Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO3-NaNO3-KNO3 for Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Base Salt and Nanofluids
2.2. Characterization Techniques
3. Results and Discussion
3.1. Melting Temperature and Enthalpy of Fusion
3.2. Enhanced Specific Heat Capacity
3.3. Density
3.4. Viscosity
3.5. Enhanced Thermal Diffusivity
3.6. Enhanced Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Wang, Y.; Ding, J. Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver. Energies 2020, 13, 1001. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; He, Y.; Lei, X. Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux. Energies 2019, 12, 1432. [Google Scholar] [CrossRef] [Green Version]
- Dudda, B.; Shin, D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int. J. Therm. Sci. 2013, 69, 37–42. [Google Scholar] [CrossRef]
- Ho, M.X.; Pan, C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity. Int. J. Heat Mass Transf. 2014, 70, 174–184. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhou, L.P.; Peng, X.F. Surface and Size Effects on the Specific Heat Capacity of Nanoparticles. Int. J. Thermophys. 2006, 27, 139–151. [Google Scholar] [CrossRef]
- Qiao, G.; Cao, H.; Jiang, F.; She, X.; Cong, L.; Liu, Q.; Lei, X.; Alexiadis, A.; Ding, Y. Experimental Study of Thermo-Physical Characteristics of Molten Nitrate Salts Based Nanof luids for Thermal Energy Storage. ES Energy Environ. 2019, 4, 48–58. [Google Scholar] [CrossRef]
- Wei, X.; Yin, Y.; Qin, B.; Wang, W.; Ding, J.; Lu, J. Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity. Renew. Energy 2020, 145, 2435–2444. [Google Scholar] [CrossRef]
- Nithiyanantham, U.; González-Fernández, L.; Grosu, Y.; Zaki, A.; Igartua, J.M.; Faik, A. Shape effect of Al2O3 nanoparticles on the thermophysical properties and viscosity of molten salt nanofluids for TES application at CSP plants. Appl. Therm. Eng. 2020, 169, 114942. [Google Scholar] [CrossRef]
- Leal, L.G. On the Effective Conductivity of a Dilute Suspension of Spherical Drops in the Limit of Low Particle Peclet Number. Chem. Eng. Commun. 2007, 1, 21–31. [Google Scholar] [CrossRef]
- Kasaeian, A.; Eshghi, A.T.; Sameti, M. A review on the applications of nanofluids in solar energy systems. Renew. Sustain. Energy Rev. 2015, 43, 584–598. [Google Scholar] [CrossRef]
- Zhao, B.; Ding, J.; Wei, X.; Liu, B.; Lu, J.; Wang, W. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system. CIESC J. 2019, 70, 2083–2091. [Google Scholar]
- Coscia, K.; Nelle, S.; Elliott, T.; Mohapatra, S.; Oztekin, A.; Neti, S. Thermophysical Properties of LiNO3–NaNO3–KNO3 Mixtures for Use in Concentrated Solar Power. J. Sol. Energy Eng. 2013, 135, 034506. [Google Scholar] [CrossRef]
- Wang, T.; Viswanathan, S.; Mantha, D.; Reddy, R.G. Thermal conductivity of the ternary eutectic LiNO3–NaNO3–KNO3 salt mixture in the solid state using a simple inverse method. Sol. Energy Mater. Sol. Cells 2012, 102, 201–207. [Google Scholar] [CrossRef]
- Seo, J.; Shin, D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3–NaNO3–KNO3) salt eutectic for thermal energy storage. Appl. Therm. Eng. 2016, 102, 144–148. [Google Scholar] [CrossRef]
- Peng, Q.; Ding, J.; Wei, X.; Yang, J.; Yang, X. The preparation and properties of multi-component molten salts. Appl. Energy 2010, 87, 2812–2817. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Lian, J.S.; Jiang, Q. Modeling of the Melting Point, Debye Temperature, Thermal Expansion Coefficient, and the Specific Heat of Nanostructured Materials. J. Phys. Chem. C 2009, 113, 16896–16900. [Google Scholar] [CrossRef]
- Shin, D.; Tiznobaik, H.; Banerjee, D. Specific heat mechanism of molten salt nanofluids. Appl. Phys. Lett. 2014, 104, 121914. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Zhang, Z.; Wen, D. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Convers. Manag. 2017, 142, 366–373. [Google Scholar] [CrossRef]
- Andreu-Cabedo, P.; Mondragon, R.; Hernandez, L.; Martinez-Cuenca, R.; Cabedo, L.; Julia, J.E. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Res. Lett. 2014, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Sánchez, B.; Nieto-Maestre, J.; Veca, E.; Liberatore, R.; Sau, S.; Navarro, H.; Ding, Y.; Navarrete, N.; Juliá, J.E.; Fernández, Á.G.; et al. Rheology of Solar-Salt based nanofluids for concentrated solar power. Influence of the salt purity, nanoparticle concentration, temperature and rheometer geometry. Sol. Energy Mater. Sol. Cells 2018, 176, 357–373. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. A new thermal conductivity model for nanofluids. J. Nanoparticle Res. 2005, 6, 577–588. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004, 84, 4316–4318. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zhang, Z.; Wang, W.; Ding, J. Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO3-NaNO3-KNO3 for Thermal Energy Storage. Energies 2021, 14, 677. https://doi.org/10.3390/en14030677
Lu J, Zhang Z, Wang W, Ding J. Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO3-NaNO3-KNO3 for Thermal Energy Storage. Energies. 2021; 14(3):677. https://doi.org/10.3390/en14030677
Chicago/Turabian StyleLu, Jianfeng, Zhan Zhang, Weilong Wang, and Jing Ding. 2021. "Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO3-NaNO3-KNO3 for Thermal Energy Storage" Energies 14, no. 3: 677. https://doi.org/10.3390/en14030677
APA StyleLu, J., Zhang, Z., Wang, W., & Ding, J. (2021). Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO3-NaNO3-KNO3 for Thermal Energy Storage. Energies, 14(3), 677. https://doi.org/10.3390/en14030677