold-tube pyrolysis. Mar. Pet. Geol. 2020, 118, 104450. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Li, W.; Pei, L.; Liu, K.; Chen, X.; Zhang, T. Hydrocarbon generation potential of Paleogene coals and organic rich mudstones in Xihu sag, East China Sea Shelf basin, offshore eastern China. J. Pet. Sci. Eng. 2020, 184, 106450. [Google Scholar] [CrossRef]
- Krouse, H.R.; Viau, C.A.; Eliuk, L.S.; Ueda, A.; Halas, S. Chemical and isotopic evidence of thermochemical sulfate reduction by light-hydrocarbon gases in deep carbonate reservoirs. Nature 1988, 333, 415–419. [Google Scholar] [CrossRef]
- Waples, D.W. The kinetics of in-reservoir oil destruction and gas formation: Constraints from experimental and empirical data, and from thermodynamics. Org. Geochem. 2000, 31, 553–575. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, S.; Wang, F.; Cramer, B.; Chen, J.; Sun, Y.; Zhang, B.; Zhao, M. Gas systems in the Kuche Depression of the Tarim Basin: Source rock distributions, generation kinetics and gas accumulation history. Org. Geochem. 2005, 36, 1583–1601. [Google Scholar] [CrossRef]
- Fu, D.; Xu, G.; Ma, L.; Yang, F.; He, D.; Duan, Z.; Ma, Y. Gas generation from coal: Taking Jurassic coal in the Minhe Basin as an example. Int. J. Coal Sci. Technol. 2020, 7, 611–622. [Google Scholar] [CrossRef]
- Prinzhofer, A.A.; Huc, A.Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 1995, 126, 281–290. [Google Scholar] [CrossRef]
- Cramer, B.; Krooss, B.; Littke, R. Modelling isotope fractionation during primary cracking of natural gas: A reaction kinetic approach. Chem. Geol. 1998, 149, 235–250. [Google Scholar] [CrossRef]
- Dai, J.; Zou, C.; Li, J.; Ni, Y.; Hu, G.; Zhang, X.; Liu, Q.; Yang, C.; Hu, A. Carbon isotopes of Middle–Lower Jurassic coal-derived alkane gases from the major basins of northwestern China. Int. J. Coal Geol. 2009, 80, 124–134. [Google Scholar] [CrossRef]
- Takahashi, K.U.; Suzuki, N.; Saito, H. Compositional and isotopic changes in expelled and residual gases during anhydrous closed-system pyrolysis of hydrogen-rich Eocene subbituminous coal. Int. J. Coal Geol. 2014, 127, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, Z.; Sun, L.; Li, Y.; Zhang, M.; Ji, L. Stable isotope reversal and evolution of gas during the hydrous pyrolysis of continental kerogen in source rocks under supercritical conditions. Int. J. Coal Geol. 2019, 205, 105–114. [Google Scholar] [CrossRef]
- Sun, L.; Fu, D.; Chai, S.; Yang, W.; Zhou, K.; Li, W. Fractal characteristics and significances of the nanopores in oil shales during hydrous pyrolysis. J. Pet. Explor. Prod. Technol. 2020, 10, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.J.; Qin, J.Z.; He, S.; Li, G.Y.; Li, Z.M. Preliminary study of formation porosity thermocompression simulation ex-periment of hydrocarbon generation and expulsion. Pet. Geol. Exp. 2009, 31, 296–302. (In Chinese) [Google Scholar]
