High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm
Abstract
:1. Introduction
2. Power Quality Disturbances
3. Feature Extraction
3.1. Wavelet Transform
3.2. Multi-Resolution Analysis
3.3. Feature Vector Construction
4. Probabilistic Neural Network for PQD Classification as a Classifier
5. Proposed Adaptive ABC-PSO Algorithm as Optimal Feature Selection
5.1. Artificial Bee Colony
5.2. Particle Swarm Optimization
5.3. The Proposed Adaptive ABC-PSO Algorithm
6. Results and Discussion
6.1. Mechanism of the Proposed Adaptive ABC-PSO Algorithm as Optimal Feature Selection
6.2. Accuracy of the PQD Classification Using the Adaptive ABC-PSO Algorithm as Optimal Feature Selection
6.3. Classification Accuracy under a Noisy Environment
6.4. Convergence Rate
6.5. Classification Performance Based on the Real Data of a Distribution Network
6.6. Performance Comparison to the Existing PQD Classification Systems
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muangthai, I.; Lin, S.J.; Lewis, C. Inter-industry linkages, energy and CO2 multipliers of the electric power industry in thailand. Aerosol Air Qual. Res. 2016, 16, 2033–2047. [Google Scholar] [CrossRef]
- Khaboot, N.; Srithapon, C.; Siritaratiwat, A.; Khunkitti, P. Increasing benefits in high PV penetration distribution system by using battery enegy storage and capacitor placement based on Salp Swarm algorithm. Energies 2019, 12, 4817. [Google Scholar] [CrossRef] [Green Version]
- Khaboot, N.; Chatthaworn, R.; Siritaratiwat, A.; Surawanitkun, C.; Khunkitti, P.; Meng, W. Increasing PV penetration level in low voltage distribution system using optimal installation and operation of battery energy storage. Cogent Eng. 2019, 6, 1641911. [Google Scholar] [CrossRef]
- Karasu, S.; Saraç, Z. Classification of power quality disturbances by 2D-Riesz Transform, multi-objective grey wolf optimizer and machine learning methods. Digit. Signal Process. 2020, 101, 102711. [Google Scholar] [CrossRef]
- Cai, K.; Hu, T.; Cao, W.; Li, G. Classifying power quality disturbances based on phase space reconstruction and a convolutional neural network. Appl. Sci. 2019, 9, 3681. [Google Scholar] [CrossRef] [Green Version]
- Onlam, A.; Yodphet, D.; Chatthaworn, R.; Surawanitkun, C.; Siritaratiwat, A.; Khunkitti, P. Power loss minimization and voltage stability improvement in electrical distribution system via network reconfiguration and distributed generation placement using novel adaptive shuffled frogs leaping algorithm. Energies 2019, 12, 553. [Google Scholar] [CrossRef] [Green Version]
- IEEE. IEEE 1159-2019—IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE: New York, NY, USA, 2019. [Google Scholar]
- CENELEC—EN 50160—Voltage Characteristics of Electricity Supplied by Public Electricity Networks. Available online: https://standards.globalspec.com/std/13493775/EN50160 (accessed on 3 December 2020).
- IEC 61000-4-30:2015 RLV—IEC Webstore—Electromagnetic Compatibility, EMC, Smart City. Available online: https://webstore.iec.ch/publication/22270 (accessed on 3 December 2020).
