Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Sludge Conditioning
2.3. Sludge Conditioning by Ultrasonic Disintegration
2.4. Sludge Dewatering/Centrifugation
2.5. Analysis
2.6. Artificial Neural Networks (ANNs)
2.7. Research Methodology
3. Results
3.1. Dewatering Efficiency
3.2. Developing the Mathematical Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Skinner, S.; Studer, L.J.; Dixon, D.R.; Hillis, P.; Rees, C.A.; Wall, R.C.; Cavalida, R.G.; Usher, S.P.; Stickland, A.; Scales, P.J. Quantification of wastewater sludge dewatering. Water Res. 2015, 82, 2–13. [Google Scholar] [CrossRef]
- Mowla, D.; Tran, H.; Allen, D.G. A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenergy 2013, 58, 365–378. [Google Scholar] [CrossRef]
- Qi, Y.; Thapa, K.B.; Hoadley, A.F. Application of filtration aids for improving sludge dewatering properties-A review. Chem. Eng. J. 2011, 171, 373–384. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, P.; Wang, H.; Ye, J. Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability. Ultrason. Sonochem. 2018, 40A, 353–360. [Google Scholar] [CrossRef]
- Zhao, Y.Q. Involvement of gypsum (CaSO4·2H2O) in water treatment sludge dewatering: A potential benefit in disposal and reuse. Sep. Sci Technol. 2006, 41, 2785–2794. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, P.; Zeng, G.; Deng, J.; Zhou, Y.; Lu, H. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem. Eng. J. 2010, 158, 616–622. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Kamizela, T. Sludge Dewatering: Processes for Enhanced Performance, Industrial and Municipal Sludge. Emerging Concerns and Scope for Resource Recovery; Prasad, M.N.V., Vithanage, M., Mohan, S.V., Eds.; Elsevier: Oxford, UK, 2019; pp. 399–423. [Google Scholar]
- Na, S.; Kim, Y.U.; Khim, J. Physiochemical properties of digested sludge with ultrasonic treatment. Ultrason Sonochem. 2007, 14, 281–285. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; Wang, W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresour. Technol. 2007, 98, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.P.; Chang, B.V.; Liao, G.S.; Jean, D.S.; Lee, D.J. Observations on changes in ultrasonically treatedwaste-activated sludge. Water Res. 2001, 35, 1038–1046. [Google Scholar] [CrossRef]
- Chu, C.P.; Lee, D.J. Experimental analysis of centrifugal dewatering process of polyelectrolyte flocculated waste activated sludge. Water Res. 2001, 35, 2377–2384. [Google Scholar] [CrossRef]
- Rutkowski, L. Methods and Techniques of Artificial Intelligence; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2005. (In Polish) [Google Scholar]
- Livingstone, D.J. (Ed.) Artificial Neural Networks, Methods and Applications; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar]
