Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods
2.2. Laboratory and Pilot Plant Trials
2.3. Full-Scale Trials
2.4. Mass Balance, Energy, and Economic Calculations
- W0—a WWTP without coagulation (base case);
- W0A—a variant without coagulation, supplemented by anammox process in a side-stream;
- W1—a variant taking into account the use of a coagulant (CEPT);
- W1A—a variant with CEPT and anammox process in a side-stream.
2.4.1. BNR Process Calculation
2.4.2. Mass Balance for AD
2.4.3. Energy Consumption and Production
- EC (W0) is the energy consumption in variant W0 in kWh/d;
- EC (W0) = 0.74 × BOD (W0) in kWh/d;
- EC (Wi) is the energy consumption in variants W1, W1A, and W0A in kWh/d;
- O2dem (Wi) is the oxygen demand in variants W1, W1A, and W0A from the BNR calculation according the ATV guidelines – OVd, from Table S1 (Supplementary Materials) in kg O2/d;
- O2dem (W0) is the oxygen demand in variant W0 in kg O2/d;
- 0.74 is the unit energy consumption in W0 from the operational database in WWTP in kWh/kg BOD; and
- BOD (W0) is the BOD loading of BNR in W0 = 35,070 in kg BOD/d.
- VS load red is the VS reduced in AD in kg VS/d;
- Σ Energy in substrate is the sum of energy in PS, WAS, and PW in MJ/d;
- Σ VS load in substrate is the sum of PS, WAS, and PW organic loading in kg VS/d;
- ηEE is the electrical energy efficiency of CHP in %; and 3.6 is the conversion from MJ, where 1 kWh = 3.6 MJ.
2.4.4. Mass Balance for Dewatered Sludge and Anammox
3. Results and Discussion
3.1. Laboratory and Pilot-Scale Tests
3.2. Full-Scale Tests
3.2.1. Removal Effectiveness
3.2.2. AD Loading and Biogas Production
3.2.3. Sludge Dewatering
3.2.4. CEPT Impact on the BNR Process
3.3. Mass and Energy Balance and Economic Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive (EU) 2018/2001. Directive of the European Parliament and of the Council on the Promotion of the Use of energy from Renewable Sources, 11 December 2018. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32018L2001 (accessed on 31 January 2021).
- A Policy Framework for Climate and Energy in the Period from 2020 to 2030. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions, Brussels 22.01.2014. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2014:0015:FIN:EN:PDF (accessed on 31 January 2021).
- Directive 2008/98/EC. Directive of the European Parliament and of the Council on Waste and Repealing Certain DIRECTIVES, of 19 November 2008. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed on 31 January 2021).
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; D’Antoni, B.M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour. Technol. 2018, 268, 749–758. [Google Scholar] [CrossRef]
- Maktabifard, M.; Zaborowska, E.; Makinia, J. Energy neutrality versus carbon footprint minimization in municipal wastewater treatment plants. Bioresour. Technol. 2020, 300, 122647. [Google Scholar] [CrossRef] [PubMed]
- Budych-Gorzna, M.; Smoczynski, M.; Oleskowicz-Popiel, P. Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste. Appl. Energy 2016, 161, 387–394. [Google Scholar] [CrossRef]
- Tandukar, M.; Pavlostathis, S.G. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints. Water Res. 2015, 87, 432–445. [Google Scholar] [CrossRef]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Cano, R.J.; Pérez-Elvira, S.; Fdz-Polanco, F. Energy feasibility study of sludge pretreatments: A review. Appl. Energy 2015, 149, 176–185. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Guven, H.; Dereli, R.K.; Ozgun, H.; Ersahin, M.E.; Ozturk, I. Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics. Prog. Energy Combust. Sci. 2019, 70, 145–168. [Google Scholar] [CrossRef]
- Ju, F.; Wang, Y.; Lau, F.T.K.; Fung, W.C.; Huang, D.; Xia, Y.; Zhang, T. Anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge and the microbial community structure. Appl. Microbiol. Biotechnol. 2016, 100, 8975–8982. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, G.; De Kreuk, M.K.; Van Lier, J.B. Influence of chemically enhanced primary treatment on anaerobic digestion and dewaterability of waste sludge. Water Sci. Technol. 2017, 76, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, R.-H.; Li, Y.; Xu, J.; Li, X.-Y. Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation. Process. Biochem. 2017, 54, 135–139. [Google Scholar] [CrossRef]
- Maktabifard, M.; Zaborowska, E.; Makinia, J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev. Environ. Sci. Bio/Technol. 2018, 17, 655–689. [Google Scholar] [CrossRef] [Green Version]
- Chagnon, F.; Harleman, D.R.F. An Introduction to Chemically Enhanced Primary Treatment, Massachusetts Institute of Technology 2002. Available online: https://pdfs.semanticscholar.org/f0bd/980176f5920cf06afd1ec7174dfb37c0cab5.pdf (accessed on 10 May 2020).
