Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedstock Characterization
2.2. HTL Experiments
2.3. Product Characterization
3. Results
3.1. Product Yield
3.2. Elemental Analysis of Bio-Crude
3.3. Elemental Analysis of Solid Residue
3.4. Organic Compound Composition of Bio-Crude
3.5. Carbon Recovery in the HTL Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Oyedun, A.O.; Kumar, A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 2018, 81, 1742–1770. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Kishore, N.; Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2018, 98, 515–517. [Google Scholar] [CrossRef]
- Castello, D.; Pedersen, T.H.; Rosendahl, L.A. Continuous hydrothermal liquefaction of biomass: A critical review. Energies 2018, 11, 3165. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Shah, A.A.; Nielsen, A.H.; Pedersen, T.H.; Rosendahl, L. Catalytic hydrothermal liquefaction of contaminated construction wood waste for biocrude production and investigation of fate of heavy metals. Fuel Process Technol. 2021, 212, 106621. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Zhu, Z.; Rosendahl, L.; Toor, S.S.; Yu, D.; Chen, G. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Appl. Energy 2015, 137, 183–192. [Google Scholar] [CrossRef]
- Sintamarean, I.M.; Grigoras, I.F.; Jensen, C.U.; Toor, S.S.; Pedersen, T.H.; Rosendahl, L.A. Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system. Biomass Convers. Biorefin. 2017, 7, 425–435. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Hansen, N.H.; Pérez, O.M.; Cabezas, D.E.V.; Rosendahl, L.A. Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis. Biofuels Bioprod. Biorefin. 2018, 12, 213–223. [Google Scholar] [CrossRef]
- Mathanker, A.; Pudasainee, D.; Kumar, A.; Gupta, R. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization. Fuel 2020, 271, 117534. [Google Scholar] [CrossRef]
- Tungal, R.; Shende, R.V. Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2, biocrude and bio-oil generation. Appl. Energy 2014, 134, 401–412. [Google Scholar] [CrossRef]
- Jensen, C.U.; Rosendahl, L.A.; Olofsson, G. Impact of nitrogenous alkaline agent on continuous HTL of lignocellulosic biomass and biocrude upgrading. Fuel Process. Technol. 2017, 159, 376–385. [Google Scholar] [CrossRef]
- Li, Z.; Hong, Y.; Cao, J.; Huang, Z.; Huang, K.; Gong, H.; Li, Y. Effects of Mild Alkali Pretreatment and Hydrogen-Donating Solvent on Hydrothermal Liquefaction of Eucalyptus Woodchips. Energy Fuels 2015, 29, 7335–7342. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhang, J.J.; Huang, Y.H.; Li, M.F.; Bian, J.; Peng, F. Comparative investigation on bio-oil production from eucalyptus via liquefaction in subcritical water and supercritical ethanol. Ind. Crop. Prod. 2019, 140, 111695. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Shah, A.A.; Pedersen, T.H.; Rosendahl, L.A. Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction. Energies 2020, 13, 3114. [Google Scholar] [CrossRef]
- Brilman, D.W.F.; Drabik, N.; Wądrzyk, M. Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Convers. Bioref. 2017, 7, 445–454. [Google Scholar] [CrossRef]
- Biller, P.; Johannsen, I.; Passos, J.S.D.; Ottosen, L.D.M. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res. 2018, 130, 58–68. [Google Scholar] [CrossRef]
- Leng, L.; Li, J.; Yuan, X.; Li, J.; Han, P.; Hong, Y.; Zhou, W. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 2018, 251, 49–56. [Google Scholar] [CrossRef]
