Accident Risk among People Employed in Poland—A Retrospective Cohort Study
Abstract
:1. Introduction
2. Study Material and Methods
3. Study Results
4. Discussion of Results
5. Conclusions
- workers aged 18–19 are the most vulnerable group,
- workers aged up to 18 are the least exposed group.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laberge, M.; MacEachen, E.; Calvet, B. Why are occupational health and safety training approaches not effective? Understanding young worker learning processes using an ergonomic lens. Saf. Sci. 2014, 68, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.L. Adapting ‘The Normal’—Examining Relations between Youth, Risk and Accidents at Work. Nord. J. Work. Life Stud. 2012, 2, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Parish, M.; Rohlman, D.S.; Elliot, D.L.; Lasarev, M. Factors associated with occupational injuries in seasonal young workers. Occup. Med. 2016, 66, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Varianou-Mikellidou, C.; Boustras, G.; Dimopoulosa, C.h.; Wybo, L.C.; Guldenmund, F.W.; Nicolaidou, O.; Anyfantis, I. Occupational health and safety management in the context of an ageing workforce. Saf. Sci. 2019, 116, 231–244. [Google Scholar] [CrossRef]
- Santos, W.J.; Coêlho, V.M.S.; Santos, G.B.; Ceballos, A.G.C. Work overload and risk behaviors in motorcyclists. Rev. Bras. Enferm. 2019, 72, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Bhattacherjee, A.; Chau, N.; Sierra, C.O.; Legras, B.; Benamghar, L.; Michaely, J.P.; Ghosh, A.K.; Guillemin, F.; Ravaud, J.F.; Mur, J.M.; et al. Relationships of Job and Some Individual Characteristics to Occupational Injuries in Employed People: A Community-Based Study. J. Occup. Health 2003, 45, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Sera, F.; Armstrong, B.; Tobias, A.; Vicedo-Cabrera, A.M.; Åström, C.; Bell, M.L.; Chen, B.Y.; de Sousa Zanotti Stagliorio Coelho, M.; Matus Correa, P.; Cruz, J.C.; et al. How urban characteristics affect vulnerability to heat and cold: A multi-country analysis. Int. J. Epidemiol. 2019, 48, 1101–1112. [Google Scholar] [CrossRef] [Green Version]
- Database - Health - Eurostat. Available online: https://ec.europa.eu/eurostat/web/health/data/database (accessed on 11 August 2020).
- Grigoli, F.; Koczan, Z.; Topalova, P. Calling older workers back to work. Appl. Econ. Lett. 2021. [Google Scholar] [CrossRef]
- Meng, X.; Chan, A.H.S. Demographic influences on safety consciousness and safety citizenship behavior of construction workers. Saf. Sci. 2020, 129, 104835. [Google Scholar] [CrossRef]
- Nakamura, T.; Takagi, M.; Usui, S. Changes in Labor Accident Risk with Aging. J. Disaster Res. 2011, 6, 253–257. [Google Scholar] [CrossRef]
- Choi, E.; Kim, S.G.; Zahodne, L.B.; Albert, S.M. Older Workers with Physically Demanding Jobs and their Cognitive Functioning. Ageing Int. 2021. [Google Scholar] [CrossRef]
- Børing, P.; Grøgaard, J.B. Do Older Employees Have a Lower Individual Productivity Potential than Younger Employees? J. Popul. Ageing 2021. [Google Scholar] [CrossRef]
- Peng, L.; Chan, A.H.S. Adjusting work conditions to meet the declined health and functional capacity of older construction workers in Hong Kong. Saf. Sci. 2020, 127, 104711. [Google Scholar] [CrossRef]
- Andersen, L.L.; Thorsen, S.V.; Larsen, M.; Sundstrup, E.; Boot, C.R.L.; Rugulies, R. Work factors facilitating working beyond state pension age: Prospective cohort study with register follow-up. Scand. J. Work Environ. Health 2021, 47, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Hasebe, T.; Sakai, T. Are elderly workers more likely to die in occupational accidents? Evidence from both industry-aggregated data and administrative individual-level data in Japan. Jpn. World Econ. 2018, 48, 79–89. [Google Scholar] [CrossRef]
- Dieterich, C.; Herrmann, E.; Parzeller, M. Tod bei der Arbeit—Eine Analyse tödlicher Arbeitsunfälle von 2005 bis 2016 im Obduktionsgut des Instituts für Rechtsmedizin in Frankfurt am Main. Rechtsmedizin 2020, 30, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Chau, N.; Wild, P.; Dehaene, D.; Benamghar, L.; Mur, J.M.; Touron, C. Roles of age, length of service and job in work-related injury: A prospective study of 446 120 person-years in railway workers. Occup. Environ. Med. 2010, 67, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Turek, K.; Mulders, J.O.; Henkens, K. The Proactive Shift in Managing an Older Workforce 2009–2017: A Latent Class Analysis of Organizational Policies. Gerontologist 2020, 60, 1515–1526. [Google Scholar] [CrossRef]
- Breslin, J.W.; Wu, M.H.; Guo, M.; Reynoso, R.; Yuan, S.Y. Toll-like receptor 4 contributes to microvascular inflammation and barrier dysfunction in thermal injury. Shock 2008, 29, 349–355. [Google Scholar] [CrossRef]
- Statistics Poland. Available online: www.stat.gov.pl. (accessed on 11 August 2020).