- Wu, Y.C.; Feng, J.W. Development and Application of Artificial Neural Network. Wireless Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Zhao, Z.Z. Data-Mining for Processes in Chemistry, Materials, and Engineering. Processes 2019, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Z.; Liu, Z. Application of Artificial Neural Networks for Catalysis: A Review. Catalysts 2017, 7, 306. [Google Scholar] [CrossRef]
- Di Benedetto, R.M.; Botelho, E.C.; Janotti, A.; Ancelotti Junior, A.C.; Gomes, G.F. Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites. Compos. Struct. 2021, 257, 113131. [Google Scholar] [CrossRef]
- Chojaczyk, A.A.; Teixeira, A.P.; Neves, L.C.; Cardoso, J.B.; Guedes Soares, C. Review and application of Artificial Neural Networks models in reliability analysis of steel structures. Struct. Saf. 2015, 52, 78–89. [Google Scholar] [CrossRef]
- Parmar, J.G.; Dave, K.G.; Gohil, A.V.; Trivedi, H.S. Prediction of end milling process parameters using artificial neural network. Mater. Today Proc. 2020, in press. [Google Scholar] [CrossRef]
- Lee, D.S.; Jeon, C.O.; Park, J.M.; Chang, K.S. Hybrid neural network modeling of full-scale industrial wastewater treatment process. Biotechnol. Bioeng. 2002, 78, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Cinar, O.; Hasar, H.; Kinaci, C. Modeling of submerged membrane bioreactor by artificial neural network. J. Biotechnol. 2006, 123, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.S.; Moustafa, M.A.E.; Seif, H.A.E.; Kobrosy, G.E. Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alex. Eng. J. 2012, 51, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Hassen, E.B.; Asmare, A.M. Artificial neural networks application to monitor brewery wastewater treatment plant efficiency based on water assurance quality. Chem. Int. 2019, 5, 87–96. [Google Scholar]
- Kujawa, S.; Mazurkiewicz, J.; Czekała, W. Using convolutional neural networks to classify the maturity of compost based on sewage sludge and rapeseed straw. J. Clean. Prod. 2020, 258, 120814. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A Review of the Artificial Neural Network Models for Water Quality Prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- Kulkarni, M.V.; Deshmukh, D.S.; Shekhawat, S.P. An innovative design approach of hot water storage tank for solar water heating system using artificial neural network. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Chen, H.; Fu, Q.; Liao, Q.; Zhu, X.; Shah, A. Applying artificial neural network to predict the viscosity of microalgae slurry in hydrothermal hydrolysis process. Energy AI 2021, 4, 100053. [Google Scholar] [CrossRef]
- Al-Naji, A.; Fakhri, A.B.; Gharghan, S.K.; Chahl, J. Soil color analysis based on a RGB camera and an artificial neural network towards smart irrigation: A pilot study. Heliyon 2021, 7, e06078. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
