Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Methodology
2.2.1. Proximate and Ultimate Analysis
2.2.2. Pelletization Process and Pellets’ Quality Determination
2.2.3. Combustion and Exhaust Analysis
2.2.4. Ash Characterization
- -
- softening point (°C)—the temperature at which the first change in the shape or appearance of the shaped piece occurs,
- -
- melting point (°C)—the temperature of the formation of semicircles equal to 2/3 of a cylindrical or cubic shape,
- -
- pour point (°C)—the temperature at which the ash sample flows into a layer 1/3 of the hemisphere height.
3. Results and Discussion
3.1. Proximate and Ultimate Analysis
3.2. Pellets Quality
3.3. Combustion and Exhaust Composition
3.4. Ash Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
CD | cow dung |
MC | moisture content (%) |
VM | volatile matter content (%) |
AC | ash content (%) |
FC | fixed carbon content (%) |
LHV | lower heating value (MJ·kg−1) |
HHV | higher heating value (MJ·kg−1) |
Zs1 | the actual chemical content in the exhaust gas (%, mg·Nm−3) |
Zs2 | content of the chemical compounds in the exhaust gas for a given oxygen content (%, mg·Nm−3) |
O2’ | set value of the oxygen content in the exhaust (%) |
O2” | actual oxygen content in the exhaust gas (%) |
λ | excess air factor (-) |
wt.% | weight percent |
a.r. | as received |
d.b. | dry basis |
n.d. | no data |
mg | pellet’s mass (kg) |
dg | pellet’s diameter (m) |
hg | pellet’s high (m) |
References
- Caputo, A.C.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass Bioenerg. 2005, 28, 35–51. [Google Scholar] [CrossRef]
- Duda-Kękuś, A. A method for influence assessment of biomass utilization in power industry on macroregional sustainable development. In Interdisciplinary Approach to Sustainable Development; Institut Superieur Industriel Pierrard HEC du Luxembourg: Virton, Belgium, 2007; pp. 204–212. [Google Scholar]
- Kowalczyk-Juśko, A.; Pochwatka, P.; Zaborowicz, M.; Czekała, W.; Mazurkiewicz, J.; Janczak, D.M.; Marczuk, A.; Dach, J. Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy 2020, 202, 117729. [Google Scholar] [CrossRef]
- Junginger, M.; Faaij, A.; Broek, R.; Koopmans, A.; Hulscher, W. Fuel supply strategies for large-scale bio-energy projects in developing countries. Electricity generation from agricultural and forest residues in Northeastern Thailand. Biomass Bioenerg. 2001, 21, 259–275. [Google Scholar] [CrossRef]
- Kloc, J.; Karcz, J. Properties of biomass used in professional power engineering. Inż. Apar. Chem 2013, 5, 435–436. [Google Scholar]
- Obidziński, S.; Joka, M.; Fijoł, O. Two-stage agglomeration of fine-grained herbal nettle waste. Int. Agrophys. 2017, 31, 515–523. [Google Scholar] [CrossRef]
- Dołżyńska, M.; Obidziński, S.; Piekut, J.; Yildiz, G. The utilization of plum stones for pellet production and investigation of post-combustion flue gas emissions. Energies 2020, 13, 5107. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.; Li, H.; Xu, Y. Effect of micro biological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass Bioenerg. 2011, 35, 3433–3439. [Google Scholar] [CrossRef]
- Klop, G.; Velthof, G.Ł.; van Groenigen, J.W. Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer. Soil Use Manag. 2012, 28, 468–477. [Google Scholar] [CrossRef]
- Kozłowski, K.; Dach, J.; Lewicki, A.; Malińska, K.; doCarmo, I.E.P.; Czekała, W. Potential of biogas production from animal manure in Poland. Arch. Environ. Prot. 2019, 45, 99–108. [Google Scholar] [CrossRef]
- Kempel, T. The Utah Manure-to-Energy Project; Swine News-North Carolina Cooperative Extension Service: Utah, NC, USA, 2003; Volume 26. [Google Scholar]
- Wang, X.; Huang, D.; Zhang, Y.; Chen, W.; Wang, C.; Yang, X.; Luo, W. Dynamic changes of CH4 and CO2 emission from grazing sheep urine and dung patches in typical steppe. Atmos. Environ. 2013, 79, 576–581. [Google Scholar] [CrossRef]
- Zhu, Y.; Merbold, L.; Pelster, D.; Diaz-Pines, E.; Wanyama, G.N.; Butterbach-Bahl, K. Effect of dung quantity and quality on greenhouse gas fluxes from tropical pastures in Kenya. Glob. Biogeochem. Cycles 2018, 32, 1589–1604. [Google Scholar] [CrossRef]
- Kumar, J.S.; Shende, D. Combustion of cow dung in fluidized state for household purposes. In Proceedings of the National Conference on Advances in Energy Research, IIT Bombay, Pawai, Mumbai, India, 4–5 December 2006. [Google Scholar]