- Mishra, M. Power quality disturbance detection and classification using signal processing and soft computing techniques: A comprehensive review. Int. Trans. Electr. Energy Syst. 2019, 29, e12008. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, Z.; Che, Y. Power quality disturbance classification based on dwt and multilayer perceptron extreme learning machine. Appl. Sci. 2019, 9, 2315. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, S.; Zin, A.A.B.M.; Mokhtar, A.S.B.; Pesaran, M. A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renew. Sustain. Energy Rev. 2015, 51, 1650–1663. [Google Scholar] [CrossRef]
- Singh, U.; Singh, S.N. Application of fractional Fourier transform for classification of power quality disturbances. IET Sci. Meas. Technol. 2017, 11, 67–76. [Google Scholar] [CrossRef]
- Abdoos, A.A.; Mianaei, P.K.; Ghadikolaei, M.R. Combined VMD-SVM based feature selection method for classification of power quality events. Appl. Soft Comput. 2016, 38, 637–646. [Google Scholar] [CrossRef]
- Zhong, T.; Zhang, S.; Cai, G.; Li, Y.; Yang, B.; Chen, Y. Power quality disturbance recognition based on multiresolution S-transform and decision tree. IEEE Access 2019, 7, 88380–88392. [Google Scholar] [CrossRef]
- Thirumala, K.; Prasad, M.S.; Jain, T.; Umarikar, A.C. Tunable-Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances. IEEE Trans. Smart Grid 2018, 9, 3018–3028. [Google Scholar] [CrossRef]
- Karasu, S.; Saraç, Z. Investigation of power quality disturbances by using 2D discrete orthonormal S-transform, machine learning and multi-objective evolutionary algorithms. Swarm Evol. Comput. 2019, 44, 1060–1072. [Google Scholar] [CrossRef]
- Erişti, H.; Demir, Y. A new algorithm for automatic classification of power quality events based on wavelet transform and SVM. Expert Syst. Appl. 2010, 37, 4094–4102. [Google Scholar] [CrossRef]
- Li, J.; Teng, Z.; Tang, Q.; Song, J. Detection and classification of power quality disturbances using double resolution S-transform and DAG-SVMs. IEEE Trans. Instrum. Meas. 2016, 65, 2302–2312. [Google Scholar] [CrossRef]
- Biswal, B.; Dash, P.; Panigrahi, B. Non-stationary power signal processing for pattern recognition using HS-transform. Appl. Soft Comput. 2009, 9, 107–117. [Google Scholar] [CrossRef]
- Singh, H.R.; Mohanty, S.R.; Kishor, N.N.; Thakur, K.A. Real-time implementation of signal processing techniques for disturbances detection. IEEE Trans. Ind. Electron. 2018, 66, 3550–3560. [Google Scholar] [CrossRef]
- Santos, G.G.; Menezes, T.S.; Vieira, J.C.M.; Barra, P.H.A. An S-transform based approach for fault detection and classification in power distribution systems. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Aker, E.; Othman, M.L.; Veerasamy, V.; Bin Aris, I.; Wahab, N.I.A.; Hizam, H. Fault detection and classification of shunt compensated transmission line using discrete wavelet transform and naive Bayes classifier. Energies 2020, 13, 243. [Google Scholar] [CrossRef] [Green Version]
- Montoya, F.G.; Baños, R.; Alcayde, A.; Montoya, M.G.; Manzano-Agugliaro, F. Power quality: Scientific collaboration networks and research trends. Energies 2018, 11, 2067. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Zanghi, R.; Fortes, M.; Sotelo, G.; Silva, R.; Souza, J.; Guimarães, C.; Gomes, S. A survey on intelligent system application to fault diagnosis in electric power system transmission lines. Electr. Power Syst. Res. 2016, 136, 135–153. [Google Scholar] [CrossRef]
- Mandal, P.; Madhira, S.T.S.; Ul haque, A.; Meng, J.; Pineda, R.L. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Comput. Sci. 2012, 12, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Saini, M.K.; Kapoor, R. Classification of power quality events—A review. Int. J. Electr. Power Energy Syst. 2012, 43, 11–19. [Google Scholar] [CrossRef]
- Gunal, S.; Gerek, O.N.; Ece, D.G.; Edizkan, R. The search for optimal feature set in power quality event classification. Expert Syst. Appl. 2009, 36, 10266–10273. [Google Scholar] [CrossRef]
- Ekici, S.; Yildirim, S.; Poyraz, M. Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition. Expert Syst. Appl. 2008, 34, 2937–2944. [Google Scholar] [CrossRef]
- Hooshmand, R.; Enshaee, A. Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm. Electr. Power Syst. Res. 2010, 80, 1552–1561. [Google Scholar] [CrossRef]