- Shah, A.A.; Toor, S.S.; Seehar, T.H.; Sadetmahaleh, K.K.; Pedersen, T.H.; Nielsen, A.H.; Rosendahl, L.A. Bio-crude production through co-hydrothermal processing of swine manure with sewage sludge to enhance pumpability. Fuel 2021, 288, 119407. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Lin, G.; Guo, S.; Wang, S.; Wu, Z. Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production. Renew Energy 2019, 138, 1143–1151. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhang, Y.; Zhang, J.; Schideman, L.; Yu, G.; Zhang, P.; Minarick, M. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl. Energy 2014, 128, 209–216. [Google Scholar] [CrossRef]
- Mishra, S.; Mohanty, K. Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass—An integrated biorefinery approach for sustainable biocrude production. Energy Convers. Manag. 2020, 204, 112312. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Grigoras, I.F.; Hoffmann, J.; Toor, S.S.; Daraban, I.M.; Jensen, C.U.; Iversen, S.B.; Madsen, R.B.; Glasius, M.; Arturi, K.R.; et al. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation. Appl. Energy 2016, 162, 1034–1041. [Google Scholar] [CrossRef]
- Xiu, S.; Shahbazi, A.; Wallace, C.W.; Wang, L.; Cheng, D. Enhanced bio-oil production from swine manure co-liquefaction with crude glycerol. Energy Convers. Manag. 2011, 52, 1004–1009. [Google Scholar] [CrossRef]
- Sintamarean, I.M.; Pedersen, T.H.; Zhao, X.; Kruse, A.; Rosendahl, L.A. Application of Algae as Cosubstrate to Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction. Ind. Eng. Chem. Res. 2017, 56, 4562–4571. [Google Scholar] [CrossRef]
- Jensen, C.U.; Guerrero, J.K.R.; Karatzos, S.; Olofsson, G.; Iversen, S.B. Fundamentals of HydrofactionTM: Renewable crude oil from woody biomass. Biomass Convers. Biorefin. 2017, 7, 495–509. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Sharma, K.; Nielsen, A.H.; Pedersen, T.; Rosendahl, L.A. Influence of Process Conditions on Hydrothermal Liquefaction of Eucalyptus Biomass for Biocrude Production and Investigation of the Inorganics Distribution. Sustain. Energy Fuels 2021, 5, 1477–1487. [Google Scholar] [CrossRef]
- Conti, F.; Toor, S.S.; Pedersen, T.H.; Nielsen, A.H.; Rosendahl, L.A. Biocrude production and nutrients recovery through hydrothermal liquefaction of wastewater irrigated willow. Biomass Bioenergy 2018, 11, 824–831. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Herng, Y.; Yusup, S.; Quitain, A.T.; Uemura, Y. Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J. Supercrit. Fluids 2014, 95, 407–412. [Google Scholar]
- Scarsella, M.; Caprariis, B.D.; Damizia, M.; De Filippis, P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass Bioenerg. 2020, 140, 105662. [Google Scholar] [CrossRef]
- Zhu, Z.; Toor, S.S.; Rosendahl, L.; Chen, G. Analysis of product distribution and characteristics in hydrothermal liquefaction of barley straw in subcritical and supercritical water. Environ. Prog. Sustain. Energy 2014, 33, 737–743. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Fröling, M.; Antal, M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Shah, A.A.; Toor, S.S.; Conti, F.; Nielsen, A.H.; Rosendahl, L.A. Hydrothermal liquefaction of high ash containing sewage sludge at sub and supercritical conditions. Biomass Bioenergy 2020, 135, 105504. [Google Scholar] [CrossRef]
- Shah, A.A.; Toor, S.S.; Seehar, T.H.; Nielsen, R.S.; Nielsen, A.H.; Pedersen, T.H.; Rosendahl, L.A. Bio-Crude Production through Aqueous Phase Recycling of Hydrothermal Liquefaction of Sewage Sludge. Energies 2020, 13, 493. [Google Scholar] [CrossRef]
- Yang, J.; He (Sophia), Q.; Yang, L. A review on hydrothermal co-liquefaction of biomass. Appl. Energy 2019, 250, 926–945. [Google Scholar] [CrossRef]
- Biller, P.; Madsen, R.B.; Klemmer, M.; Becker, J.; Iversen, B.B.; Glasius, M. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition. Bioresour. Technol. 2016, 220, 190–199. [Google Scholar] [CrossRef]