- Remy, C.; Boulestreau, M.; Lesjean, B. Proof of concept for a new energy-positive wastewater treatment scheme. Water Sci. Technol. 2014, 70, 1709–1716. [Google Scholar] [CrossRef]
- Haydar, S.; Aziz, J.A. Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)—A case study of Saddiq Leather Works. J. Hazard. Mater. 2009, 163, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Balusani, D.; Smith, S.; Santoro, D.; Walton, J.; Nakhla, G.; Ray, M.B. Reusability of recovered iron coagulant from primary municipal sludge and its impact on chemically enhanced primary treatment. Sep. Purif. Technol. 2020, 231, 115894. [Google Scholar] [CrossRef]
- Wang, H.; Li, F.; Keller, A.A.; Xu, R. Chemically enhanced primary treatment (CEPT) for removal of carbon and nutrients from municipal wastewater treatment plants: A case study of Shanghai. Water Sci. Technol. 2009, 60, 1803–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taboada-Santos, A.; Lema, J.M.; Carballa, M. Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurations. Waste Manag. 2019, 92, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Santos, A.; Rivadulla, E.; Paredes, L.; Carballa, M.; Romalde, J.; Lema, J.M. Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations. Water Res. 2020, 169, 115258. [Google Scholar] [CrossRef]
- Mccarty, P.L.; Bae, J.; Kim, J. Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environ. Sci. Technol. 2011, 45, 7100–7106. [Google Scholar] [CrossRef] [PubMed]
- Zaborowska, E.; Czerwionka, K.; Makinia, J. Strategies for achieving energy neutrality in biological nutrient removal systems—A case study of the Slupsk WWTP (northern Poland). Water Sci. Technol. 2016, 75, 727–740. [Google Scholar] [CrossRef]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C. Full-scale partial nitritation/anammox experiences—An application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.S.; Nawaz, A.; Qyyum, M.A.; Ismail, S.; Aslam, M.; Tawfik, A.; Yun, C.M.; Lee, M. Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects. Renew. Sustain. Energy Rev. 2021, 135, 110126. [Google Scholar] [CrossRef]
- Han, X.; Zhang, S.; Yang, S.; Zhang, L.; Peng, Y. Full-scale partial nitritation/anammox (PN/A) process for treating sludge dewatering liquor from anaerobic digestion after thermal hydrolysis. Bioresour. Technol. 2020, 297, 122380. [Google Scholar] [CrossRef]
- Rajendran, K.; Murthy, G.S. Techno-economic and life cycle assessments of anaerobic digestion—A review. Biocatal. Agric. Biotechnol. 2019, 20, 101207. [Google Scholar] [CrossRef]
- APHA 2012 Standard Methods for the Examination of Water and Wastewater; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2012.
