Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Engineering Method
2.1.1. Characterization
- Multi-story apartments are mainly built by public structure (namely, Office de Promotion et de Gestion Immobilière (OPGI)), under different formulas partly financed by the government. In this regard, their construction is regulated according to specifications predefined at a regional level. Thus, the projects are set according to urban and architectural prescriptions related to the spatial and functional organization and the construction system.
- Single-family houses generally refer to self-constructions and vary from traditional to modern buildings. Due to the absence of accurate data, the study selects only individual buildings built within land subdivision operations, which are regulated by the public municipality or under the Master urban plan. These documents establish guidelines in terms of the plots’ size, their built coverage and the authorized height.
2.1.2. Radiation Analysis
2.1.3. Sunlight Hours Analysis
2.1.4. Coverage Ground Ratio
2.2. GIS Statistical Method
2.2.1. Total Roof Area
2.2.2. Geographical Potential Map
2.2.3. Utilization Factor
2.2.4. Technical Potential Maps
3. Case of Study
4. Results and Discussion
4.1. Physical and Geographic Potential
4.1.1. Total Roof Area
4.1.2. Radiation Analysis
4.2. Utilization Factor
4.2.1. Roof Occupation
4.2.2. Shadow Losses
4.2.3. Coverage Ground Ratio (CGR)
- Tilts of 13.4° and 18° receive the maximal intensity of the solar radiation during summer and spring. In winter and autumn, the panels receive 80–90% of solar irradiation, consequently producing 23% less electricity, when considering 10% of annual shading.
- Tilts of 45–49.5° receive the maximal intensity of solar irradiation also during winter and autumn. In summer, it receives 80–90% of the total irradiation. Accordingly, the PV production decreases on average by 16%.
4.3. Technical Potential
5. Conclusions and Future Developments
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency (IEA). Renewables 2019—Analysis and Forecast to 2040; IEA: Paris, France, 2019; p. 204. [Google Scholar]
- International Renewable Energy Agency (IRENA). Rise of Renewables in Cities: Energy Solutions for the Urban Future; IRENA: Masdar City, Abu Dhabi, 2020. [Google Scholar]
- IEA SHC Task 51; Lundgren, M.; Dahlberg, J. Approaches, Methods and Tools for Solar Energy in Urban Planning; IEA: Paris, France, 2018; p. 92. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Solar Energy: Mapping the Road Ahead; IEA: Paris, France, 2019; Volume 20, pp. 1–82. [Google Scholar]
- Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 2010, 34, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Ministere de l’Energie. Bilan des Realisations du Secteur de L’energie. Année 2018. Available online: https://www.energy.gov.dz/Media/galerie/bilan-des-realisation_2018_5e11d13a6420a.pdf (accessed on 12 February 2020).
- Agence Nationale pour la Promotion et la Rationalisation de l’Utilisation de l’Energie (APRUE). La Consommation Energétique Finale—Chiffres clés Année; APRUE: Hydra, Algeria, 2017; pp. 1–16. [Google Scholar]
- Defaix, P.R.; van Sark, W.G.J.H.M.; Worrell, E.; de Visser, E. Technical potential for photovoltaics on buildings in the EU-27. Sol. Energy 2012, 86, 2644–2653. [Google Scholar] [CrossRef] [Green Version]
- Huld, T. PVMAPS: Software tools and data for the estimation of solar radiation and photovoltaic module performance over large geographical areas. Sol. Energy 2017, 142, 171–181. [Google Scholar] [CrossRef]
- Byrne, J.; Taminiau, J.; Kurdgelashvili, L.; Kim, K.N. A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain. Energy Rev. 2015, 41, 830–844. [Google Scholar] [CrossRef]
