Evaluation of Deep Learning-Based Segmentation Methods for Industrial Burner Flames
Abstract
:1. Introduction
2. Experimental Setup and Image Acquisition
3. Convolutional Neural Networks for Segmentation
- The base network is a deep neural encoder network for image feature extraction. The extracted features are shared with other more specific subnetworks. For the Mask R-CNN implementation in this investigation, we use a ResNet 101-based [24] encoder network.
- The region proposal network uses the features provided by the base network to predict regions of interest (RoIs) which likely contain a relevant object. The region proposal network uses sliding windows that mark a grid of cropped images. In the next step, the cropped images are further classified as positive or negative RoIs. The RoIs are a preprocessing stage to object instances that can be found in an image.
- The class prediction network refines and classifies all RoIs, deciding which object can be seen in the region.
- The mask prediction network predicts a binary segmentation image for each RoI.
4. Training Data and Task-Specific Image Augmentation
5. Segmentation Quality Metrics
6. Experiments
6.1. Instance Segmentation
6.2. Effect of Image Augmentation
6.3. Failure Cases and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, R.; Uddin, J.; Corraya, S. Real-Time Fire Detection Using Enhanced Color Segmentation and Novel Foreground Extraction. In Proceedings of the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; pp. 488–493. [Google Scholar]
- Matthes, J.; Waibel, P.; Vogelbacher, M.; Gehrmann, H.-J.; Keller, H. A New Camera-Based Method for Measuring the Flame Stability of Non-Oscillating and Oscillating Combustions. Exp. Therm. Fluid Sci. 2019, 105, 27–34. [Google Scholar] [CrossRef]
- Zhong, Z.; Wang, M.; Shi, Y.; Gao, W. A Convolutional Neural Network-Based Flame Detection Method in Video Sequence. Signal Image Video Process. 2018, 12, 1619–1627. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L. Flame Image Segmentation Algorithm Based on Motion and Color Saliency. In Communications, Signal Processing, and Systems; Liang, Q., Liu, X., Na, Z., Wang, W., Mu, J., Zhang, B., Eds.; Springer: Singapore, 2015; pp. 184–191. [Google Scholar]
- Celik, T.; Ozkaramanli, H.; Demirel, H. Fire Pixel Classification using Fuzzy Logic and Statistical Color Model. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Honolulu, HI, USA, 15–20 April 2007; Volume 1, pp. 1205–1208. [Google Scholar] [CrossRef]
- Borges, P.; Izquierdo, E. A Probabilistic Approach for Vision-Based Fire Detection in Videos. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 721–731. [Google Scholar] [CrossRef]
- Zhao, J.; Zhong, Z.; Han, S.; Qu, C.; Yuan, Z.Y.; Zhang, D. SVM Based Forest Fire Detection Using Static and Dynamic Features. Comput. Sci. Inf. Syst. 2011, 8, 821–841. [Google Scholar] [CrossRef]
- Jamali, M.; Samavi, S.; Nejati, M.; Mirmahboub, B. Outdoor Fire Detection Based on Color and Motion Characteristics. In Proceedings of the 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013, Mashhad, Iran, 14–16 May 2013. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Zou, J.; Duan, B.; Wang, J. A Flame Detection Synthesis Algorithm. Fire Technol. 2014, 50, 959–975. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, J.; Yuan, Z.; Zhang, D.; Han, S.; Qu, C. Color Based Segmentation and Shape Based Matching of Forest Flames from Monocular Images. In Proceedings of the 2009 International Conference on Multimedia Information Networking and Security, Wuhan, China, 18–20 November 2009; Volume 1, pp. 625–628. [Google Scholar] [CrossRef]
- Fan, H.; Cong, Y.; Xia, Y.; Shao, W.; Wang, Y. Flame Front Detection and Curvature Calculation Using Level Set. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 2918–2922. [Google Scholar]
- Li, Z.; Yang, W.; Peng, S.; Liu, F. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. arXiv 2020, arXiv:2004.02806. [Google Scholar]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully ConnectedCRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Lin, T.Y.; Patterson, G.; Ronchi, M.R.; Cui, Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; et al. COCO Challenge Website. Available online: https://cocodataset.org (accessed on 8 March 2020).
- Frizzi, S.; Kaabi, R.; Bouchouicha, M.; Ginoux, J.; Moreau, E.; Fnaiech, F. Convolutional Neural Network for Video Fire and Smoke Detection. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 877–882. [Google Scholar]
- Zhang, Q.; Xu, J.; Xu, L.; Guo, H. Deep Convolutional Neural Networks for Forest Fire Detection. In Proceedings of the 2016 International Forum on Management, Education and Information Technology Application, Guangzhou, China, 30–31 January 2016; pp. 568–575. [Google Scholar] [CrossRef] [Green Version]
- Dunnings, A.J.; Breckon, T.P. Experimentally Defined Convolutional Neural Network Architecture Variants for Non-Temporal Real-Time Fire Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1558–1562. [Google Scholar]
- Zhang, Q.; Lin, G.; Zhang, Y.M.; Xu, G.; Wang, J.J. Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images. Procedia Eng. 2018, 211, 441–446. [Google Scholar] [CrossRef]
- Aktaş, M.; Bayramçavuş, A.; Akgün, T. Multiple Instance Learning for CNN Based Fire Detection and Localization. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; pp. 1–8. [Google Scholar]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018; Volume 11211, pp. 963–983. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef] [Green Version]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3320–3328. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision 2014, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision 2015, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Fernandez-Moral, E.; Martins, R.; Wolf, D.; Rives, P. A New Metric for Evaluating Semantic Segmentation: Leveraging Global and Contour Accuracy. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1051–1056. [Google Scholar]
- Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark Analysis of Representative Deep Neural Network Architectures. IEEE Access 2018, 6, 64270–64277. [Google Scholar] [CrossRef]
Network | Avg. Time | Max. Time |
---|---|---|
DeepLabv3+ RN18 | 0.149 s | 0.227 s |
DeepLabv3+ RN50 | 0.270 s | 0.291 s |
DeepLabv3+ Inc.-RN. | 1.044 s | 1.134 s |
Mask R-CNN (RN101) | 0.722 s | 0.756 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Großkopf, J.; Matthes, J.; Vogelbacher, M.; Waibel, P. Evaluation of Deep Learning-Based Segmentation Methods for Industrial Burner Flames. Energies 2021, 14, 1716. https://doi.org/10.3390/en14061716
Großkopf J, Matthes J, Vogelbacher M, Waibel P. Evaluation of Deep Learning-Based Segmentation Methods for Industrial Burner Flames. Energies. 2021; 14(6):1716. https://doi.org/10.3390/en14061716
Chicago/Turabian StyleGroßkopf, Julius, Jörg Matthes, Markus Vogelbacher, and Patrick Waibel. 2021. "Evaluation of Deep Learning-Based Segmentation Methods for Industrial Burner Flames" Energies 14, no. 6: 1716. https://doi.org/10.3390/en14061716
APA StyleGroßkopf, J., Matthes, J., Vogelbacher, M., & Waibel, P. (2021). Evaluation of Deep Learning-Based Segmentation Methods for Industrial Burner Flames. Energies, 14(6), 1716. https://doi.org/10.3390/en14061716