- ATV-DVWK. Guidelines—A 131, Dimensioning of Single-Stage Activated Sludge Treatment Plants; GERMAN ATV-DVWK RULES AND STANDARDS; ATV-DVWK: Hennef, Germany, 2000. [Google Scholar]
- Garrido, J.M.; Fdz-Polanco, M. Working with energy and mass balances: A conceptual framework to understand the limits of municipal wastewater treatment. Water Sci. Technol. 2013, 67, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Shizas, I.; Bagley, D.M. Experimental Determination of Energy Content of Unknown Organics in Municipal Wastewater Streams. J. Energy Eng. 2004, 130, 45–53. [Google Scholar] [CrossRef]
- Jang, H.M.; Shin, J.; Choi, S.; Shin, S.G.; Park, K.Y.; Cho, J.; Kim, Y.M. Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Bioresour. Technol. 2017, 244, 433–444. [Google Scholar] [CrossRef]
- Aiyuk, S.; Amoako, J.; Raskin, L.; Van Haandel, A.; Verstraete, W. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. Water Res. 2004, 38, 3031–3042. [Google Scholar] [CrossRef]
- Kroiss, H.; Cao, Y. Energy considerations. In Activated Sludge—100 Years and Counting; IWA Publishing: London, UK, 2014; pp. 221–244. [Google Scholar]
- Park, C.M.; Novak, J.T. The effect of direct addition of iron(III) on anaerobic digestion efficiency and odor causing compounds. Water Sci. Technol. 2013, 68, 2391–2396. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, D.M.; Mohedano, R.D.A.; Nadaleti, W.C.; Junior, A.B.D.C.; Lourenço, V.A.; Gonçalves, D.F.; Filho, P.B. H2S adsorption on nanostructured iron oxide at room temperature for biogas purification: Application of renewable energy. Renew. Energy 2020, 154, 151–160. [Google Scholar] [CrossRef]
- Khanongnuch, R.; Di Capua, F.; Lakaniemi, A.-M.; Rene, E.R.; Lens, P.N. H2S removal and microbial community composition in an anoxic biotrickling filter under autotrophic and mixotrophic conditions. J. Hazard. Mater. 2019, 367, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huang, H.M.; Boiarkina, I.; Yu, W.; Huang, Y.F.; Wang, G.Q.; Young, B.R. Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. J. Environ. Manag. 2019, 248, 109254. [Google Scholar] [CrossRef]
- Vaxelaire, J.; Cézac, P. Moisture distribution in activated sludges: A review. Water Res. 2004, 38, 2215–2230. [Google Scholar] [CrossRef] [PubMed]
- Erdincler, A.; Vesilind, P.A. Effect of sludge water distribution on the liquid-solid separation of a biological sludge. J. Environ. Sci. Health Part A 2003, 38, 2391–2400. [Google Scholar] [CrossRef]
- Skinner, S.J.; Studer, L.J.; Dixon, D.R.; Hillis, P.; Rees, C.A.; Wall, R.C.; Cavalida, R.G.; Usher, S.P.; Stickland, A.D.; Scales, P.J. Quantification of wastewater sludge dewatering. Water Res. 2015, 82, 2–13. [Google Scholar] [CrossRef]
- Schnell, M.; Horst, T.; Quicker, P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manag. 2020, 263, 110367. [Google Scholar] [CrossRef]
- Lemaire, R.; Marcelino, M.; Yuan, Z. Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater. Biotechnol. Bioeng. 2008, 100, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Shin, S.G.; Jannat, A.H.; Tongco, J.V.; Hwang, S. Use of food waste-recycling wastewater as an alternative carbon source for denitrification process: A full-scale study. Bioresour. Technol. 2017, 245, 1016–1021. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Galvagno, G.; Cimon, C. Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants. Bioresour. Technol. 2018, 268, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Explorative Research on Innovative Nitrogen Recovery; STOWA 2012-51; Foundation for Applied Water Research STOWA: Amersfoort, The Netherlands, 2012.