- Bhattacharjya, D.; Yu, J.-S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 2014, 262, 224–232. [Google Scholar] [CrossRef]
- Czekała, W.; Bartnikowska, S.; Dach, J.; Janczak, D.; Smurzyńska, A.; Kozłowski, K.; Bugała, A.; Lewicki, A.; Typańska, D.; Mazurkiewicz, J. The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy 2018, 159, 1118–1122. [Google Scholar] [CrossRef]
- Gautam, S.; Edwards, R.; Yadav, A.; Weltman, R.; Pillarsetti, A.; Arora, N.K.; Smith, K.R. Probe-based measurements of moisture in dung fuel for emissions measurements. Energy Sustain. Dev. 2016, 35, 1–6. [Google Scholar] [CrossRef]
- Tanmoy, K.; Indira, S.; Ranjit, K.; Sampa, D.; Boruah, R.K.; Amrit, K.; Dilip, K. Composting of cow dung and crop residues using termite mounds as bulking agent. Bioresour. Technol. 2014, 169, 731–741. [Google Scholar] [CrossRef]
- Sfez, S.; de Meester, S.; Dewulf, J. Co-digestion of rice straw and cow dung to supply cooking fuel and fertilizers in rural India: Impact on human health, resource flows and climate change. Sci. Total Environ. 2017, 609, 1600–1615. [Google Scholar] [CrossRef]
- Alfa, I.M.; Dahunsi, S.O.; Iorhemen, O.T.; Okafor, C.C.; Ajayi, S.A. Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemongrass. Bioresour. Technol. 2014, 157, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Zahid, G.R.; Surindra, S. Anaerobic digestion of activated sludge, anaerobic granular sludge and cow dung with food waste for enhanced methane production. J. Clean. Prod. 2017, 164, 557–566. [Google Scholar] [CrossRef]
- Kartikey, G.; Kamal, A.; Deepanshu, R. Current status of cow dung as a bioresource for sustainable development. Bioresour. Bioprocess. 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nayyeri, M.A.; Kianmehr, M.H.; Arabhosseini, A.; Hassan-Beygi, S.R. Thermal properties of dairy cattle manure. Int. Agrophys. 2009, 23, 359–366. [Google Scholar]
- Sutitarnnontr, P.; Hu, E.; Tuller, M.; Jones, S.B. Physical and Thermal Characteristics of Dairy Cattle Manure. J. Environ. Qual 2014, 43, 2115–2129. [Google Scholar] [CrossRef] [PubMed]
- Lal, K.; Mani, U.; Pandey, R.; Singh, N.; Singh, A.K.; Patel, D.K.; Mahendra, P.S.; Murthy, R.C. Multiple approaches to evaluate the toxicity of the biomass fuel cow dung (kanda) smoke. Ecotoxicol. Environ. Saf. 2011, 74, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Sharma, D.; Kumar, P.; Jain, S. Assessment of clean cooking technologies under different fuel use conditions in rural areas of Northern India. Chemosphere 2020, 127315. [Google Scholar] [CrossRef]
- Siddique, M.; Soomro, S.A.; Aftab, A.; Qaisrani, Z.N.; Jatoi, A.S.; Asadullah, K.G.; Kakar, E. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis. Pak. J. Anal. Environ. Chem. 2016, 17, 18–22. [Google Scholar] [CrossRef]
- Birzer, C.; Medwell, P.; MacFarlane, G.; Read, M.; Wilkey, J.; Higgins, M.; West, T. A Biochar-producing, dung-burning cook stove for humanitarian purposes. Procedia Eng. 2014, 78, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, M.; Asghar, A.; Ramzan, N.; Sajjadi, B.; Chen, W. Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass Bioenerg. 2019, 122, 1–16. [Google Scholar] [CrossRef]
- Meng, Q.; Li, J.; Chun, T.; He, X.; Wei, R.; Wang, P.; Long, H. Effects of treated cow dung addition on the strength of carbon-bearing iron ore pellets. Adv. Mater. Sci. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shuma, R.; Madyira, D.M. Emissions comparison of loose biomass briquettes with cow dung and cactus binders. Procedia Manuf. 2019, 35, 130–136. [Google Scholar] [CrossRef]
- Vankát, A.; Krepl, V.; Kára, J. Animal dung as a source of energy in remote areas of Indian Himalayas. Agric. Trop. Subtrop. 2010, 43, 140–142. [Google Scholar]
- Wang, J.; Ma, M.; Bai, Y.; Su, W.; Song, X.; Yu, G. Effect of CaO additive onco-pyrolysis behavior of bituminous coal and cow dung. Fuel 2020, 265, 116911. [Google Scholar] [CrossRef]
- Technical Procedure IChPWQ/LP/05/A:2011 from 16 02 2011. Biomass for Energy Purposes. Determination of the Moisture Content, Zabrze, Poland. 2011. Available online: http://www.ichpw.pl/en/ (accessed on 1 April 2019).
