Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations
Abstract
:1. Introduction
- (1)
- Dead oil viscosity, µod, which is the crude oil that at atmospheric pressure is free of gas.
- (2)
- Saturated, µob, which is the oil viscosity at reservoir temperature and pressure (saturation).
- (3)
- Undersaturated, µoa, is the viscosity of oil when its pressure and temperature is above the reservoir conditions (saturation).
2. Materials and Methods
2.1. Experiments
2.2. Input Features and Data
2.3. ML Model Development
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khoukhi, A.; Albukhitan, S. PVT properties prediction using hybrid genetic-neuro-fuzzy systems. Int. J. Oil Gas Coal Technol. 2011, 4, 47–63. [Google Scholar] [CrossRef]
- McCain, W.D.; Spivey, J.P.; Lenn, C.P. Petroleum Reservoir Fluid Property Correlations; PennWell Books: Tusla, OK, USA, 2011. [Google Scholar]
- Ahmed, T. Equations of State and PVT Analysis; Gulf Publishin Company: Houston, TX, USA, 2013. [Google Scholar]
- Arabloo, M.; Amooie, M.-A.; Hemmati-Sarapardeh, A.; Ghazanfari, M.-H.; Mohammadi, A.H. Application of constrained multi-variable search methods for prediction of PVT properties of crude oil systems. Fluid Phase Equilib. 2014, 363, 121–130. [Google Scholar] [CrossRef]
- Ikiensikimama, S.S.; Ajienka, J.A. Impact of PVT correlations development on hydrocarbon accounting: The case of the niger delta. J. Pet. Sci. Eng. 2012, 81, 80–85. [Google Scholar] [CrossRef]
- Rafiee-Taghanaki, S.; Arabloo, M.; Chamkalani, A.; Amani, M.; Zargari, M.H.; Adelzadeh, M.R. Implementation of svm framework to estimate PVT properties of reservoir oil. Fluid Phase Equilib. 2013, 346, 25–32. [Google Scholar] [CrossRef]
- Spivey, J.P.; Pursell, D.A. Errors in Input Data and the Effect on Well-Test Interpretation Results. In Proceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA, 23–26 March 1998. [Google Scholar]
- Ambastha, A.K.; van Kruysdijk, J.W. Effects of Input Data Errors on Material Balance Analysis for Volumetric, Gas and Gas-Condensate Reservoirs. In Proceedings of the PETSOC the Annual Technical Meeting, Calgary, AB, Canada, 8–11 May 1993. [Google Scholar]
- Baker, R.O.; Regier, C.; Sinclair, R. PVT Error Analysis for Material Balance Calculations. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 10–12 June 2003. [Google Scholar]
- Standing, M.B. A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gases. In Proceedings of the Drilling and Production Practice, New York, NY, USA, 1 January 1947. [Google Scholar]
- Lasater, J.A. Bubble point pressure correlation. J. Pet. Technol. 1958, 10, 65–67. [Google Scholar] [CrossRef]
- Vazquez, M.; Beggs, H. Correlations for fluid physical property prediction. J. Pet. Technol. 1980, 32, 968–970. [Google Scholar] [CrossRef]
- Glaso, O. Generalized pressure-volume-temperature correlations. J. Pet. Technol. 1980, 32, 785–795. [Google Scholar] [CrossRef]
- Pedersen, K.S.; Fredenslund, A. An improved corresponding states model for the prediction of oil and gas viscosities and thermal conductivities. Chem. Eng. Sci. 1987, 42, 182–186. [Google Scholar] [CrossRef]
- Al-Marhoun, M.A. PVT correlations for Middle East crude oils. J. Pet. Technol. 1988, 40, 650–666. [Google Scholar] [CrossRef]
