Life-Cycle Land-Use Requirement for PV in Vietnam
Abstract
:1. Introduction
2. Methods and Data
2.1. Methods
2.2. Solar Irradiance in Vietnam
2.3. Technical Characteristics of Photovoltaics (PV)
2.4. Inventory Data
3. Results and Discussion
3.1. Direct Land Use of PV in Vietnam
3.2. Life-Cycle Land-Use Requirement
3.3. Limitations and Future Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 25 January 2021).
- IRENA. Global Energy Transformation: A Roadmap to 2050; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018; Available online: https://www.irena.org/publications (accessed on 25 January 2021).
- Cremades, R.; Mitter, H.; Tudose, N.C.; Sanchez-Plaza, A.; Graves, A.; Broekman, A.; Bender, S.; Giupponi, C.; Koundouri, P.; Bahri, M.; et al. Ten principles to integrate the water-energy-land nexus with climate services for co-producing local and regional integrated assessments. Sci. Total Environ. 2019, 693, 133662. [Google Scholar] [CrossRef]
- Cobuloglu, H.I.; Büyüktahtakın, İ.E. Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts. Appl. Energy 2015, 140, 418–434. [Google Scholar] [CrossRef]
- Konadu, D.D.; Mourão, Z.S.; Allwood, J.M.; Richards, K.S.; Kopec, G.; McMahon, R.; Fenner, R. Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan. Energy Policy 2015, 86, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, U.R.; Sims, R.E.H.; Monti, A. Direct and indirect land-use competition issues for energy crops and their sustainable production—An overview. Biofuels Bioprod. Biorefining 2010, 4, 692–704. [Google Scholar] [CrossRef]
- FAO. The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture; FAO: Rome, Italy, 2014. [Google Scholar]
- Mancini, F.; Nastasi, B. Solar Energy Data Analytics: PV Deployment and Land Use. Energies 2020, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- ISO. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO 14044:2006; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management—Life Cycle Assessment—Principles and Framework; ISO 14040:2006; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- UNEP. Greening the Economy throug Life Cycle Thinking; UNEP SETAC Life Cycle Initiative: Nairobi, Kenya, 2012. [Google Scholar]
- Stolz, P.; Frischknecht, R.; Wambach, K.; Sinha, P.; Heath, G. Life Cycle Assessment of Current Photovoltaic Module Recycling, IEA PVPS Task 12; International Energy Agency Power Systems Programme: Paris, France, 2017. [Google Scholar]
- Sanseverino, E.R.; Le, T.T.H.; Pham, M.-H.; Silvestre, M.L.D.; Nguyen, Q.N.; Favuzza, S. Review of Potential and Actual Penetration of Solar Power in Vietnam. Energies 2020, 13, 2529. [Google Scholar] [CrossRef]
- WB. Value Added in the Services Sector as Percent of GDP in Asia. 2019. Available online: https://www.theglobaleconomy.com/rankings/Share_of_services/Asia/#Vietnam (accessed on 30 November 2020).