- Technical Procedure IChPWQ/LP/27/A:2011 from 16 02 2011. Biomass for energy purposes. Determination of Moisture, Volatile Matter and Ash Content with an Automatic Analyzer, Zabrze, Poland. 2011. Available online: http://www.ichpw.pl/en/ (accessed on 1 April 2019).
- International Organization for Standardization. Solid Biofuels—Determination of Volatile Matter Content; PN-ENISO18123:2016; ISO: Geneve, Switzerland, 2016. [Google Scholar]
- Technical Procedure IChPWQ/LP/09/B:2011 from 11 10 2011. Biomass for Energy Purposes. Determination of Carbon, Hydrogen and Nitrogen Content with Automatic Analyzers, Zabrze, Poland. 2011. Available online: http://www.ichpw.pl/en/ (accessed on 1 April 2019).
- Technical Procedure IChPWQ/LP/08/A:2011 from 16 02 2011. Biomass for Energy Purposes. Determination of Total Sulfur with Automatic Analyzers with Infrared Detection, Zabrze, Poland. 2011. Available online: http://www.ichpw.pl/en/ (accessed on 1 April 2019).
- Technical Procedure IChPWQ/LP/12/A:2011 from 16 02 2011. Biomass for Energy Purposes. Determination of the Heat of Combustion and Calculation of the Calorific Value, Zabrze, Poland. 2011. Available online: http://www.ichpw.pl/en/ (accessed on 1 April 2019).
- Waste Management & Recycling Equipment Manufacturing Protechnika. Available online: http://protechnika.com (accessed on 22 February 2021).
- Obidziński, S.; Joka, M.; Bieńczak, A.; Jadwisieńczak, K. Tests of the process of post-production onion waste pelleting. J. Agric. Eng. 2017, 62, 89–92. [Google Scholar]
- International Organization for Standardization. Solid Biofuels—Determining the Length and Diameter of Pellets; PN-ENISO17828:2016-02; ISO: Geneve, Switzerland, 2016. [Google Scholar]
- International Organization for Standardization. Solid Biofuels—Determination of the Mechanical Strength of Pellets and Briquettes—Part 1: Pellets; PN-ENISO17831-1:2016-02; ISO: Geneve, Switzerland, 2016. [Google Scholar]
- Dołżyńska, M.; Obidziński, S. Effect of used cooking oil additive on sewage slusge combustion. Przem. Chem. 2017, 96, 1000–1003. [Google Scholar] [CrossRef]
- Dołżyńska, M.; Obidziński, S.; Simiński, P. Evaluation of granulates from hemp sowing waste as a biofuel. Przem. Chem. 2018, 97, 686–688. [Google Scholar] [CrossRef]
- Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for the Setting of Eco design Requirements for Energy-Related Products. Available online: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX%3A32009L0125 (accessed on 30 December 2020).