- Al-Marhoun, M.A. New correlations for formation volume factors of oil and gas mixtures. J. Can. Pet. Technol. 1992, 31. [Google Scholar] [CrossRef]
- Abdul-Majeed, G.H.; Salman, N.H. An empirical correlation for oil FVF prediction. J. Can. Pet. Technol. 1988, 27. [Google Scholar] [CrossRef]
- Asgarpour, S.; McLauchlin, L.; Wong, D.; Cheung, V. Pressure-volume-temperature correlations for western Canadian gases and oils. J. Can. Pet. Technol. 1989, 28. [Google Scholar] [CrossRef]
- Labedi, R. Use of production data to estimate volume factor. density and compressibility of reservoir fluids. J. Pet. Sci. Eng. 1990, 4, 375–390. [Google Scholar] [CrossRef]
- Dokla, M.; Osman, M. Correlation of PVT properties for UAE crudes (includes associated papers 26135 and 26316). SPE Form. Eval. 1992, 7, 41–46. [Google Scholar] [CrossRef]
- Frashad, F.; LeBlanc, J.L.; Garber, J.D.; Osorio, J.G. Empirical PVT Correlations for Colombian Crude Oils. In Proceedings of the SPE Latin America/Caribbean Petroleum Engineering Conference, Port-of-Spain, Trinidad, 23–26 April 1996. [Google Scholar]
- Elsharkawy, A.M.; Elgibaly, A.A.; Alikhan, A.A. Assessment of the PVT correlations for predicting the properties of Kuwaiti crude oils. J. Pet. Sci. Eng. 1995, 13, 219–232. [Google Scholar] [CrossRef]
- Almehaideb, R.A. Improved PVT Correlations for UAE Crude Oils. In Proceedings of the Middle East Oil Show and Conference, Manama, Bahrain, 15–18 March 1997. [Google Scholar]
- Petrosky, G.E. PVT Correlations for Gulf of Mexico Crude Oils. Ph.D. Thesis, University of Southwestern Louisiana, Lafayette, LA, USA, 1990. [Google Scholar]
- Özdoğan, S.; Yücel, H.G. Correlations towards prediction of petroleum fraction viscosities: An empirical approach. Fuel 2001, 80, 447–449. [Google Scholar] [CrossRef]
- Elsharkwy, A.; Gharbi, R. Comparing classical and neural regression techniques in modeling crude oil viscosity. Adv. Eng. Softw. 2001, 32, 215–224. [Google Scholar] [CrossRef]
- Elsharkawy, A.M.; Hassan, S.A.; Hashim, Y.S.K.; Fahim, M.A. New compositional models for calculating the viscosity of crude oils. Ind. Eng. Chem. Res. 2003, 42, 4132–4142. [Google Scholar] [CrossRef]
- Gharbi, R.B.; Elsharkawy, A.M.; Karkoub, M. Universal neural-network-based model for estimating the PVT properties of crude oil systems. Energy Fuels 1999, 13, 454–458. [Google Scholar] [CrossRef]
- Elsharkawy, A.M. Predicting the dew point pressure for gas condensate reservoirs: Empirical models and equations of state. Fluid Phase Equilib. 2002, 193, 147–165. [Google Scholar] [CrossRef]
- Gharbi, R.B.; Elsharkawy, A.M. Neural Network Model for Estimating the PVT Properties of Middle East Crude Oils. In Proceedings of the Middle East Oil Show and Conference, Manama, Bahrain, 15–18 March 1997. [Google Scholar]
- Gharbi, R. Estimating the isothermal compressibility coefficient of undersaturated Middle East crudes using neural networks. Energy Fuels 1997, 11, 372–378. [Google Scholar] [CrossRef]
- Ahmed, T. Fundamentals of Reservoir Fluid Behavior. In Reservoir Engineering Handbook; Ahmed, T., Ed.; Gulf Professional Publishing: Boston, MA, USA, 2010. [Google Scholar]
- Xu, D.-H.; Khurana, A.K. A Simple and Efficient Approach for Improving the Prediction of Reservoir Fluid Viscosity. In Proceedings of the SPE Asia Pacific Oil and Gas Conference, Adelaide, Australia, 28–31 October 1996. [Google Scholar]