- Ma, B.; Wang, S.; Cao, S.; Miao, Y.; Jia, F.; Du, R.; Peng, Y. Biological nitrogen removal from sewage via anammox: Recent advances. Bioresour. Technol. 2016, 200, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Gori, R.; Giaccherini, F.; Jiang, L.-M.; Sobhani, R.; Rosso, D. Role of primary sedimentation on plant-wide energy recovery and carbon footprint. Water Sci. Technol. 2013, 68, 870–878. [Google Scholar] [CrossRef] [PubMed]
Parameter | W0, W0A | W1, W1A | Unit | Source of Data |
---|---|---|---|---|
Inlet | 105,000 | 105,000 | m3/d | WWTP |
PE | 910,000 | 910,000 | PE | WWTP |
COD | 1300 | 1300 | mg/L | WWTP |
BOD | 520 | 520 | mg/L | WWTP |
TSS | 720 | 720 | mg/L | WWTP |
TN | 97 | 97 | mg/L | WWTP |
TP | 14 | 14 | mg/L | WWTP |
TSSred | 63 | 79 | % | Full-scale test |
CODred | 40 | 55 | % | Full-scale test |
BODred | 36 | 50 | % | Full-scale test |
TNred | 14 | 17 | % | Full-scale test |
TPred | 22 | 45 | % | Full-scale test |
EC | 0.74 | n.a. | kWh/kgBOD | Full-scale test 1 |
WAS | 0.93 | 0.79 (W1) | kgTSS/kgBOD | ATV calculation [32] |
0.75 (W1A) | kgTSS/kgBOD | ATV calculation [32] | ||
PS | 31.4 | 44.2 | g/PE | Full-scale test |
WAS-TS | 5 | 5.5 | % | Full-scale test |
WAS-VS | 77 | 77 | %TS | Full-scale test |
PS-TS | 4.5 | 5 | % | Full-scale test |
PS-VS | 71 | 71 | %TS | Full-scale test |
PW-TS | 10 | 10 | % | Full-scale test |
PW-VS | 95 | 95 | %TS | Full-scale test |
COD/VS in WAS | 1.54 | 1.54 | - | Full-scale test |
COD/VS in PS | 1.64 | 1.64 | - | Full-scale test |
COD/VS in PW | 2.14 | 2.14 | - | Full-scale test |
VSred | 43.6 | 50.6 | %VS | Full-scale test |
Sludge production anammox | 0.15 | 0.15 | kgTS/kgN | Lackner et al. (2014) [27] |
Energy consumption anammox | 0.8 | 0.8 | kWh/kgN | Lackner et al. (2014) [27] |
Nitrogen reduction efficiency anammox | 90 | 90 | % | Lackner et al. (2014) [27] |
Energy price | 86 | 86 | EUR/MWh | WWTP |
PIX price | 101 | 101 | EUR/Mg | WWTP |
Sludge management price | 67.4 | 67.4 | EUR/Mg | WWTP |
Caloric value of CH4 | 35.53 | 35.53 | MJ/m3 | |
η EE | 37 | 37 | % | WWTP |
Parameter | Dose (mg/L) | |||
---|---|---|---|---|
0 | 20 | 60 | 100 | |
COD (mg/L) | 613 | 535 | 485 | 440 |
BOD (mg/L) | 284 | 237 | 188 | 200 |
TSS (mg/L) | 142 | 98 | 91 | 101 |
TP (mg/L) | 9.58 | 8.30 | 6.09 | 5.80 |
N–NH4 (mg/L) | 41.9 | 42.0 | 40.9 | 41.6 |
TN (mg/L) | 59.7 | 58.2 | 55.2 | 54.5 |
Organic Nitrogen (mg/L) | 17.8 | 16.2 | 14.3 | 12.9 |
Parameter | Unit | Without CEPT | With CEPT | ||||||
---|---|---|---|---|---|---|---|---|---|
PS | WAS | PW | SUM | PS | WAS | PW | SUM | ||
Mass flow | Mg/d | 676 | 739 | 30 | 1445 | 892 | 396 | 30 | 1318 |
kg/PE 1 | 0.70 | 0.77 | 0.03 | 1.5 | 0.89 | 0.40 | 0.03 | 1.32 | |
TS | % | 4.5 | 4.9 | 10.0 | 5.0 | 5.5 | 10.0 | ||
VS | %TS | 71.3 | 76.9 | 85.0 | 69.9 | 79.1 | 85.0 | ||
TS load | kg TS/d | 30,316 | 36,211 | 3000 | 69,527 | 44,243 | 21,780 | 3000 | 69,023 |
g TS/PE | 31.4 | 37.6 | 3.1 | 72.1 | 44.2 | 21.8 | 3.0 | 69.0 | |
VS load | kg VS/d | 21,603 | 27,846 | 2550 | 52,000 | 30,935 | 17,228 | 2550 | 50,713 |