- Polski Komitet Normalizacyjny. Cement Test Methods—Part 2: Chemical Analysis of Cement; PN-EN196-2:2013-11; Polski Komitet Normalizacyjny: Warsaw, Poland, 2013. [Google Scholar]
- Polski Komitet Normalizacyjny. Solid Fuels—Determination of the Characteristic Ash Melting Points; PN-G-04535:1982; EN196-2:2013-11; Polski Komitet Normalizacyjny: Warsaw, Poland, 1982. [Google Scholar]
- Dornburg, V.; Faaij, A.P.C. Cost and CO2—Emission reduction of biomass cascading: Methodological aspects and case study of SRF Poplar. Biomass Bioenerg. 2001, 21, 27–41. [Google Scholar] [CrossRef]
- Łaska, G.; Szymajda, A. The use of cow dung biomass for energy purposes. In Biodiversity—From Cell to Ecosystem; Łaska, G., Ed.; Polish Botanical Society: Warszawa, Poland, 2017; pp. 197–208. [Google Scholar]
- Piechocki, J. Analysis of the possibility of using biomass of agricultural origin in the energy balance of the Warmian-Masurian Voivodeship. Inż. Rol. 2011, 1, 181–187. [Google Scholar]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sust. Energ. Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Barnthaler, G. Chemical properties of solid biofuels—Significance and impact. Biomass Bioenerg. 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Di Fraia, S.; Fabozzi, S.; Macaluso, A.; Vanoli, L. Energy potential of residual biomass from agro-industry in a Mediterranean region of southern Italy (Campania). J. Clean. Prod. 2020, 124085. [Google Scholar] [CrossRef]
- Szymajda, A.; Łaska, G. The effect of moisture and ash on the calorific value of cow dung biomass. Proceedings 2019, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Gigler, J.K.; Loon, W.K.P.; Sonneveld, C. Experiment and modeling of parameters influencing natural wind drying of willow chunks. Biomass Bioenerg. 2004, 26, 507–514. [Google Scholar] [CrossRef]
- Gigler, J.K.; Loon, W.K.P.; Vissers, M.M.; Bot, G.P.A. Forced convective drying of willow chips. Biomass Bioenerg. 2000, 19, 259–270. [Google Scholar] [CrossRef]
- Parsamehr, M.; Nilsson, N. Heat Generation by Cow Dung Incineration in the North of Iran. Master’s Thesis, Mid Sweden University, Östersund, Sweden, 2013. [Google Scholar]
- Głodek, E. Combustion and Co-Combustion of Biomass. Guide; Institute of Ceramics and Building Materials: Opole, Poland, 2010. [Google Scholar]
- Tun, M.M.; Juchelkova, D. Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environ. Eng. Res 2018, 24, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Gang, L.; Yong, Y.; Cornwell, S.; Whitehouse, M.; Riley, G. Impact of co-firing coal and biomass on flame characteristics and stability. Fuel 2008, 87, 1133–1140. [Google Scholar] [CrossRef]
- Mółka, J.; Łapczyńska-Kordon, B. Energy properties of selected biomass species. Inż. Rol. 2011, 15, 141–147. [Google Scholar]
- Nunes, L.J.R.; Matias, J.C.O.; Catalao, J.P.S. Wood pellets as a sustainable energy alternative in Portugal. Renew. Energy 2016, 85, 1011–1016. [Google Scholar] [CrossRef]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical characteristics of biomass ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, A.C.; Gudmundsson, M. Starch: Physicochemical and Functional Aspects. Carbohydrates in Food; Marcel Dekker, Inc.: New York, NY, USA, 1996; pp. 431–503. [Google Scholar]
- Hansen, U.E.; Nygaard, I. Sustainable energy transitions in emerging economies: The formation of a palm oil biomass waste-to-energy in Malaysia 1990–2011. Energy Policy 2014, 66, 666–676. [Google Scholar] [CrossRef]
- Zając, G.; Maj, G.; Szyszlak-Bargłowicz, J.; Słowik, T.; Krzaczek, P.; Gołębiowski, W.; Dębowski, M. Evaluation of the properties and usefulness of ashes from the corn grain drying process biomass. Energies 2020, 13, 1290. [Google Scholar] [CrossRef] [Green Version]
- Reumerman, P.; van den Berg, D. Reduction of Fouling, Slagging and Corrosion Characteristics of Miscanthus. (The BIOMIS Project) Report. Available online: http://cordis.europa.eu/project/rcn/48287_en.html (accessed on 6 January 2021).