- Romero Rodríguez, L.; Duminil, E.; Sánchez Ramos, J.; Eicker, U. Assessment of the photovoltaic potential at urban level based on 3D city models: A case study and new methodological approach. Sol. Energy 2017, 146, 264–275. [Google Scholar] [CrossRef]
- Singh, R.; Banerjee, R. Estimation of rooftop solar photovoltaic potential of a city. Sol. Energy 2015, 115, 589–602. [Google Scholar] [CrossRef]
- Calcabrini, A.; Ziar, H.; Isabella, O.; Zeman, M. A simplified skyline-based method for estimating the annual solar energy potential in urban environments. Nat. Energy 2019, 4, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Karteris, M.; Slini, T.; Papadopoulos, A.M. Urban solar energy potential in Greece: A statistical calculation model of suitable built roof areas for photovoltaics. Energy Build. 2013, 62, 459–468. [Google Scholar] [CrossRef]
- Mohajeri, N.; Upadhyay, G.; Gudmundsson, A.; Assouline, D.; Kämpf, J.; Scartezzini, J.-L.L. Effects of urban compactness on solar energy potential. Renew. Energy 2016, 93, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Poon, K.H.; Kämpf, J.H.; Tay, S.E.R.; Wong, N.H.; Reindl, T.G. Parametric study of URBAN morphology on building solar energy potential in Singapore context. Urban Clim. 2020, 33, 100624. [Google Scholar] [CrossRef]
- Suomalainen, K.; Wang, V.; Sharp, B. Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level. Renew. Energy 2017, 111, 463–475. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Lisowska, M.M.; Saretta, E.; Bonomo, P.; Frontini, F. A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale. Energies 2019, 12, 3554. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, S.; Rodrigues, M.; Fueyo, N. A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Sol. Energy 2008, 82, 929–939. [Google Scholar] [CrossRef]
- Schallenberg-Rodríguez, J. Photovoltaic techno-economical potential on roofs in regions and islands: The case of the Canary Islands. Methodological review and methodology proposal. Renew. Sustain. Energy Rev. 2013, 20, 219–239. [Google Scholar] [CrossRef]
- Theodoridou, I.; Karteris, M.; Mallinis, G.; Papadopoulos, A.M.; Hegger, M. Assessment of retrofitting measures and solar systems’ potential in urban areas using Geographical Information Systems: Application to a Mediterranean city. Renew. Sustain. Energy Rev. 2012, 16, 6239–6261. [Google Scholar] [CrossRef]
- Freitas, S.; Catita, C.; Redweik, P.; Brito, M.C.C. Modelling solar potential in the urban environment: State-of-the-art review. Renew. Sustain. Energy Rev. 2015, 41, 915–931. [Google Scholar] [CrossRef]
- Hachem, C.; Fazio, P.; Athienitis, A. Solar optimized residential neighborhoods: Evaluation and design methodology. Sol. Energy 2013, 95, 42–64. [Google Scholar] [CrossRef]
- Eicker, U.; Nouvel, R.; Duminil, E.; Coors, V. Assessing Passive and Active Solar Energy Resources in Cities Using 3D City Models. Energy Procedia 2014, 57, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Dogan, T.; Reinhart, C. Shoeboxer: An algorithm for abstracted rapid multi-zone urban building energy model generation and simulation. Energy Build. 2017, 140, 140–153. [Google Scholar] [CrossRef]
- Mirkovic, M.; Alawadi, K. The effect of urban density on energy consumption and solar gains: The study of Abu Dhabi’s neighborhood. Energy Procedia 2017, 143, 277–282. [Google Scholar] [CrossRef]
- Compagnon, R. Solar and daylight availability in the urban fabric. Energy Build. 2004, 36, 321–328. [Google Scholar] [CrossRef]