- El-Hoshoudy, A.; Farag, A.; Ali, O.; El-Batanoney, M.; Desouky, S.; Ramzi, S. New correlations for prediction of viscosity and density of egyptian oil reservoirs. Fuel 2013, 112, 277–282. [Google Scholar] [CrossRef]
- Makinde, F.; Ako, C.; Orodu, O.; Asuquo, I. Prediction of crude oil viscosity using feed-forward back-propagation neural network (FFBPNN). Pet. Coal 2012, 54, 120–131. [Google Scholar]
- Sattarin, M.; Modarresi, H.; Bayat, M.; Teymori, M. New viscosity correlations for dead crude oils. Pet. Coal 2007, 49, 33–39. [Google Scholar]
- McCain, W.D., Jr. Reservoir-Fluid Property Correlations; State of the Art. SPE Reserv. Eng. 1991, 6. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Shokrollahi, A.; Tatar, A.; Gharagheizi, F.; Mohammadi, A.H.; Naseri, A. Reservoir oil viscosity determination using a rigorous approach. Fuel 2014, 116, 39–48. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Khishvand, M.; Naseri, A.; Mohammadi, A.H. Toward reservoir oil viscosity correlation. Chem. Eng. Sci. 2013, 90, 53–68. [Google Scholar] [CrossRef]
- Dimri, V.; Srivastava, R.P.; Vedanti, N. Fractal Models in Exploration Geophysics: Applications to Hydrocarbon Reservoirs; Elsevier: Oxford, UK, 2012; Volume 41. [Google Scholar]
- De Ghetto, G.; Villa, M. Reliability analysis on PVT correlations. In Proceedings of the European Petroleum Conference, London, UK, 25–27 October 1994. [Google Scholar]
- Isehunwa, O.S.; Olamigoke, O.; Makinde, A.A. A Correlation to Predict the Viscosity of Light Crude Oils. In Proceedings of the Nigeria Annual International Conference and Exhibition, Abuja, Nigeria, 31 July–2 August 2006. [Google Scholar]
- Lashkenari, M.S.; Taghizadeh, M.; Mehdizadeh, B. Viscosity prediction in selected iranian light oil reservoirs: Artificial neural network versus empirical correlations. Pet. Sci. 2013, 10, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, B.; Ziabasharhagh, M.; Amidpour, M. A hybrid artificial neural network and genetic algorithm for predicting viscosity of iranian crude oils. J. Nat. Gas Sci. Eng. 2014, 18, 312–323. [Google Scholar] [CrossRef]
- Al-Gathe, A.A.; Abd-El Fattah, K.A.; El-Banbi, A.H.; El-Metwally, K. A hybrid neuro-fuzzy approach for black oil viscosity prediction. Ternational J. Innov. Appl. Stud. 2015, 13, 946. [Google Scholar]
- Al-Marhoun, M.; Nizamuddin, S.; Raheem, A.A.; Ali, S.S.; Muhammadain, A. Prediction of crude oil viscosity curve using artificial intelligence techniques. J. Pet. Sci. Eng. 2012, 86, 111–117. [Google Scholar] [CrossRef]
- Beal, C. The viscosity of air. water. natural gas. crude oil and its associated gases at oil field temperatures and pressures. Trans. AIME 1946, 165, 94–115. [Google Scholar] [CrossRef]
- Beggs, H.D.; Robinson, J. Estimating the viscosity of crude oil systems. J. Pet. Technol. 1975, 27, 1–140. [Google Scholar] [CrossRef]
- Kaye, S. Offshore California Viscosity Correlations; Technical Report, No. TS85000940; Chevron Oil Field Research Co. (COFRC): La Habra, CA, USA, August 1985. [Google Scholar]
- Al-Khafaji, A.H.; Abdul-Majeed, G.H.; Hassoon, S.F. Viscosity correlation for dead. Live and undersaturated crude oils. J. Pet. Res. 1987, 6, 1–16. [Google Scholar]
- Egbogah, E.O.; Ng, J.T. An improved temperature-viscosity correlation for crude oil systems. J. Pet. Sci. Eng. 1990, 4, 197–200. [Google Scholar] [CrossRef]