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Kannan, R.; Leong, K.C.; Osman, R.; Ho, H.K.; Tso, C.P. Life cycle assessment study of solar PV systems: An example of a 2.7 kWp distributed solar PV system in Singapore. Sol. Energy 2006, 80, 555–563. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Yuan, Z. Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China. J. Clean. Prod. 2015, 86, 180–190. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Mistretta, M.; Cellura, M. Environmental assessment of 2030 electricity generation scenarios in Sicily: An integrated approach. Renew. Energy 2020, 160, 1148–1159. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Herz, M.; Glickstein, M.; Zimmerman, M.; Allen, R.; Becker, K.; Evans, J.; Hussain, B.; Sarsfeld, R.; Grosfeld, A.; et al. Renewable energy: Current and potential issues. Bioscience 2002, 52, 1111–1119. [Google Scholar] [CrossRef]
- Fthenakis, V.; Kim, H.C. Land use and electricity generation: A life-cycle analysis. Renew. Sustain. Energy Rev. 2009, 13, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Aman, M.M.; Solangi, K.H.; Hossain, M.S.; Badarudin, A.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.; Kazi, S.N. A review of Safety, Health and Environmental (SHE) issues of solar energy system. Renew. Sustain. Energy Rev. 2015, 41, 1190–1204. [Google Scholar] [CrossRef]
- Bukhary, S.; Ahmad, S.; Batista, J. Analyzing land and water requirements for solar deployment in the Southwestern United States. Renew. Sustain. Energy Rev. 2018, 82, 3288–3305. [Google Scholar] [CrossRef]
- Horner, R.M.; Clark, C.E. Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity. Renew. Sustain. Energy Rev. 2013, 23, 129–137. [Google Scholar] [CrossRef]
- Gagnon, L.; Bélanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- Cumpston, J.; Pye, J. Shading and land use in regularly-spaced sun-tracking collectors. Sol. Energy 2014, 108, 199–209. [Google Scholar] [CrossRef]
- Hsu, D.D.; O’Donoughue, P.; Fthenakis, V.; Heath, G.A.; Kim, H.C.; Sawyer, P.; Choi, J.K.; Turney, D.E. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation Systematic Review and Harmonization. J. Ind. Ecol. 2012, 16, S122–S135. [Google Scholar] [CrossRef]
- Ecoinvent Database Version 3.6. Available online: https://www.ecoinvent.org/database/older-versions/ecoinvent-36/ecoinvent-36.html (accessed on 17 December 2020).
- Nguyễn, Đ.Q.; Vũ, X.Đ. Final Report on Research to Improve the Realiability of Supply and Energy Efficiency in K9 Area. In Vietnamese: Báo Cáo Tổng kết Nghiên Cứu Giải Pháp Nâng Cao độ tin Cậy Cung Cấp và sử Dụng Tiết Kiệm, Hiệu quả năng Lượng Điện và Nhiệt tại Khu di Tích K9; Institute of Energy Science, Vietnam Academy of Science and Technology and Center for Application of Science, Technology and Environment, Mangement Unit of Ho Chi Minh Mausoleum: Hanoi, Vietnam, 2014. [Google Scholar]
- ESMAP. Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 3 November 2020).
- Saidan, M.; Albaali, A.; Alasis, E.; Kaldellis, J. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew Energy 2016, 92, 499–505. [Google Scholar] [CrossRef]
- Costa, S.; Diniz, A.; Kazmerski, L. Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015. Renew. Sustain. Energy Rev. 2016, 63, 33–61. [Google Scholar] [CrossRef] [Green Version]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew Sustain Energy Rev 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Koellner, T.; Baan, L.D.; Beck, T.; Brandao, M.; Civit, B.; Goedkoop, M.; Margni, M.; Canals, L.M.I.; Müller-Wenk, R.; Weidema, B.; et al. Principles for life cycle inventories of land use on a global scale. Int. J. Life Cycle Assess. 2013, 18, 1203–1215. [Google Scholar] [CrossRef]
- i Canals, L.M.; Bauer, C.; Depestele, J.; Dubreuil, A.; Knuchel, R.F.; Gaillard, G.; Michelsen, O.; Müller-Wenk, R.; Rydgren, B. Key elements in a framework for land use impact assessment within LCA. Int. J. Life Cycle Assess. 2007, 12, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Beccali, G.; Cellura, M.; Mistretta, M. Managing municipal solid waste: Energetic and environmental comparison among different management options. Int. J. Life Cycle Assess. 2001, 6, 243–249. [Google Scholar] [CrossRef]
- MONRE. Land Use Planning for Energy Development, Renewable Energy Development. Available online: http://www.monre.gov.vn/Pages/quy-hoach-su-dung-dat-cho-phat-trien-dien-luc,-quy-hoach-nang-luong-moi,-nang-luong-tai-tao.aspx (accessed on 3 November 2020).