- Chau, N.; Mur, J.M.; Touron, C.; Benamghar, L.; Dehaene, D. Correlates of Occupational Injuries for Various Jobs in Railway Workers: A Case-Control Study. J. Occup. Health 2004, 46, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Barkhordari, A.; Malmir, B.; Malakoutikhah, M. An Analysis of Individual and Social Factors Affecting Occupational Accidents. Saf. Health Work 2019, 10, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, M.; Fargnoli, M.; Parise, G. Risk Profiling from the European Statistics on Accidents at Work (ESAW) Accidents′ Databases: A Case Study in Construction Sites. Int. J. Environ. Res. Public Health 2019, 16, 4748. [Google Scholar] [CrossRef] [Green Version]
- Eegör, O.A.; Demiral, Y.; Piyal, Y.B. A significant outcome of work life: Occupational accidents in a developing country, Turkey. J. Occup. Health 2003, 45, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Hirschwald, B.; Nold, A.; Bochmann, F.; Heitmann, T.; Sun, Y. Chronotyp, Arbeitszeit und Arbeitssicherheit, Auswirkungen von zirkadianer Rhythmik und Arbeitsbeginn auf die Schlafdauer von Beschäftigten in der holz- und metallverarbeitenden Industrie. Zbl Arb. 2020, 70, 207–214. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boini, S.; Colin, R.; Grzebyk, M. Effect of occupational safety and health education received during schooling on the incidence of workplace injuries in the first 2 years of occupational life: A prospective study. BMJ Open 2017, 7, e015100. [Google Scholar] [CrossRef]
- Dale, R.A.; Sverker, A.; Hasselberg, M.; Östlund, G.; Hensing, G. Young adults’ experiences with near-injury situations: A critical incident study in sweden. Int. J. Child Youth Fam. Stud. 2017, 8, 97–111. [Google Scholar] [CrossRef]
- Nykänen, M.; Sund, R.; Vuori, J. Enhancing safety competencies of young adults: A randomized field trial (RCT). J. Saf. Res. 2018, 67, 45–56. [Google Scholar] [CrossRef]
- Sámano-Ríosa, M.L.; Ijazb, S.; Ruotsalainenb, J.; Breslinf, F.C.; Gummessong, K.; Verbeek, J. Occupational safety and health interventions to protect young workers from hazardous work—A scoping review. Saf. Sci. 2019, 113, 389–403. [Google Scholar] [CrossRef]
- Tucker, S.; Diekrager, D.; Turner, N.; Kelloway, K. Work-related injury underreporting among young workers: Prevalence, gender differences, and explanations for underreporting. J. Saf. Res. 2014, 50, 67–73. [Google Scholar] [CrossRef]
- OECD.Stat. Available online: https://stats.oecd.org (accessed on 2 March 2021).
- UK Data Service. Available online: https://stats2.digitalresources.jisc.ac.uk/ (accessed on 2 March 2021).