g VS/PE | 22.4 | 28.9 | 2.6 | 53.9 | 30.9 | 17.2 | 2.5 | 50.7 | |
HRT | d | 20.35 | 22.31 | ||||||
OLR | kg VS/m3d | 1.78 | 1.74 | ||||||
VSred | % | 43.6 | 50.6 |
Parameter | Unit | Without CEPT | With CEPT | |||||
---|---|---|---|---|---|---|---|---|
Average | Min | Max | Average | Min | Max | |||
Dewatered sludge | TS | % | 21.5 | 19.8 | 23.2 | 24.4 | 21.1 | 27.5 |
VS | %TS | 63.6 | 52.6 | 79.9 | 57.2 | 43.5 | 76.8 | |
Dewatering liquors | SS | mg/L | 756 | 110 | 1600 | 429 | 96 | 1200 |
SOD | mg/L | 1848 | 449 | 6610 | 796 | 499 | 1390 | |
N–NH4 | mg/L | 980 | 179 | 1240 | 948 | 759 | 1250 | |
Pdissolved | mg/L | 157 | 19 | 240 | 75 | 10 | 150 | |
TP | mg/L | 202 | 80 | 293 | 110 | 30 | 219 |
Variant | O2 dem | EC 1 | C/N | ECS | WAS 2 |
---|---|---|---|---|---|
(kgO2/d) | (kWh/d) | (–) | (mgCOD/L) | (kgTS/d) | |
W0 | 52,709 | 25,952 | 9.2 | 0 | 32,533 |
W1 | 48,466 | 23,863 | 7.3 | 60 | 21,416 |
W0A | 50,036 | 24,636 | 11.1 | 0 | 32,533 |
W1A | 42,166 | 20,761 | 8.9 | 0 | 20,355 |
Scenario | Energy Production (EP) from Biogas | Energy Consumption (EC) for BNR | Energy Consumption (EC) for P/N | Overall energy Consumption at the WWTP | Covering the Demand for Electricity |
---|---|---|---|---|---|
MWh/Year | % | ||||
W0 | 17,880 | 9472 | 0 | 24,000 | 75 |
W1 | 21,651 | 8710 | 0 | 23,238 | 93 |
W0A | 17,880 | 8993 | 467 | 23,987 | 75 |
W1A | 21,651 | 7578 | 467 | 22,573 | 96 |
Costs/Savings | Unit | W1 (CEPT) | W0A (PN/A) | W1A (CEPT + PN/A) |
---|---|---|---|---|
Additional operating costs | ||||
Energy consumption-PN/A | EUR/year | 0 | 40,201 | 40,201 |
Coagulant consumption | EUR/year | 232,624 | 0 | 232,624 |
Total costs | EUR/year | 232,624 | 40,201 | 272,825 |
Operating cost (savings) | ||||
Energy consumption-BNR | EUR/year | −65,612 | −41,334 | −163,032 |
Energy production | EUR/year | −324,818 | 0 | −324,818 |
Sludge management | EUR/year | −507,558 | 0 | −507,558 |
Total savings | EUR/year | −897,988 | −41,334 | −995,408 |
Balance of costs and savings | EUR/year | −665,364 | −1133 | −722,583 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budych-Gorzna, M.; Szatkowska, B.; Jaroszynski, L.; Paulsrud, B.; Jankowska, E.; Jaroszynski, T.; Oleskowicz-Popiel, P. Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment. Energies 2021, 14, 1445. https://doi.org/10.3390/en14051445
Budych-Gorzna M, Szatkowska B, Jaroszynski L, Paulsrud B, Jankowska E, Jaroszynski T, Oleskowicz-Popiel P. Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment. Energies. 2021; 14(5):1445. https://doi.org/10.3390/en14051445
Chicago/Turabian StyleBudych-Gorzna, Magdalena, Beata Szatkowska, Lukasz Jaroszynski, Bjarne Paulsrud, Ewelina Jankowska, Tymoteusz Jaroszynski, and Piotr Oleskowicz-Popiel. 2021. "Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment" Energies 14, no. 5: 1445. https://doi.org/10.3390/en14051445
APA StyleBudych-Gorzna, M., Szatkowska, B., Jaroszynski, L., Paulsrud, B., Jankowska, E., Jaroszynski, T., & Oleskowicz-Popiel, P. (2021). Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment. Energies, 14(5), 1445. https://doi.org/10.3390/en14051445