Region | Provinces | Average Solar Irradiance (MWh m−2 year−1) |
---|---|---|
Central Highland | Kon Tum | 1.74 |
Gia Lai | 1.78 | |
Dak Lak | 1.79 | |
Dak Nong | 1.81 | |
Lam Dong | 1.80 | |
Southern Central | Quang Ngai | 1.70 |
Binh Dinh | 1.90 | |
Phu Yen | 1.86 | |
Khanh Hoa | 1.98 | |
Ninh Thuan | 2.0 | |
Binh Thuan | 2.0 | |
South | Vung Tau | 1.86 |
Tay Ninh | 1.91 | |
An Giang | 1.9 | |
Average | 1.9 |
Process | Land Occupation (m2a) | Land Transformation (m2) |
---|---|---|
Manufacturing of one piece of photovoltaic (PV) panel 330 kW | 2.92 × 101 | 9.87 |
Manufacturing of one piece of inverter 100 kW | 2.47 × 102 | 2.46 × 101 |
Manufacturing of one piece of transformer medium voltage 4500 kVA | 3.46 × 10−3 | 7.66 × 10−3 |
Manufacturing of one piece of transformer high voltage 63 MVA | 2.48 × 10−3 | 5.37 × 10−3 |
Manufacturing of one piece of transformer low voltage 100 kVA | 3.16 × 10−3 | 6.84 × 10−3 |
Electrical installation 3 kWp | 1.62 × 101 | 5.43 × 10−1 |
Sea transportation (tkm) | 5.33 × 10−5 | 1.53 × 10−5 |
Road transportation (tkm) | 9.88 × 10−3 | 1.90 × 10−4 |
Technology | Direct Land Use (m2 MWh−1 year) | Average Land Efficiency (Fenced Area) (m2 MWh−1 year) | |||
---|---|---|---|---|---|
Mean | Median | Min | Max | ||
mono-Si | 5.68 | 6.14 | 3.69 | 6.67 | 7.18 |
multi-Si | 5.63 | 6.01 | 3.81 | 6.53 | 8.04 |
Panels with tracking system | 5.92 | N/A 1 | N/A | N/A | 8.26 |
Land Use Flows | Unit | Value |
---|---|---|
Occupation, dump site | m2a | 2.03 × 10−2 |
Occupation, forest, intensive | m2a | 1.94 × 10−1 |
Occupation, industrial area | m2a | 1.50 × 10−2 |
Occupation, mineral extraction site | m2a | 1.69 × 10−2 |
Occupation, traffic area, rail/road embankment | m2a | 6.38 × 10−2 |
Occupation, traffic area, road network | m2a | 2.94 × 10−1 |
Occupation, unknown | m2a | 2.41 × 102 |
Occupation, water bodies, artificial | m2a | 2.68 × 10−2 |
Transformation, from annual crop, non-irrigated | m2 | 1.13 × 10−2 |
Transformation, from unknown | m2 | 8.05 |
Transformation, to industrial area | m2 | 8.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanseverino, E.R.; Cellura, M.; Luu, L.Q.; Cusenza, M.A.; Nguyen Quang, N.; Nguyen, N.H. Life-Cycle Land-Use Requirement for PV in Vietnam. Energies 2021, 14, 861. https://doi.org/10.3390/en14040861
Sanseverino ER, Cellura M, Luu LQ, Cusenza MA, Nguyen Quang N, Nguyen NH. Life-Cycle Land-Use Requirement for PV in Vietnam. Energies. 2021; 14(4):861. https://doi.org/10.3390/en14040861
Chicago/Turabian StyleSanseverino, Eleonora Riva, Maurizio Cellura, Le Quyen Luu, Maria Anna Cusenza, Ninh Nguyen Quang, and Nam Hoai Nguyen. 2021. "Life-Cycle Land-Use Requirement for PV in Vietnam" Energies 14, no. 4: 861. https://doi.org/10.3390/en14040861
APA StyleSanseverino, E. R., Cellura, M., Luu, L. Q., Cusenza, M. A., Nguyen Quang, N., & Nguyen, N. H. (2021). Life-Cycle Land-Use Requirement for PV in Vietnam. Energies, 14(4), 861. https://doi.org/10.3390/en14040861