- Labedi, R. Improved correlations for predicting the viscosity of light crudes. J. Pet. Sci. Eng. 1992, 8, 221–234. [Google Scholar] [CrossRef]
- Kartoatmodjo, T.; Schmidt, Z. Large data bank improves crude physical property correlations. Oil Gas J. 1994, 92, 7013088. [Google Scholar]
- Bennison, T. Prediction of heavy oil viscosity. In Proceedings of the IBC Heavy Oil Field Development Conference, London, UK, 2–4 December 1998; Volume 2, p. 4. [Google Scholar]
- Elsharkawy, A.; Alikhan, A. Models for predicting the viscosity of Middle East crude oils. Fuel 1999, 78, 891–903. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sarica, C.; Zhang, H.-Q.; Rhyne, L.; Greenhill, K. Assessment and development of heavy oil viscosity correlations. In Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium, Calgary, AB, Canada, 1–3 November 2005. [Google Scholar]
- Naseri, A.; Nikazar, M.; Dehghani, S.M. A correlation approach for prediction of crude oil viscosities. J. Pet. Sci. Eng. 2005, 47, 163–174. [Google Scholar] [CrossRef]
- Alomair, O.A.; Elsharkawy, A.M.; Alkandari, H.A. Viscosity prediction of Kuwaiti heavy crudes at elevated temperatures. In Proceedings of the SPE Heavy Oil Conference and Exhibition, Society of Petroleum Engineers, Kuwait City, Kuwait, 12–14 December 2011. [Google Scholar]
- Monnery, W.D.; Svrcek, W.Y.; Mehrotra, A.K. Viscosity: A critical review of practical predictive and correlative methods. Can. J. Chem. Eng. 1995, 73, 3–40. [Google Scholar] [CrossRef]
- Mehrotra, A.K. Generalized one-parameter viscosity equation for light and medium liquid hydrocarbons. Ind. Eng. Chem. Res. 1991, 30, 1367–1372. [Google Scholar] [CrossRef]
- Svrcek, W.; Mehrotra, A. One parameter correlation for bitumen viscosity. Chem. Eng. Res. Des. 1988, 66, 323–327. [Google Scholar]
- Teja, A.; Rice, P. Generalized corresponding states method for the viscosities of liquid mixtures. Ind. Eng. Chem. Fundam. 1981, 20, 77–81. [Google Scholar] [CrossRef]
- Johnson, S.E.; Svrcek, W.Y.; Mehrotra, A.K. Viscosity prediction of athabasca bitumen using the extended principle of corresponding states. Ind. Eng. Chem. Res. 1987, 26, 2290–2298. [Google Scholar] [CrossRef]
- Alboudwarej, H.; Svrcek, W.Y.; Yarranton, H.W. PVT Investigation of Asphaltene Precipitation and Redissolution from Bitumens. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 11–13 June 2002. [Google Scholar]
- Al-Marhoun, M.A. Evaluation of empirically derived PVT properties for Middle East crude oils. J. Pet. Sci. Eng. 2004, 42, 209–221. [Google Scholar] [CrossRef]
- Dindoruk, B.; Christman, P.G. PVT properties and viscosity correlations for Gulf of Mexico oils. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–3 October 2001. [Google Scholar]
- Bergman, D.F.; Sutton, R.P. A consistent and accurate deadoil-viscosity method. Spe Reserv. Eval. Eng. 2009, 12, 815–840. [Google Scholar] [CrossRef]
- Hajizadeh, Y. Intelligent prediction of reservoir fluid viscosity. In Proceedings of the Production and Operations Symposium SPE Annual Conference, Oklahoma City, OK, USA, 31 March–3 April 2007. [Google Scholar]
- Omole, O.; Falode, O.; Deng, A.D. Prediction of nigerian crude oil viscosity using artificial neural network. Pet. Coal 2009, 51, 181–188. [Google Scholar]