Ultrasonic Disintegrator | Power, W | Frequency, kHz | Maximum Amplitude, µm | Sonication, Applied Amplitude, µm | Sonication Time, s | |
---|---|---|---|---|---|---|
UP 400 S | UD 1 | 400 | 20 | 90 | 45.90 | 20, 30, 40, 60, 90, 120 |
VCX 134 | UD 2 | 130 | 40 | 120 | 60.120 | |
VC 750 | UD 3 | 750 | 20 | 61 | 30.61 |
ANN Parameters | MLP | RBF |
---|---|---|
Type | MLP 6:20–5-1:1 | RBF 7:21–57–1:1 |
Quality for the learning dataset | 0.355271 | 0.322423 |
Quality for the validation dataset | 0.215901 | 0.206959 |
Quality for the test dataset | 0.219473 | 0.203221 |
Error for the learning dataset | 0.059430 | 0.118578 |
Error for the validation dataset | 0.034089 | 0.072439 |
Error for the test dataset | 0.034617 | 0.069828 |
Learning algorithms | BP100, CG20, CG 83b | SS, KN, PI |
Correlation | 0.95 | 0.96 |
Case | rcf | Conditioning | Sonication Time, s | Amplitude, µm | Dose, g | Real Value | MLP Network Forecast | RBF Network Forecast | |||
---|---|---|---|---|---|---|---|---|---|---|---|
SF, % | SH, % | SH, % | Error, % | SH, % | Error, % | ||||||
1 | 6040 | 0 | 0 | - | 93.4 | 93.3 | 93.1 | 0.1 | 93.0 | 0.3 | |
2 | 6040 | UD | 90 | 60 | - | 93.7 | 92.4 | 92.0 | 0.5 | 92.5 | 0.1 |
3 | 6040 | UD | 60 | 120 | - | 92.4 | 92.7 | 92.5 | 0.2 | 92.6 | 0.1 |
4 | 6040 | LG + C | 0 | 0 | 0.5 | 90.3 | 86.6 | 89.3 | 3.0 | 89.4 | 3.2 |
5 | 6040 | LG + G | 0 | 0 | 0.5 | 89.4 | 88.6 | 88.0 | 0.6 | 88.4 | 0.2 |
6 | 6040 | A | 0 | 0 | 0.5 | 87.6 | 88.4 | 90.0 | 1.8 | 90.3 | 2.1 |
7 | 6040 | UD + A | 60 | 60 | 0.5 | 84.6 | 88.0 | 87.5 | 0.5 | 88.1 | 0.2 |
8 | 6040 | UD + C | 90 | 120 | 0.5 | 88.4 | 84.8 | 85.6 | 0.9 | 85.3 | 0.5 |
9 | 6040 | UD + LG + C | 120 | 60 | 0.5 | 88.6 | 84.2 | 84.9 | 0.8 | 84.5 | 0.3 |
10 | 6040 | UD + LG+ A | 90 | 120 | 0.5 | 87.4 | 84.9 | 85.3 | 0.5 | 84.8 | 0.1 |
11 | 6040 | UD +LG + G | 90 | 120 | 0.5 | 88.2 | 86.8 | 86.1 | 0.8 | 86.8 | 0.0 |
12 | 4530 | UD + A | 40 | 30 | 0.5 | 85.9 | 89.9 | 90.1 | 0.2 | 90.4 | 0.5 |
13 | 4530 | UD + G | 40 | 60 | 0.5 | 83.8 | 89.1 | 89.3 | 0.3 | 89.4 | 0.4 |
14 | 6040 | UD | 20 | 30 | - | 94.3 | 93.0 | 92.6 | 0.4 | 93.3 | 0.3 |
15 | 6040 | UD + A | 40 | 30 | 0.5 | 89.2 | 88.6 | 88.3 | 0.3 | 88.5 | 0.1 |
16 | 6040 | UD + G | 40 | 60 | 0.5 | 89.4 | 86.9 | 87.4 | 0.5 | 87.4 | 0.6 |
17 | 6040 | UD + C | 40 | 60 | 0.5 | 89.7 | 86.8 | 86.6 | 0.2 | 86.8 | 0.1 |
18 | 7550 | A | 0 | 0 | 0.5 | 93.1 | 87.1 | 88.5 | 1.6 | 88.8 | 2.0 |
19 | 7550 | UD + C | 20 | 60 | 0.5 | 91.6 | 84.9 | 85.7 | 1.0 | 85.1 | 0.3 |
20 | 7550 | UD | 60 | 120 | - | 94.9 | 90.8 | 91.3 | 0.6 | 90.7 | 0.1 |
21 | 7550 | UD + A | 60 | 60 | 0.25 | 91.4 | 88.2 | 87.4 | 0.9 | 87.2 | 1.2 |
22 | 7550 | UD + A | 60 | 60 | 0.75 | 89.3 | 85.7 | 85.3 | 0.5 | 85.7 | 0.0 |
23 | 7550 | UD + C | 30 | 60 | 0.25 | 91.4 | 86.4 | 86.8 | 0.5 | 86.7 | 0.4 |
24 | 7550 | UD + C | 60 | 60 | 0.5 | 89.4 | 85.8 | 85.2 | 0.6 | 85.7 | 0.1 |