- Bizjak, B.; Planinšič, P. Classification of power disturbances using fuzzy logic. In Proceedings of the 2006 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 30 August–1 September 2006; pp. 1356–1360. [Google Scholar]
- Wang, M.-H.; Tseng, Y.-F. A novel analytic method of power quality using extension genetic algorithm and wavelet transform. Expert Syst. Appl. 2011, 38, 12491–12496. [Google Scholar] [CrossRef]
- Bravo-Rodríguez, J.C.; Torres, F.J.; Borrás, M.D. Hybrid machine learning models for classifying power quality disturbances: A comparative study. Energies 2020, 13, 2761. [Google Scholar] [CrossRef]
- Huang, N.; Zhang, S.; Cai, G.; Xu, D. Power quality disturbances recognition based on a multiresolution generalized S-transform and a PSO-improved decision tree. Energies 2015, 8, 549–572. [Google Scholar] [CrossRef]
- Mishra, S.; Bhende, C.N.; Panigrahi, B.K. Detection and classification of power quality disturbances using S-transform and probabilistic neural network. IEEE Trans. Power Deliv. 2007, 23, 280–287. [Google Scholar] [CrossRef]
- Monedero, I.; Leon, C.; Ropero, J.; Garcia, A.; Elena, J.M.; Montano, J.C. Classification of electrical disturbances in real time using neural networks. IEEE Trans. Power Deliv. 2007, 22, 1288–1296. [Google Scholar] [CrossRef]
- Bhende, C.; Mishra, S.; Panigrahi, B. Detection and classification of power quality disturbances using S-transform and modular neural network. Electr. Power Syst. Res. 2008, 78, 122–128. [Google Scholar] [CrossRef]
- Singh, U.; Singh, S.N. Optimal feature selection via NSGA-II for power quality disturbances classification. IEEE Trans. Ind. Inform. 2018, 14, 2994–3002. [Google Scholar] [CrossRef]
- Huang, N.; Peng, H.; Cai, G.; Chen, J. Power quality disturbances feature selection and recognition using optimal multi-resolution fast S-transform and CART algorithm. Energies 2016, 9, 927. [Google Scholar] [CrossRef] [Green Version]
- Erişti, H.; Yıldırım, Ö.; Erişti, B.; Demir, Y. Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2013, 49, 95–103. [Google Scholar] [CrossRef]
- Ahila, R.; Sadasivam, V.; Manimala, K. An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances. Appl. Soft Comput. 2015, 32, 23–37. [Google Scholar] [CrossRef]
- Ucar, F.; Alcin, O.F.; Dandil, B.; Ata, F. Power quality event detection using a fast extreme learning machine. Energies 2018, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Hajian, M.; Foroud, A.A. A new hybrid pattern recognition scheme for automatic discrimination of power quality disturbances. Measurement 2014, 51, 265–280. [Google Scholar] [CrossRef]
- Radil, T.; Ramos, P.M.; Janeiro, F.M.; Serra, A.C. PQ monitoring system for real-time detection and classification of disturbances in a single-phase power system. IEEE Trans. Instrum. Meas. 2008, 57, 1725–1733. [Google Scholar] [CrossRef]
- Ray, P.K.; Kishor, N.; Mohanty, S.R. Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and S-transform. IEEE Trans. Smart Grid 2012, 3, 1082–1094. [Google Scholar] [CrossRef]
- Huang, N.; Xu, D.; Liu, X.; Lin, L. Power quality disturbances classification based on S-transform and probabilistic neural network. Neurocomputing 2012, 98, 12–23. [Google Scholar] [CrossRef]
- Mohanty, S.R.; Ray, P.K.; Kishor, N.; Panigrahi, B. Classification of disturbances in hybrid DG system using modular PNN and SVM. Int. J. Electr. Power Energy Syst. 2013, 44, 764–777. [Google Scholar] [CrossRef]
- Sharma, R.; Pachori, R.B.; Acharya, U.R. An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 2015, 17, 5218–5240. [Google Scholar] [CrossRef] [Green Version]
- Beritelli, F.; Capizzi, G.; Sciuto, G.L.; Napoli, C.; Scaglione, F. Rainfall estimation based on the intensity of the received signal in a LTE/4G Mobile terminal by using a probabilistic neural network. IEEE Access 2018, 6, 30865–30873. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University: Talas, Turkey, 2005. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Karaboga, D.; Akay, B. A survey: Algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31, 61–85. [Google Scholar] [CrossRef]
- Chen, J.-F.; Do, Q.H.; Hsieh, H.-N. Training artificial neural networks by a hybrid PSO-CS algorithm. Algorithms 2015, 8, 292–308. [Google Scholar] [CrossRef]
- Available online: http://map.pqube.com/ (accessed on 10 February 2021).