- Wechsler, K.; Drescher, U.; Janouch, C.; Haeger, M.; Voelcker-Rehage, C.; Bock, O. Multitasking During Simulated Car Driving: A Comparison of Young and Older Persons. Front. Psychol. 2018, 9, 910. [Google Scholar] [CrossRef] [PubMed]
- 300Gospodarka. Available online: https://300gospodarka.pl/ (accessed on 2 March 2021).
- Bartkowiak, G.; Krugiełka, A.; Dachowski, R.; Gałek, K.; Kostrzewa-Demczuk, P. Attitudes of Polish entrepreneurs towards knowledge workers aged 65 plus in the context of their good employment practices. J. Clean. Prod. 2021, 280, 124366. [Google Scholar] [CrossRef]
- Chau, N.; Dehaene, D.; Benamghar, L.; Bourgkard, E.; Mur, J.M.; Touron, C.; Wild, P. Roles of age, length of service and job in work-related injury: A prospective study of 63,620 person-years in female workers. Am. J. Ind. Med. 2014, 57, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Gander, P.; Signal, L. Who Is Too Old for Shift Work? Developing Better Criteria. Chronobiol. Int. 2008, 25, 199–213. [Google Scholar] [CrossRef] [PubMed]
Year | Age of Employees (Years) | ||||||||
---|---|---|---|---|---|---|---|---|---|
under 18 | 18–19 | 20–29 | 30–39 | 40–49 | 50–54 | 55–59 | 60–64 | 65 and More | |
2008 | 87 | 58 | 3669 | 4399 | 4028 | 2031 | 1184 | 415 | 134 |
2009 | 80 | 54 | 3537 | 4368 | 4006 | 2007 | 1253 | 354 | 227 |
2010 | 70 | 47 | 3487 | 4479 | 3990 | 1951 | 1355 | 465 | 234 |
2011 | 68 | 45 | 3186 | 3984 | 3538 | 1710 | 1097 | 376 | 189 |
2013 | 51 | 34 | 3017 | 4446 | 3874 | 1761 | 1602 | 674 | 285 |
2014 | 50 | 34 | 2970 | 4582 | 3967 | 1770 | 1652 | 739 | 254 |
2017 | 47 | 31 | 2982 | 4629 | 4089 | 1769 | 1682 | 854 | 322 |
2018 | 41 | 27 | 2943 | 4607 | 4168 | 1787 | 1574 | 899 | 363 |
Year | Age of Injured (Years) | ||||||||
---|---|---|---|---|---|---|---|---|---|
under 18 | 18–19 | 20–29 | 30–39 | 40–49 | 50–54 | 55–59 | 60–64 | 65 and More | |
2008 | 172 | 1038 | 28,678 | 27,311 | 25,337 | 13,391 | 6860 | 1321 | 294 |
2009 | 150 | 638 | 21,889 | 23,105 | 21,196 | 11,673 | 6742 | 1380 | 315 |
2010 | 124 | 623 | 22,887 | 25,248 | 22,294 | 12,476 | 8316 | 1857 | 382 |
2011 | 130 | 670 | 23,745 | 25,920 | 22,373 | 12,470 | 9145 | 2390 | 379 |
2013 | 90 | 428 | 19,036 | 23,894 | 20,437 | 10,621 | 10,257 | 3009 | 495 |
2014 | 94 | 549 | 19,491 | 23,959 | 20,432 | 10,081 | 9889 | 3546 | 600 |
2017 | 104 | 473 | 18,467 | 22,692 | 20,918 | 9692 | 9802 | 5049 | 1133 |
2018 | 80 | 521 | 17,719 | 21,605 | 19,954 | 9212 | 9243 | 4911 | 1058 |
Age of Employees /Years | Relative Risk /RR | SE (ln RR) | −95%CI | +95%CI | p Value |
---|---|---|---|---|---|
under 18 | 0.332 | 0.033 | 0.311 | 0.354 | <0.000001 |
18–19 | 2.595 | 0.014 | 2.523 | 2.668 | <0.000001 |
20–29 | 1.191 | 0.003 | 1.184 | 1.197 | <0.000001 |