- Wisz, J.; Matwiejew, A. Biomass—Research in the laboratory in terms of suitability for energy combustion. Energetyka 2005, 9, 631–636. [Google Scholar]
- Vivek, C.P.; Rochak, P.V.; Suresh, P.S.; Kiran, K.R.R. Comparison study on fuel briquettes made of eco-friendly materials for alternate source of energy. IOP Conf. Ser. Mater. Sci. Eng. 2019, 577, 012183. [Google Scholar] [CrossRef]
- International Organization for Standardization. Solid Biofuels—Fuel Specifications and Grades—Part2; ENISO17225-2A1; Wood Pellet Grades ISO: Geneve, Switzerland, 2014. [Google Scholar]
- Santana, D.A.R.; Scatolino, M.V.; Lima, M.D.R.; de Oliveira Barros, U., Jr.; Garcia, D.P.; Andrade, C.R.; de Cassia Oliveira Carneiro, A.; Trugilho, P.F.; de Paula Protásio, T. Pelletizing of lignocellulosic wastes as an environmentally friendly solution for the energy supply: Insights on the properties of pellets from Brazilian biomasses. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Gilvari, H.; de Jong, W.; Schott, D.L. Quality parameters relevant for densification of bio-materials: Measuring methods and affecting factors—A review. Biomass Bioenerg. 2019, 120, 117–134. [Google Scholar] [CrossRef]
- Reichel, H.H.; Schirmer, U. Waste incineration plants in the FRG: Construction, materials, investigation on cases of corrosion. Mater. Corros. 1989, 40, 135–141. [Google Scholar] [CrossRef]
- Obernberger, I. Physical Characteristics and Chemical Composition of Solid Biomass Fuels. In Script for the Lecture Thermochemical Biomass Conversion; Eindhofen University of Technology, Department for Mechanical Engineering, Section Process Technology: Eindhofen, The Netherlands, 2003. [Google Scholar]
- Glarborg, P.; Miller, J.A.; Ruscic, B.; Klippenstein, S.J. Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 2018, 67, 31–68. [Google Scholar] [CrossRef] [Green Version]
- Rokni, E.; Ren, X.; Panahi, A.; Levendis, Y.A. Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel 2018, 211, 363–374. [Google Scholar] [CrossRef]
- Song, A.; Zha, F.; Tang, X.; Chang, Y. Effect of the additives on combustion characteristics and desulfurization performance of cow dung briquette. Chem. Eng. Process. 2019, 107585. [Google Scholar] [CrossRef]
- Park, D.; Barabad, M.L.; Lee, G.; Kwon, S.-B.; Cho, Y.; Lee, D.; Lee, D.; Lee, K. Emission characteristics of particulate matter and volatile organic compounds in cow dung combustion. Environ. Sci. Technol. 2013, 47, 12952–12957. [Google Scholar] [CrossRef]
- Forsberg, G. Biomass energy transport analysis of bioenergy transport chains using life cycle inventory method. Biomass Bioenerg. 2000, 19, 17–30. [Google Scholar] [CrossRef]
- Jagustyn, B.; Bątorek-Giesa, N.; Wilk, B. Assessment of biomass properties used for energy purposes. Chemik 2011, 65, 557–563. [Google Scholar]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.-C.; Li, W.-Y.; Feng, J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Hui, S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related counter measures. Prog. Energy Combust. Sci. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- Tanvir, A.; Baiqian, D.; Wu, X.; Hoadley, A.; Zhang, L. A critical review of ash slagging mechanisms and viscosity measurement for low-rank coal and bio-slags. Front. Energy 2020. [Google Scholar] [CrossRef]
- Mediavilla, I.; Fernández, M.J.; Barro, R.; Borjabad, E.; Bados, R.; Esteban, L.S. Effect of mechanical harvesting on the chemical composition and combustion behaviour of shrub biomass. Energy 2020, 204, 117928. [Google Scholar] [CrossRef]
- Szatyłowicz, E.; Kraskowska, M. Assessment of heavy metals leaching from fly ashes as an indicator of their agricultural use. Desalin. Water Treat. 2020, 199, 288–296. [Google Scholar] [CrossRef]