- Biswal, B.; Dash, P.K.; Panigrahi, B.K. Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization. IEEE Trans. Ind. Electron. 2009, 56, 212–220. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, T.; Pan, G.; Chen, S.; Zhong, Q.; Wei, Y. Power quality disturbance recognition using VMD-based feature extraction and heuristic feature selection. Appl. Sci. 2019, 9, 4901. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.K.; Mohanty, S.R.; Kishor, N.; Catalao, J.P.S. Optimal feature and decision tree-based classification of power quality disturbances in distributed generation systems. IEEE Trans. Sustain. Energy 2014, 5, 200–208. [Google Scholar] [CrossRef]
- Chakravorti, T.; Dash, P.K. Multiclass power quality events classification using variational mode decomposition with fast reduced kernel extreme learning machine-based feature selection. IET Sci. Meas. Technol. 2018, 12, 106–117. [Google Scholar] [CrossRef]
Label | Disturbance Class | Mathematic Modeling Equation | Parameter Constraints |
---|---|---|---|
C1 | Pure sine | ||
C2 | Sag | ||
C3 | Swell | ||
C4 | Interruption | ||
C5 | Harmonic | ||
C6 | Impulsive transient | ||
C7 | Oscillatory transient | ||
C8 | Flicker | ||
C9 | Notch | ||
C10 | Spikes | ||
C11 | Sag with harmonic | ||
C12 | Swell with harmonic | ||
C13 | Interruption with harmonic |
Parameter | Statistical Equation | Parameter | Statistical Equation |
---|---|---|---|
Energy | Kurtosis | ||
Entropy | Skewness | ||
Standard deviation (S.D.) | RMS | ||
Mean | Range |
Feature Vector |
---|
Wavelet Coefficients | Statistical Parameters | |||||||
---|---|---|---|---|---|---|---|---|
Energy | Entropy | S.D. | Mean | Kurtosis | Skewness | RMS | Range | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |
33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | |
57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | |
65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |
Iteration | Optimal Features | Spread Constant | Overall Accuracy (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
724 | 8 | 16 | 18 | 28 | 40 | 47 | 54 | 63 | 69 | 0.0009286 | 98.92 |
725 | 2 | 14 | 23 | 31 | 38 | 41 | 50 | 63 | 65 | 0.0009286 | 95.23 |
726 | 3 | 16 | 17 | 31 | 36 | 44 | 49 | 60 | 67 | 0.0005143 | 98.62 |
727 | 5 | 9 | 21 | 25 | 35 | 45 | 50 | 60 | 72 | 0.0003071 | 96.31 |
728 | 5 | 16 | 18 | 32 | 40 | 41 | 52 | 58 | 68 | 0.0018460 | 99.31 |
729 | 7 | 16 | 17 | 30 | 37 | 41 | 53 | 58 | 71 | 0.0015500 | 96.38 |
730 | 3 | 11 | 18 | 27 | 40 | 41 | 52 | 60 | 68 | 0.0003071 | 98.92 |
731 | 6 | 16 | 18 | 26 | 40 | 48 | 49 | 58 | 66 | 0.0009286 | 98.92 |
732 | 5 | 16 | 17 | 29 | 37 | 41 | 54 | 64 | 67 | 0.0015500 | 98.00 |
Type of PQD | Accuracy (%) | ||||||
---|---|---|---|---|---|---|---|
One Type (Energy) | One Type (Entropy) | One Type (S.D.) | Three Types (Energy + Entropy + S.D.) | Five Types (Energy + Entropy + S.D. + Mean + Kurtosis) | All Types | Optimal Adaptive ABC-PSO | |
Pure sine | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Sag | 93 | 77 | 80 | 96 | 96 | 97 | 98 |