25 | 7550 | UD + G | 30 | 60 | 0.25 | 92.4 | 87.9 | 87.6 | 0.3 | 87.3 | 0.7 |
ANN Parameters | RBF |
---|---|
Type | RBF 7:21–151–1:1 |
Quality for the learning dataset | 0.140401 |
Quality for the validation dataset | 0.250827 |
Quality for the test dataset | 0.306424 |
Error for the learning dataset | 0.042594 |
Error for the validation dataset | 0.066379 |
Error for the test dataset | 0.087312 |
Learning algorithms | SS, KN, PI |
Correlation | 0.98 |
Case | rcf | Conditioning | Sonication time, s | Amplitude, µm | Dose, g | Real Value | RBF Network Forecast | ||
---|---|---|---|---|---|---|---|---|---|
SH, % | SF, % | SF, % | Error, % | ||||||
1 | 6040 | - | - | - | - | 93.3 | 93.4 | 95.1 | 1.8 |
2 | 6040 | UD | 90 | 60 | - | 92.4 | 93.7 | 93.9 | 0.2 |
3 | 6040 | UD | 60 | 120 | - | 92.7 | 92.4 | 92.4 | 0.0 |
4 | 6040 | LG + C | 0 | 0 | 0.5 | 86.6 | 90.3 | 86.5 | 4.2 |
5 | 6040 | LG + G | 0 | 0 | 0.5 | 88.6 | 89.4 | 89.4 | 0.0 |
6 | 6040 | A | 0 | 0 | 0.5 | 88.4 | 87.6 | 87.9 | 0.3 |
7 | 6040 | UD + A | 60 | 60 | 0.5 | 88.0 | 84.6 | 85.4 | 0.9 |
8 | 6040 | UD + C | 90 | 120 | 0.5 | 84.8 | 88.4 | 88.0 | 0.5 |
9 | 6040 | UD + LG +C | 120 | 60 | 0.5 | 84.2 | 88.6 | 89.1 | 0.5 |
10 | 6040 | UD + LG + A | 90 | 120 | 0.5 | 84.9 | 87.4 | 87.9 | 0.5 |
11 | 6040 | UD + LG + G | 90 | 120 | 0.5 | 86.8 | 88.2 | 88.6 | 0.4 |
12 | 4530 | UD + A | 40 | 30 | 0.5 | 89.9 | 85.9 | 85.7 | 0.2 |
13 | 4530 | UD + G | 40 | 60 | 0.5 | 89.1 | 83.8 | 82.9 | 1.0 |
14 | 6040 | UD | 20 | 30 | 0 | 93.0 | 94.3 | 94.6 | 0.3 |
15 | 6040 | UD + A | 40 | 30 | 0.5 | 88.6 | 89.2 | 89.0 | 0.2 |
16 | 6040 | UD + G | 40 | 60 | 0.5 | 86.9 | 89.4 | 88.1 | 1.5 |
17 | 6040 | UD + C | 40 | 60 | 0.5 | 86.8 | 89.7 | 88.3 | 1.6 |
18 | 7550 | A | 0 | 0 | 0.5 | 87.1 | 93.1 | 91.7 | 1.5 |
19 | 7550 | UD + C | 20 | 60 | 0.5 | 84.9 | 91.6 | 91.6 | 0.0 |
20 | 7550 | UD | 60 | 120 | 0 | 90.8 | 94.9 | 94.9 | 0.0 |
21 | 7550 | UD + A | 60 | 60 | 0.25 | 88.2 | 91.4 | 90.6 | 0.9 |
22 | 7550 | UD + A | 60 | 60 | 0.75 | 85.7 | 89.3 | 89.9 | 0.7 |
23 | 7550 | UD + C | 30 | 60 | 0.25 | 86.4 | 91.4 | 91.4 | 0.0 |
24 | 7550 | UD + C | 60 | 60 | 0.5 | 85.8 | 89.4 | 90.0 | 0.7 |
25 | 7550 | UD + G | 30 | 60 | 0.25 | 87.9 | 92.4 | 92.1 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, M.; Kamizela, T. Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge. Energies 2021, 14, 1552. https://doi.org/10.3390/en14061552
Kowalczyk M, Kamizela T. Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge. Energies. 2021; 14(6):1552. https://doi.org/10.3390/en14061552
Chicago/Turabian StyleKowalczyk, Mariusz, and Tomasz Kamizela. 2021. "Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge" Energies 14, no. 6: 1552. https://doi.org/10.3390/en14061552
APA StyleKowalczyk, M., & Kamizela, T. (2021). Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge. Energies, 14(6), 1552. https://doi.org/10.3390/en14061552