- Sarralde, J.J.; Quinn, D.J.; Wiesmann, D.; Steemers, K. Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London. Renew. Energy 2015, 73, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Chatzipoulka, C.; Compagnon, R.; Nikolopoulou, M. Urban geometry and solar availability on façades and ground of real urban forms: Using London as a case study. Sol. Energy 2016, 138, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Amado, M.; Poggi, F.; Amado, A.R.; Breu, S. A cellular approach to Net-Zero energy cities. Energies 2017, 10, 1826. [Google Scholar] [CrossRef] [Green Version]
- Tsalikis, G.; Martinopoulos, G. ScienceDirect Solar energy systems potential for nearly net-zero energy residential buildings. Sol. Energy 2015, 115, 743–756. [Google Scholar] [CrossRef]
- Li, D.H.W.; Yang, L.; Lam, J.C. Zero energy buildings and sustainable development implications—A review. Energy 2013, 54, 1–10. [Google Scholar] [CrossRef]
- Melius, J.; Margolis, R.; Ong, S. Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques. Natl. Renew. Energy Lab. NREL Technol. Rep. 2013, 35. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, J.; Jadraque, E.; Alegre, J.; Martínez, G. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renew. Sustain. Energy Rev. 2010, 14, 2122–2130. [Google Scholar] [CrossRef]
- Brito, M.C.; Gomes, N.; Santos, T.; Tenedório, J.A. Photovoltaic potential in a Lisbon suburb using LiDAR data. Sol. Energy 2012, 86, 283–288. [Google Scholar] [CrossRef]
- Lukač, N.; Seme, S.; Žlaus, D.; Štumberger, G.; Žalik, B. Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data. Energy 2014, 66, 598–609. [Google Scholar] [CrossRef]
- Thebault, M.; Clivillé, V.; Berrah, L.; Desthieux, G. Multicriteria roof sorting for the integration of photovoltaic systems in urban environments. Sustain. Cities Soc. 2020, 60, 102259. [Google Scholar] [CrossRef]
- Song, X.; Huang, Y.; Zhao, C.; Liu, Y.; Lu, Y.; Chang, Y.; Yang, J. An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images. Energies 2018, 11, 3172. [Google Scholar] [CrossRef] [Green Version]
- Cerezo Davila, C.; Reinhart, C.F.; Bemis, J.L. Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets. Energy 2016, 117, 237–250. [Google Scholar] [CrossRef]
- Corgnati, S.P.; Fabrizio, E.; Filippi, M.; Monetti, V. Reference buildings for cost-optimal analysis: Method of definition and application. Appl. Energy 2013, 102, 983–993. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Shimoda, Y. District-scale simulation for multi-purpose evaluation of urban energy systems. J. Build. Perform. Simul. 2010, 3, 289–305. [Google Scholar] [CrossRef]
- Ghiassi, N.; Mahdavi, A. Reductive bottom-up urban energy computing supported by multivariate cluster analysis. Energy Build. 2017, 144, 372–386. [Google Scholar] [CrossRef]
- Schaefer, A.; Ghisi, E. Method for obtaining reference buildings. Energy Build. 2016, 128, 660–672. [Google Scholar] [CrossRef]
- Tardioli, G.; Kerrigan, R.; Oates, M.; O’Donnell, J.; Finn, D.P. Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach. Build. Environ. 2018, 140, 90–106. [Google Scholar] [CrossRef]
- Roudsari, M.S.; Pak, M. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13th Conference of the International Building Performance Simulation Association, Chambery, France, 25–28 August 2013; pp. 3128–3135. [Google Scholar]
- Robinson, D.; Stone, A. A simplified radiosity algorithm for general urban radiation exchange. Build. Serv. Eng. Res. Technol. 2005, 26, 271–284. [Google Scholar] [CrossRef]
- Whitaker, C.M.; Townsend, T.U.; Razon, A.; Hudson, R.M.; Vallvé, X. PV Systems. In Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 841–895. ISBN 978-0-470-72169-8. [Google Scholar] [CrossRef]
- Ram, M.; Abhishek Pratap, G.; Anand Prabhu Pathanjali, G.; Abhishek Pratap, M. Rooftop Revolution: Unleashing Delhi’s Solar Potential; GreanPeace: New Delhi, India, 2013. [Google Scholar]
- Liu, C.; Xu, W.; Li, A.; Sun, D.; Huo, H. Analysis and optimization of load matching in photovoltaic systems for zero energy buildings in different climate zones of China. J. Clean. Prod. 2019, 238, 117914. [Google Scholar] [CrossRef]