- Oloso, M.A.; Khoukhi, A.; Abdulraheem, A.; Elshafei, M. Prediction of crude oil viscosity and gas/oil ratio curves using recent advances to neural networks. In Proceedings of the SPE/EAGE Reservoir Characterization & Simulation Conference, Abu Dhabi, UAE, 19–21 October 2009. [Google Scholar]
- Naseri, A.; Yousefi, S.H.; Sanaei, A.; Gharesheikhlou, A.A. A neural network model and an updated correlation for estimation of dead crude oil viscosity. Braz. J. Pet. Gas 2012, 6. [Google Scholar] [CrossRef]
- Torabi, F.; Abedini, A.; Abedini, R. The development of an artificial neural network model for prediction of crude oil viscosities. Pet. Sci. Technol. 2011, 29, 804–816. [Google Scholar] [CrossRef]
- Hajizadeh, Y. Viscosity prediction of crude oils with genetic algorithms. In Proceedings of the Latin American & Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 15–18 April 2007. [Google Scholar]
- Hemmati-Sarapardeh, A.; Aminshahidy, B.; Pajouhandeh, A.; Yousefi, S.H.; Hosseini-Kaldozakh, S.A. A soft computing approach for the determination of crude oil viscosity: Light and intermediate crude oil systems. J. Taiwan Inst. Chem. Eng. 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Ghorbani, B.; Hamedi, M.; Shirmohammadi, R. A novel multi-hybrid model for estimating optimal viscosity correlations of Iranian crude oil. J. Pet. Sci. Eng. 2016, 142, 68–76. [Google Scholar] [CrossRef]
- Oloso, M.A.; Hassan, M.G.; Bader-El-Den, M.B.; Buick, J.M. Ensemble SVM for characterisation of crude oil viscosity. J. Pet. Explor. Prod. Technol. 2017, 8, 531–546. [Google Scholar] [CrossRef] [Green Version]
- Van der Laan, M.J.; Polley, E.C.; Hubbard, A.E. SuperLearner. UC Berkeley Division of Biostatistics Working Paper Series. Available online: Biostats.bepress.com/ucbbiostat/paper222 (accessed on 1 November 2014).
- Ju, C.; Combs, M.; Lendle, S.D.; Franklin, J.M.; Wyss, R.; Schneeweiss, S.; van der Laan, M.J. Propensity score prediction for electronic healthcare databases using SuperLearner and high-dimensional propensity score methods. J. Appl. Stat. 2019, 46, 2216–2236. [Google Scholar] [CrossRef] [Green Version]
- Polley, E.C.; Van Der Laan, M.J. Super Learner in Prediction; U.C. Berkeley Division of Biostatistics: Berkeley, CA, USA, 2010; p. 266. [Google Scholar]
- Wang, H.; Rose, S.; van der Laan, M.J. Finding quantitative trait loci genes with collaborative targeted maximum likelihood learning. Stat. Probab. Lett. 2011, 81, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Sinisi, S.E.; Polley, E.C.; Petersen, M.L.; Rhee, S.-Y.; Van Der Laan, M.J. Super learning: An application to the prediction of HIV-1 drug resistance. Stat. Appl. Genet. Mol. Biol. 2007, 6, 7. [Google Scholar] [CrossRef]
- Rose, S. A machine learning framel8 work for plan payment risk adjustment. Health Serv. Res. 2016, 51, 2358–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, E.M.; Vogelstein, J.T.; Cuzzocreo, J.L.; Calabresi, P.A.; Reich, D.S.; Crainiceanu, C.M.; Shinohara, R.T. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI. PLoS ONE 2014, 9, e95753. [Google Scholar] [CrossRef] [Green Version]
- Almudevar, A.; Oakes, D.; Hall, J. (Eds.) Statistical Modeling for Biological Systems. In Memory of Andrei Yakovlev; Springer Nature: New York, NY, USA, 2020. [Google Scholar]