Determined Parameter | Method/Device | Reference |
---|---|---|
Total moisture content | Weight loss method/Laboratory type drier TC 100 SalvisLab | [34] |
Analytical moisture content | Thermogravimetric method/ TGA LECO 701 | [35] |
Ash content | ||
Volatile matter | Thermogravimetric method/Netzsch TG 209 Libra F1 | [36] |
Fixed carbon | Calculated | – |
Total carbon content | High-temperature combustion method with IR detection/ LECO SC-144DR analyzer | [37] |
Total sulfur content | [38] | |
Hydrogen content | Calculated | [39] |
High heating value | Calorimetric method/ LECO AC500 calorimeter | [39] |
Low heating value | Calculated |
Property | Vyskov (India) [32] | Himalaya (India) [32] | Himalaya (India) [32] | Chomutov (Czech Republic) [32] | Prague (Czech Republic) [32] | Meihuajing, China [33] | Dziękonie (Poland) |
---|---|---|---|---|---|---|---|
Proximate analysis, wt.% | |||||||
Raw material moisture content (a.r.) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 86% |
Analytical moisture (MC) | 2.60 | 4.36 | 5.17 | 4.86 | 4.62 | d.b. | 5.80 |
Volatile matter (d.b.) (VM) | 67.17 | 52.8 | 50.77 | 61.89 | 67.32 | 48.01 | 64.07 |
Fixed carbon (d.b.) (FC) | 18.61 | 11.68 | 11.87 | 11.57 | 7.99 | 14.14 | 18.33 |
Ashes (d.b.) (AC) | 11.62 | 31.16 | 32.19 | 21.68 | 20.07 | 37.85 | 11.80 |
Ultimate analysis (d.b.), wt.% | |||||||
C | 42.87 | 32.52 | 29.89 | 39.79 | 41.14 | 25.65 | 44.24 |
H | 5.69 | 3.85 | 3.43 | 5.48 | 4.97 | 4.18 | 4.97 |
N | 1.60 | 1.84 | 2.21 | 1.13 | 0.90 | 2.64 | - |
S | 0.18 | 0.18 | 0.20 | 0.13 | 0.19 | 0.80 | 0.25 |
O | 35.44 | 26.09 | 26.91 | 26.93 | 28.11 | 28.88 | - |
Cl | 0.14 | 0.20 | 0.27 | 0.10 | 0.14 | n.d. | 1.04 |
HHV (d.b.), MJ∙kg−1 | 17.59 | 13.41 | 11.95 | 15.72 | 16.31 | n.d. | 17.61 |
LHV (d.b.), MJ∙kg−1 | 16.29 | 12.47 | 11.08 | 14.41 | 15.12 | n.d. | 16.34 |
Alkali and alkaline earth metals | (d.b.), wt.% |
Na | 0.17 |
Mg | 0.50 |
Ca | 10.0 |
Rb | 0.51 |
Sr | 0.05 |
Other metals | (d.b.), wt.% |
Al | 0.04 |
Fe | 0.51 |
Cu | 0.10 |
Zn | 0.34 |
Mn | 0.40 |
Non-metals and half-metals | (d.b.), wt.% |
Si | 0.51 |
P | 1.24 |
K | 2.02 |
Pellets | Properties | ||
---|---|---|---|
Kinetic durability, % | Bulk density, kg·m−3 | Particle density, kg·m−3 | |
CD | 98.69 ± 0.46 | 471.41 ± 2.88 | 1250.98 ± 16.06 |
EN ISO 17225-2 A1 | ≥97.50 | ≥600 | n.d. |
Parameter | Cow Dung Pellets | Woody Pellets [7] | Ecodesign Limitations |
---|---|---|---|
CO2, % | 7.36 | 7.27 | - |
CO, mg·Nm−3 | 854.77 | 329.87 | 500 |
SO2, mg·Nm−3 | 244.38 | 2.68 | - |
NO, mg·Nm−3 | 255.92 | 50.85 | 200 |
HCl, mg·Nm−3 | 80.79 | 0.00 | - |
O2†, % | 11.59 | 9.14 | 10 |
λ, - | 2.17 | 1.74 | - |
Alkali and alkaline earth metals | (d.b.), wt.% |
Na | 2.21 |
Mg | 7.95 |
Ca | 34.11 |
Rb | 0.03 |
Sr | 0.06 |
Other metals | (d.b.), wt.% |
Al | 1.26 |
Fe | 1.02 |
Cu | 0.13 |
Zn | 0.51 |
Mn | 0.67 |
Non-metals and half-metals | (d.b.), wt.% |
Si | 15.52 |
P | 18.31 |
S | 3.47 |
Cl | 2.11 |
K | 8.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymajda, A.; Łaska, G.; Joka, M. Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies. Energies 2021, 14, 1192. https://doi.org/10.3390/en14041192
Szymajda A, Łaska G, Joka M. Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies. Energies. 2021; 14(4):1192. https://doi.org/10.3390/en14041192
Chicago/Turabian StyleSzymajda, Aneta, Grażyna Łaska, and Magdalena Joka. 2021. "Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies" Energies 14, no. 4: 1192. https://doi.org/10.3390/en14041192
APA StyleSzymajda, A., Łaska, G., & Joka, M. (2021). Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies. Energies, 14(4), 1192. https://doi.org/10.3390/en14041192