- Marique, A.F.; Penders, M.; Reiter, S. From Zero Energy Building to Zero Energy Neighbourhood. Urban form and mobility matter. In Proceedings of the PLEA 2013 29th Conference Sustainable Architecture for a Renewable Future, Munich, Germany, 10–12 September 2013; pp. 1–6. [Google Scholar]
Roof Obstacles | Structural Element | Equipment | Service | |||
---|---|---|---|---|---|---|
Stair | Evacuation Shaft | Water Tank | Parabolic Antenna | AC Unit | Safety Perimeter | |
Mean % Area | 4% | 0.40% | 1.90% | 0.30% | 0.7% | 9.10% |
Single-family houses | X | X | X | X | X | X |
Multi-story Apartments | - | X | - | - | - | X |
Tilt Angle | Minimal Spacing (m2) | CGR |
---|---|---|
49.5° | 4.01 | 0.41 |
45° | 3.9 | 0.42 |
31.5° | 3.43 | 0.48 |
18° | 2.76 | 0.6 |
13.4° | 2.5 | 0.67 |
Utilisation Factor | |||||
---|---|---|---|---|---|
Residential Flat Roofs | This study | [48] | [14] | [20] | [34] |
Single-family Houses Multi-Story Apartments | 0.18 | 0.2 | - | 0.35 | 0.51 |
0.35 | - | 0.25 0.5 | 0.48 | 0.54 |
ID | Housing Type/Number/Percentage | Population | Yearly Consumption (kWh) | Total Area (m2) | UF | Suitable Area (m2) | Yearly PV Potential (kWh) | ||
---|---|---|---|---|---|---|---|---|---|
10 | (SF) | 2556 | 67% | 15,336 | 20,900,974.32 | 626,220.00 | 0.18 | 112,719.60 | 26,482,396.50 |
(MS1) | 1240 | 33% | 7440 | 10,139,752.80 | 26,997.98 | 0.35 | 9449.29 | 2,220,020.99 | |
11 | (SF) | 1803 | 32% | 10,818 | 14,743,527.66 | 315,525.00 | 0.18 | 56,794.50 | 13,343,326.88 |
(MS2) | 854 | 15% | 5124 | 6,983,345.88 | 36,210.00 | 0.35 | 12,673.50 | 2,977,518.13 | |
(MS1) | 3006 | 53% | 18,036 | 24,580,723.32 | 47,100.51 | 0.35 | 16,485.18 | 3,873,035.36 | |
14 | (MS2) | 148 | 9% | 888 | 1,210,228.56 | 6290.00 | 0.35 | 2201.50 | 517,221.46 |
(MS1) | 1482 | 91% | 8892 | 12,118,640.04 | 33,345.00 | 0.35 | 11,670.75 | 2,741,931.56 | |
15 | (MS2) | 144 | 15% | 864 | 1,177,519.68 | 6120.00 | 0.35 | 2,142.00 | 503,242.50 |
(MS1) | 800 | 85% | 4800 | 6,541,776.00 | 24,848.59 | 0.35 | 8697.01 | 2,043,278.85 | |
16 | (SF) | 888 | 38% | 5328 | 7,261,371.36 | 93,240.00 | 0.18 | 16,783.20 | 3,943,053.00 |
(MS2) | 784 | 33% | 4704 | 6,410,940.48 | 33,320.00 | 0.35 | 11,662.00 | 2,739,875.83 | |
(MS1) | 684 | 29% | 4104 | 5,593,218.48 | 17,468.90 | 0.35 | 6114.12 | 1,436,453.09 | |
17 | SF | 1177 | 88% | 7062 | 9,624,587.94 | 123,585.00 | 0.18 | 22,245.30 | 5,226,321.38 |
(MS2) | 168 | 11% | 1008 | 1,373,772.96 | 7140.00 | 0.35 | 2499.00 | 587,116.25 | |
(MS1) | 1374 | 86% | 8244 | 11,235,500.28 | 37,161.61 | 0.35 | 13,006.56 | 3,055,768.47 | |
18 | (SF) | 231 | 100% | 1386 | 1,888,937.82 | 56,595.00 | 0.18 | 10,187.10 | 2,393,362.13 |
6 | (SF) | 1558 | 100% | 9348 | 12,740,435.38 | 272,656.99 | 0.18 | 49,078.26 | 11,530,469.35 |
7 | (SF) | 331 | 100% | 1986 | 2,706,659.82 | 69,510.00 | 0.18 | 12,511.80 | 2,939,528.25 |
9 | (MS1) | 750 | 100% | 4500 | 6,132,915.00 | 19,395.75 | 0.35 | 6788.51 | 1,594,896.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulahia, M.; Djiar, K.A.; Amado, M. Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria. Energies 2021, 14, 1626. https://doi.org/10.3390/en14061626
Boulahia M, Djiar KA, Amado M. Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria. Energies. 2021; 14(6):1626. https://doi.org/10.3390/en14061626
Chicago/Turabian StyleBoulahia, Meskiana, Kahina Amal Djiar, and Miguel Amado. 2021. "Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria" Energies 14, no. 6: 1626. https://doi.org/10.3390/en14061626
APA StyleBoulahia, M., Djiar, K. A., & Amado, M. (2021). Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria. Energies, 14(6), 1626. https://doi.org/10.3390/en14061626