- Zheng, L.; Ma, Z.; Wang, Q.; Li, Z. Quantitative evaluation of hydrocarbon yielding potential of source rock: Application of pyrolysis in finite space. Petrol. Geol. Exper. 2011, 33, 452–459. [Google Scholar]
- Qin, J.; Shen, B.; Tao, G.; Teng, E.; Yang, Y.; Zheng, L.; Fu, X. Hydrocarbon- forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks. Petrol. Geol. Exper. 2014, 36, 465–472. [Google Scholar]
- Ma, Z.; Zheng, L.; Xu, X.; Bao, F.; Yu, X. Thermal simulation experiment of organic matter-rich shale and implication for organic pore formation and evolution. Pet. Res. 2017, 2, 347–354. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Matuszewski, B. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC–MS bioanalysis. J. Chromatogr. B 2006, 830, 293–300. [Google Scholar] [CrossRef]
- Taylor, R.; Duss, M. A paper about the slope of the equilibrium line. Chem. Eng. Res. Des. 2019, 148, 429–439. [Google Scholar] [CrossRef]
- Kinnon, E.C.P.; Golding, S.D.; Boreham, C.J.; Baublys, K.A.; Esterle, J.S. Stable isotope and water quality analysis of coalbed methane production waters and gases from the Bowen Basin, Australia. Int. J. Coal Geol. 2010, 82, 219–231. [Google Scholar] [CrossRef]
- Papendick, S.L.; Downs, K.R.; Vo, K.D.; Hamilton, S.K.; Dawson, G.; Golding, S.D.; Gilcrease, P.C. Biogenic methane potential for Surat Basin, Queensland coal seams. Int. J. Coal Geol. 2011, 88, 123–134. [Google Scholar] [CrossRef]
- Golding, S.D.; Boreham, C.J.; Esterle, J.S. Stable isotope geochemistry of coal bed and shale gas and related production waters: A review. Int. J. Coal Geol. 2013, 120, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Mahlstedt, N.; Horsfield, B. Metagenetic methane generation in gas shales I. Screening protocols using immature samples. Mar. Pet. Geol. 2012, 31, 27–42. [Google Scholar] [CrossRef]
- Hill, R.J.; Tang, Y.; Kaplan, I.R. Insights into oil cracking based on laboratory experiments. Org. Geochem. 2003, 34, 1651–1672. [Google Scholar] [CrossRef]
- Behar, F.; Lorant, F.; Lewan, M. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite. Org. Geochem. 2008, 39, 1–22. [Google Scholar] [CrossRef]
- Cao, Q.; Xu, X.; Zeng, G.; Zhou, X.; Jiang, P.; Wang, L. Geochemical characteristicsof natural gases and crude oils in the Xihu Sag of East China Sea Basin. Petrol. Geol. Exp. 2015, 37, 627–632. [Google Scholar]
Temperature (°C) | Ro | Kerogen | Expelled Oil | Bitumen | CH4 | C2H6 | C3H8 | iC4H10 | nC4H10 | iC5H12 | nC5H12 |
---|---|---|---|---|---|---|---|---|---|---|---|
(%) | δ13CPDB (‰) | ||||||||||
Unheated | 0.75 | −26 | −27.6 | ||||||||
335 | 0.82 | −25.5 | −27.5 | −26.3 | −39.7 | −29.8 | −29.3 | −28.5 | −28.9 | −28.8 | −28.8 |
360 | 1.09 | −25.3 | −27.5 | −26.2 | −39.1 | −28.3 | −27.9 | −28.6 | −28.2 | −27.2 | −27.6 |
400 | 1.65 | −25.4 | −27.4 | −26.5 | −37.1 | −29.0 | −29.5 | −28.7 | −28.7 | −28.6 | −27.9 |