- Wyss, R.; Schneeweiss, S.; Van Der Laan, M.; Lendle, S.D.; Ju, C.; Franklin, J.M. Using SuperLearner Prediction Modeling to Improve High-dimensional Propensity Score Estimation. Epidemiology 2018, 29, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–16 August 2016. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Springer: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar]
- Van Der Maaten, L. Accelerating t-sne using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245. [Google Scholar]
- Van der Vaart, A.W.; Dudoit, S.; van der Laan, M.J. Oracle inequalities for multi-fold cross validation. Stat. Decis. 2006, 24, 351–371. [Google Scholar]
- Yang, X.; Dindoruk, B.; Lu, L. A comparative analysis of bubble point pressure prediction using advanced machine learning algorithms and classical correlations. J. Pet. Sci. Eng. 2020, 185, 106598. [Google Scholar] [CrossRef]
- Sen, A.; Srivastava, M. Regression Analysis: Theory, Methods, and Applications; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Massaron, L.; Boschetti, A. Regression Analysis with Python; Packt Publishing: Birmingham, UK, 2016. [Google Scholar]
- Heidaryan, E. A note on model selection based on the percentage of accuracy-precision. J. Energy Resour. Technol. 2019, 141. [Google Scholar] [CrossRef]
- Chew, J.N.; Connally, C.A., Jr. A viscosity correlation for gas-saturated crude oils. Trans. AIME 1959, 216, 23–25. [Google Scholar] [CrossRef]
- Ubong, U.; Oyedeko, K. Improved dead oil viscosity model. J. Energy Technol Policy. 2014, 4, 32–41. [Google Scholar]
- Khan, S.A.; Al-Marhoun, M.A.; Duffuaa, S.O.; Abu-Khamsin, S.A. Viscosity correlations for Saudi Arabian crude oils. In Proceedings of the Middle East Oil Show, Manama, Bahrain, 7–10 March 1987. [Google Scholar]
Authors | Region of Data Source | Input | Data Points | T, °C | API | |
---|---|---|---|---|---|---|
Beals 1946 [47] | US | 98 | 36.6–121.1 | 10–52 | 0.86–1550 | |
Beggs and Robinson (1975) [48] | - | 460 | 21.1–146.1 | 16–58 | - | |
Glaso (1980) [13] | North Sea | 38 | 10–148.8 | 20–48 | 0.60–39 | |
Kaye (1985) [49] | Ofshore California | - | 61.6–138.8 | 7–41 | - | |
Al-Khafaji et al. (1987) [50] | - | - | 15.5–148.8 | 15–51 | - | |
Petrosky (1990) [24] | Gulf of Mexico | 118 | 45.5–142.2 | 25–46 | 0.72–10.25 | |
Egbogah and Ng (1990) [51] | - | 394 | 15–80 | 5–58 | - | |
Labedi (1992) [52] | Libiya | 91 | 37.7–152.2 | 32–48 | 0.66–4.79 | |
Kartoamtmodjo and Schmidt (1994) [53] | Worldwide | 661 | 26.6–160 | 14–59 | 0.50–586 | |
Bennison (1998) [54] | North sea | 16 | 3.8–148.8 | 11–20 | 6.40–8396 | |
Elsharkawy and Alikhan (1999) [55] | Middle East | 254 | 37.7–148.8 | 20–48 | 0.60–33.7 | |
Dindoruk and Christman (2004) [66] | Gulf of Mexico | 95 | 17.4–40 | 17.4–40 | ||
Hossain et al. (2005) [56] | World wide | 184 | 0–101.6 | 7–22 | 12–451 | |
Naseri et al. (2005) [57] | Iran | 472 | 40.5–147.7 | 17–44 | 0.75–54 | |
Bergman and Sutton (2009) [67] | Worldwide | 9837 | 1.78–11360 | |||
Alomair et al. (2011) [58] | Kuwait | 374/118 | 20–160 | 10–20 | 0.39–70 | |
Hemmati et al. (2013) [38] | Iran | 1000 | 10–143.3 | 17–44 | - | |
El- hoshoudy et al. (2013) [34] | Egypt | 1000 | - | - | - |
API | Tr (F) | Rs (scf/STB) | Pb | cp | |
---|---|---|---|---|---|
min | 6.0 | 25.6 | 8.6 | 107.3 | 0.5 |