30–39 | 0.925 | 0.003 | 0.920 | 0.930 | <0.000001 |
40–49 | 0.915 | 0.003 | 0.910 | 0.920 | <0.000001 |
50–54 | 1.047 | 0.004 | 1.039 | 1.054 | <0.000001 |
55–59 | 1.088 | 0.004 | 1.080 | 1.096 | <0.000001 |
60–64 | 0.885 | 0.007 | 0.874 | 0.897 | <0.000001 |
65 and more | 0.430 | 0.015 | 0.418 | 0.443 | <0.000001 |
Age of Injured/Years | Year | ||||||||
---|---|---|---|---|---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | 2013 | 2014 | 2014 | 2018 | ||
Under 18 | Share of the remaining ones/% | 80.98 | 83.41 | 86.29 | 90.04 | 90.01 | 89.60 | 88.49 | 91.15 |
Change of precision/% | 13.63 | 9.05 | 9.39 | 6.02 | 6.02 | 5.50 | 3.32 | 3.36 | |
18–19 | Share of the remaining ones/% | 78.99 | 87.13 | 87.41 | 86.44 | 91.34 | 88.87 | 90.41 | 89.40 |
Change of precision/% | 10.63 | 9.92 | 8.97 | 10.70 | 6.03 | 4.32 | 4.18 | 1.26 | |
20–29 | Share of the remaining ones/% | 84.13 | 87.51 | 86.79 | 86.31 | 88.62 | 88.41 | 88.87 | 89.34 |
Change of precision/% | 7.65 | 7.14 | 7.79 | 8.74 | 6.59 | 5.81 | 6.09 | 5.52 | |
30–39 | Share of the remaining ones/% | 85.84 | 88.09 | 87.03 | 86.64 | 87.77 | 87.73 | 88.17 | 88.73 |
Change of precision/% | 7.75 | 6.13 | 6.80 | 7.32 | 6.45 | 6.77 | 7.22 | 6.79 | |
40–49 | Share of the remaining ones/% | 85.51 | 87.90 | 87.16 | 86.99 | 87.82 | 88.14 | 97.96 | 88.52 |
Change of precision/% | 7.39 | 6.04 | 6.70 | 7.47 | 8.41 | 6.59 | 6.31 | 6.35 | |
50–54 | Share of the remaining ones/% | 85.15 | 87.15 | 86.23 | 86.16 | 88.12 | 88.64 | 89.03 | 89.52 |
Change of precision/% | 9.00 | 6.77 | 6.75 | 7.28 | 5.99 | 6.39 | 6.32 | 6.78 | |
55–59 | Share of the remaining ones/% | 89.88 | 90.18 | 88.02 | 86.88 | 85.68 | 86.12 | 86.24 | 87.00 |
Change of precision/% | 8.03 | 6.51 | 7.08 | 5.20 | 6.88 | 7.69 | 7.61 | 6.18 | |
60–64 | Share of the remaining ones/% | 94.22 | 93.97 | 91.92 | 89.63 | 87.10 | 84.88 | 78.84 | 79.45 |
Change of precision/% | 6.94 | 4.66 | 6.81 | 5.09 | 9.01 | 9.07 | 6.15 | 6.90 | |
65 and more | Share of the remaining ones/% | 93.65 | 93.21 | 91.77 | 91.83 | 89.35 | 87.09 | 75.75 | 77.36 |
Change of precision/% | 5.14 | 7.75 | 8.63 | 8.09 | 10.19 | 7.43 | 0.71 | 5.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacki, K.; Oleksiak, B.; Łakomy, K.; Lis, T. Accident Risk among People Employed in Poland—A Retrospective Cohort Study. Energies 2021, 14, 1625. https://doi.org/10.3390/en14061625
Nowacki K, Oleksiak B, Łakomy K, Lis T. Accident Risk among People Employed in Poland—A Retrospective Cohort Study. Energies. 2021; 14(6):1625. https://doi.org/10.3390/en14061625
Chicago/Turabian StyleNowacki, Krzysztof, Beata Oleksiak, Karolina Łakomy, and Teresa Lis. 2021. "Accident Risk among People Employed in Poland—A Retrospective Cohort Study" Energies 14, no. 6: 1625. https://doi.org/10.3390/en14061625