455 | 1.93 | −26.1 | −27.3 | −26.1 | −33.1 | −27.7 | −24.9 | −22.9 | −17.1 | ||
480 | 2.30 | −25.6 | −26.9 | −25.8 | −32.2 | −27.5 | −20.7 | ||||
525 | 2.56 | −25.4 | −27.2 | −27.0 | −30.3 | −24.3 | |||||
575 | 3.24 | −25.2 | −27.0 | −27.5 | −30.0 | −19.2 |
The Range of Ts (%) | The Range of Ro (%) | Stage | Linear Slope | Linear Slope of Gaseous Hydrocarbons (kgs) | Linear Slope of Expelled Oil (keo) | Linear Slope of Residual Bitumen (krb) |
---|---|---|---|---|---|---|
335–360 | 0.82–1.09 | Lower maturity stage | k1 | 14.52 | 101.48 | −2.85 |
360–400 | 1.09–1.65 | Maturity stage | k2 | 39.39 | 6.07 | −20.20 |
400–480 | 1.65–2.30 | Higher maturity stage | k3 | 82.29 | 0.14 | −3.31 |
480–575 | 2.30–3.24 | Post-maturity stage | k4 | 172.89 | −0.03 | −3.28 |
Simulated Temperature (°C) | δ13C2-δ13C1 | δ13C3-δ13C2 | δ13Ci4-δ13C3 | δ13Cn4-δ13C3 | δ13Ci5-δ13Ci4 | δ13Cn5-δ13Cn4 |
---|---|---|---|---|---|---|
335 | 9.9 | 0.5 | 0.8 | 0.4 | −0.3 | 0.1 |
360 | 10.8 | 0.4 | −0.7 | −0.3 | 1.4 | 0.6 |
400 | 8.1 | −0.5 | 0.8 | 0.8 | 0.1 | 0.8 |
455 | 5.4 | 2.8 | 2.0 | 7.8 | ||
480 | 4.7 | 6.8 | ||||
525 | 6.0 | |||||
575 | 10.8 |
Isotope Variation | Δδ13CK-K (‰) | Δδ13CK-C (‰) | Δδ13CK-B (‰) | Δδ13CB-O (‰) | Δδ13CO-C (‰) | Δδ13CB-C (‰) |
---|---|---|---|---|---|---|
335 °C | 0.5 | −13.7 | −0.3 | −1.2 | −12.2 | −13.4 |
360 °C | 0.7 | −13.1 | −0.2 | −1.3 | −11.6 | −12.9 |
400 °C | 0.6 | −11.1 | −0.5 | −0.9 | −9.7 | −10.6 |
455 °C | −0.1 | −7.1 | −0.1 | −1.2 | −5.8 | −7 |
480 °C | 0.4 | −6.2 | 0.2 | −1.1 | −5.3 | −6.4 |
525 °C | 0.6 | −4.3 | −1 | −0.2 | −3.1 | −3.3 |
575 °C | 0.8 | −4 | −1.5 | 0.5 | −3 | −2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Ye, J.; Lu, Y.; Tian, Y.; Liu, J.; Xu, C.; Yu, H.; Sun, L. Evidence from the Changing Carbon Isotopic of Kerogen, Oil, and Gas during Hydrous Pyrolysis from Pinghu Formation, the Xihu Sag, East China Sea Basin. Energies 2021, 14, 8317. https://doi.org/10.3390/en14248317
Cao Q, Ye J, Lu Y, Tian Y, Liu J, Xu C, Yu H, Sun L. Evidence from the Changing Carbon Isotopic of Kerogen, Oil, and Gas during Hydrous Pyrolysis from Pinghu Formation, the Xihu Sag, East China Sea Basin. Energies. 2021; 14(24):8317. https://doi.org/10.3390/en14248317
Chicago/Turabian StyleCao, Qiang, Jiaren Ye, Yongchao Lu, Yang Tian, Jinshui Liu, Chenjie Xu, Hanwen Yu, and Lina Sun. 2021. "Evidence from the Changing Carbon Isotopic of Kerogen, Oil, and Gas during Hydrous Pyrolysis from Pinghu Formation, the Xihu Sag, East China Sea Basin" Energies 14, no. 24: 8317. https://doi.org/10.3390/en14248317
APA StyleCao, Q., Ye, J., Lu, Y., Tian, Y., Liu, J., Xu, C., Yu, H., & Sun, L. (2021). Evidence from the Changing Carbon Isotopic of Kerogen, Oil, and Gas during Hydrous Pyrolysis from Pinghu Formation, the Xihu Sag, East China Sea Basin. Energies, 14(24), 8317. https://doi.org/10.3390/en14248317