max | 56.8 | 341.6 | 3298.7 | 6613.8 | 15,836.9 |
Average | 29.73 | 201.08 | 605.16 | 2324.99 | 1066.28 |
Algorithms | Python Package | Package Version | Website of Package | Date Accessed |
---|---|---|---|---|
XGBoost | xgboost | 0.9.0 | https://xgboost.readthedocs.io/en/latest/index.html | Janurary 2020 |
Lightgbm | lightgbm | 2.3.2 | https://lightgbm.readthedocs.io/en/ | February 2020 |
SVR | scikit-learn | scikit-learn 0.23.1 | https://scikit-learn.org/dev/index.html | February 2020 |
MLP neural network | pytorch | 9.2 | https://pytorch.org | March 2020 |
Random Forest | scikit-learn | 0.22.2 | https://scikit-learn.org/dev/index.html | March 2020 |
SuperLearner | SuperLearner | 0.9.0 | http://ml-ensemble.com | April 2020 |
Methods | RMSE | MAE | R2 | MSE | PAP |
---|---|---|---|---|---|
SuperLearner | 0.3387 | 0.1154 | 0.9568 | 0.1147 | 87.3139 |
Lightgbm | 0.3384 | 0.1147 | 0.9541 | 0.1145 | 85.7713 |
Random forest | 0.3387 | 0.1158 | 0.9476 | 0.1147 | 82.6887 |
XGBoost | 0.3372 | 0.1142 | 0.9465 | 0.1137 | 87.8166 |
MLP ANN | 0.4794 | 0.1151 | 0.9329 | 0.2298 | 84.7704 |
SVR | 0.4998 | 0.1068 | 0.9217 | 0.2498 | 86.3304 |
Sattarian [36] | 0.3380 | 11.5140 | 0.9012 | 0.1142 | 83.6400 |
Naseri [57] | 0.8864 | 57.3010 | 0.8940 | 0.7857 | 80.7704 |
Dindrouk [66] | 0.4533 | 21.4530 | 0.8911 | 0.2055 | 77.7661 |
Hemmati [39] | 0.4477 | 26.5440 | 0.8871 | 0.2004 | 77.8325 |
Ghorbani [44] | 0.2480 | 10.8330 | 0.8435 | 0.0615 | 75.2955 |
Hossain [56] | 0.4354 | 15.4320 | 0.8071 | 0.1896 | 76.5429 |
Lashkerani [43] | 0.2760 | 13.6450 | 0.8057 | 0.0762 | 75.8557 |
Beal [47] | 0.6609 | 15.6740 | 0.7600 | 0.4368 | 70.4494 |
Elsharkway [55] | 0.7928 | 20.7810 | 0.7198 | 0.6285 | 70.3990 |
Ubong and Oyedeko [97] | 0.6910 | 15.9180 | 0.7198 | 0.4775 | 71.3572 |
Glaso [13] | 0.8756 | 27.1860 | 0.6630 | 0.7667 | 65.1807 |
Chew and Connally [98] | 0.7829 | 28.5010 | 0.6340 | 0.6129 | 65.6894 |
Al Khafaiji [50] | 0.8740 | 30.0140 | 0.6334 | 0.7639 | 65.2024 |
Petrosky [24] | 0.8973 | 19.7160 | 0.6315 | 0.8051 | 67.8336 |
Khan [99] | 1.1024 | 33.0050 | 0.6120 | 1.2153 | 69.2030 |
Beggs [48] | 1.7703 | 55.6430 | 0.5543 | 3.1340 | 65.1991 |
Labedi [52] | 1.8803 | 19.5610 | 0.5458 | 3.5355 | 65.3186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadavimoghaddam, F.; Ostadhassan, M.; Heidaryan, E.; Sadri, M.A.; Chapanova, I.; Popov, E.; Cheremisin, A.; Rafieepour, S. Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations. Energies 2021, 14, 930. https://doi.org/10.3390/en14040930
Hadavimoghaddam F, Ostadhassan M, Heidaryan E, Sadri MA, Chapanova I, Popov E, Cheremisin A, Rafieepour S. Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations. Energies. 2021; 14(4):930. https://doi.org/10.3390/en14040930
Chicago/Turabian StyleHadavimoghaddam, Fahimeh, Mehdi Ostadhassan, Ehsan Heidaryan, Mohammad Ali Sadri, Inna Chapanova, Evgeny Popov, Alexey Cheremisin, and Saeed Rafieepour. 2021. "Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations" Energies 14, no. 4: 930. https://doi.org/10.3390/en14040930
APA StyleHadavimoghaddam, F., Ostadhassan, M., Heidaryan, E., Sadri, M. A., Chapanova, I., Popov, E., Cheremisin, A., & Rafieepour, S. (2021). Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations. Energies, 14(4), 930. https://doi.org/10.3390/en14040930