Swell | 93 | 69 | 76 | 94 | 98 | 99 | 98 |
Interruption | 100 | 94 | 87 | 100 | 100 | 100 | 100 |
Harmonic | 100 | 79 | 100 | 99 | 100 | 100 | 100 |
Sag with harmonic | 92 | 71 | 81 | 95 | 94 | 89 | 98 |
Swell with harmonic | 89 | 72 | 75 | 91 | 95 | 98 | 100 |
Interruption with harmonic | 98 | 92 | 93 | 99 | 98 | 100 | 99 |
Flicker | 98 | 92 | 96 | 98 | 99 | 99 | 99 |
Oscillatory transient | 97 | 95 | 81 | 96 | 96 | 99 | 99 |
Impulsive transient | 99 | 95 | 98 | 100 | 100 | 100 | 100 |
Periodic notch | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Spike | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Overall | 96.84 | 87.38 | 89.77 | 97.54 | 98.15 | 98.54 | 99.31 |
Magnitude of Noise | Classification Accuracy (%) | |||
---|---|---|---|---|
All Features | Optimal Selected Features by PSO | Optimal Selected Features by ABC | Optimal Selected Features by ABC-PSO | |
10 dB | 77.54 | 73.97 | 76.00 | 79.62 |
20 dB | 89.66 | 88.00 | 88.68 | 88.68 |
30 dB | 95.57 | 95.14 | 95.38 | 95.45 |
40 dB | 96.92 | 96.12 | 96.31 | 97.23 |
50 dB | 98.28 | 97.91 | 98.28 | 98.40 |
Feature Selection Algorithm | Number of Iterations Required |
---|---|
PSO | 84 |
ABC | 1556 |
ABC-PSO | 728 |
Type of PQDs | Test Number | Classification Accuracy by the Proposed Adaptive ABC-PSO |
---|---|---|
Pure sine | 100 | 99 |
Sag | 100 | 98 |
Swell | 100 | 100 |
Interruption | 100 | 99 |
Harmonic | 100 | 100 |
Overall | 99.2 |
Reference | Number of PQD Types | Feature Extraction Type | Classification Technique | Optimal Feature Selection Algorithm | Overall Accuracy (%) |
---|---|---|---|---|---|
[40] | 5 | DWT | least squares SVM | k-means+Apriori algorithm | 98.88 |
[55] | 9 | ST | Fuzzy C-means | Adaptive PSO | 96.33 |
[14] | 9 | ST+VMD | support vector machine (SVM) | SFS | 99.66 |
[41] | 10 | DWT | extreme learning machine (ELM) | PSO | 97.60 |
[56] | 13 | VMD | one-versus-rest SVM | Permutation Entropy+Fisher Score | 97.6 |
[57] | 13 | hyperbolic S-transform | Decision tree | GA | 99.5 |
[58] | 15 | VMD | polynomial fast reduced kernel ELM | FDA | 98.82 |
This work | 13 | WT | PNN | Adaptive ABC-PSO | 99.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamchuen, S.; Siritaratiwat, A.; Fuangfoo, P.; Suthisopapan, P.; Khunkitti, P. High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm. Energies 2021, 14, 1238. https://doi.org/10.3390/en14051238
Chamchuen S, Siritaratiwat A, Fuangfoo P, Suthisopapan P, Khunkitti P. High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm. Energies. 2021; 14(5):1238. https://doi.org/10.3390/en14051238
Chicago/Turabian StyleChamchuen, Supanat, Apirat Siritaratiwat, Pradit Fuangfoo, Puripong Suthisopapan, and Pirat Khunkitti. 2021. "High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm" Energies 14, no. 5: 1238. https://doi.org/10.3390/en14051238
APA StyleChamchuen, S., Siritaratiwat, A., Fuangfoo, P., Suthisopapan, P., & Khunkitti, P. (2021). High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm. Energies, 14(5), 1238. https://doi.org/10.3390/en14051238