- Li, C.; Yang, X.; Zhang, Z.; Zhou, D.; Zhang, L.; Zhang, S.; Chen, J. Hydrothermal liquefaction of desert shrub salix psammophila to high value-added chemicals and hydrochar with recycled processing water. Bioresour. Technol. 2013, 8, 2981–2997. [Google Scholar] [CrossRef]
Feedstocks | Cellulose | Hemicellulose | Lignin | Ash |
---|---|---|---|---|
WS | 37.9 | 26.8 | 18.3 | 6.2 |
EU | 43.2 | 22.5 | 25.0 | 1.6 |
PW | 43.6 | 24.9 | 25.6 | 0.7 |
Samples | Moisture | Ash | Elemental Analysis (wt.%) a | H/C | O/C | HHV (MJ/kg) | |||
---|---|---|---|---|---|---|---|---|---|
C | H | N | O b | ||||||
WS | 5.39 | 6.92 | 42.15 | 6.21 | 0.82 | 50.82 | 1.76 | 0.91 | 16.53 |
EU | 5.88 | 1.15 | 47.85 | 5.81 | 0.10 | 46.23 | 1.45 | 0.72 | 18.14 |
PW | 6.71 | 0.59 | 49.90 | 6.30 | 0.30 | 42.80 | 1.51 | 0.64 | 19.50 |
WS + EU | 5.64 | 4.04 | 45.00 | 6.01 | 0.46 | 48.53 | 1.61 | 0.82 | 17.34 |
EU + PW | 6.30 | 0.87 | 48.88 | 6.06 | 0.20 | 44.52 | 1.48 | 0.68 | 18.82 |
PW + WS | 6.05 | 3.76 | 46.03 | 6.26 | 0.56 | 46.81 | 1.64 | 0.78 | 18.02 |
WS + EU + PW | 5.99 | 2.89 | 46.63 | 6.11 | 0.41 | 46.62 | 1.57 | 0.76 | 18.06 |
Feedstocks | Elemental Analysis (wt.%) a | H/C | O/C | HHV (MJ/kg) c | ER (%) | |||
---|---|---|---|---|---|---|---|---|
C | H | N | O b | |||||
WS | 73.07 | 8.01 | 1.64 | 17.28 | 1.32 | 0.17 | 35.50 | 47.25 |
EU | 74.73 | 7.76 | 0.93 | 16.58 | 1.24 | 0.16 | 35.79 | 57.22 |
PW | 75.86 | 7.98 | 1.31 | 14.86 | 1.30 | 0.16 | 33.66 | 46.61 |
WS + EU | 83.27 | 8.41 | 1.05 | 7.18 | 1.23 | 0.06 | 39.15 | 36.13 |
EU + PW | 82.07 | 8.12 | 1.06 | 8.76 | 1.19 | 0.08 | 37.49 | 29.88 |
PW + WS | 77.70 | 7.64 | 0.83 | 13.84 | 1.21 | 0.16 | 33.67 | 38.39 |
WS + EU + PW | 80.90 | 8.38 | 0.70 | 10.02 | 1.26 | 0.09 | 37.58 | 39.55 |
Petroleum crude | 83–87 | 10–14 | 0.1–1 | 0.1–3.0 | ---- | ---- | ~42–44 | ----- |
Feedstocks | Elemental Analysis (wt.%) a | H/C | O/C | HHV (MJ/kg) c | ER (%) | |||
---|---|---|---|---|---|---|---|---|
C | H | N | O b | |||||
WS | 54.53 | 2.76 | 1.12 | 41.59 | 0.61 | 0.57 | 25.79 | 15.60 |
EU | 66.02 | 3.46 | 0.13 | 30.39 | 0.62 | 0.34 | 29.48 | 19.50 |
PW | 66.59 | 3.35 | 0.42 | 29.65 | 0.60 | 0.32 | 22.81 | 15.21 |
WS + EU | 53.09 | 2.58 | 0.01 | 44.32 | 0.58 | 0.63 | 14.63 | 9.28 |
EU + PW | 67.78 | 3.16 | 0.20 | 29.27 | 0.52 | 0.32 | 22.40 | 17.85 |
PW + WS | 44.49 | 2.64 | 0.31 | 52.57 | 0.74 | 0.83 | 11.27 | 9.79 |
WS + EU + PW | 50.09 | 2.97 | 0.39 | 46.56 | 0.71 | 0.68 | 14.06 | 11.68 |
Feedstocks | TOC (g/L) | TN (g/L) | pH |
---|---|---|---|
WS | 33.52 | 0.58 | 7.33 |
EU | 21.26 | 0.51 | 7.92 |
PW | 19.9 | 0.42 | 8.68 |
WS + EU | 30.11 | 0.48 | 8.71 |
EU + PW | 22.21 | 0.29 | 8.92 |
PW + WS | 21.62 | 0.56 | 9.14 |
WS + EU + PW | 26.01 | 0.46 | 9.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, K.; Shah, A.A.; Toor, S.S.; Seehar, T.H.; Pedersen, T.H.; Rosendahl, L.A. Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water. Energies 2021, 14, 1708. https://doi.org/10.3390/en14061708
Sharma K, Shah AA, Toor SS, Seehar TH, Pedersen TH, Rosendahl LA. Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water. Energies. 2021; 14(6):1708. https://doi.org/10.3390/en14061708
Chicago/Turabian StyleSharma, Kamaldeep, Ayaz A. Shah, Saqib S. Toor, Tahir H. Seehar, Thomas H. Pedersen, and Lasse A. Rosendahl. 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water" Energies 14, no. 6: 1708. https://doi.org/10.3390/en14061708
APA StyleSharma, K., Shah, A. A., Toor, S. S., Seehar, T. H., Pedersen, T. H., & Rosendahl, L. A. (2021). Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water. Energies, 14(6), 1708. https://doi.org/10.3390/en14061708