Enhancing User Experiences with Cloud Computing via Improving Utilitarian and Hedonic Factors
Abstract
:1. Introduction
2. Conceptual Formation
2.1. Hedonic Use of Cloud Computing Services
2.2. Utilitarian Use of Cloud Computing
3. Development of the Hypotheses
3.1. The Impact of Social Influence on User Satisfaction with Cloud Computing Services
3.2. The Impact of Hedonism on User Satisfaction with Cloud Computing Services
3.3. The Impact of Automaticity on User Satisfaction with Cloud Computing Services
3.4. The Impact of Perceived Risks on User Satisfaction with Cloud Services
3.5. The Impact of Having Trust in Cloud Providers Has on User Satisfaction with Cloud Computing Services
3.6. The Impact of Service Quality on User Satisfaction with Cloud Computing Services
3.7. The Impact of User Satisfaction on the Intention to Use Cloud Computing Services
3.8. The Impact the Intention to Use Has on Continuous Use of Cloud Computing Services
4. Survey
Dependability and Authenticity of the Survey Instrument
5. Structural Model and Hypothesis Test Results
6. Discussion, Key Findings, and Insights
7. Theoretical Inferences and Practical Implications
8. Limitation and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Damanpour, F.; Wischnevsky, J.D. Research on innovation in organizations: Distinguishing innovation-generating from innovation-adopting organizations. J. Eng. Technol. Manag. 2006, 23, 269–291. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Huang, Y.-M. The factors that predispose students to continuously use cloud services: Social and technological perspectives. Comput. Educ. 2016, 97, 86–96. [Google Scholar] [CrossRef]
- Magni, M.; Taylor, M.S.; Venkatesh, V. ‘To play or not to play’: A cross-temporal investigation using hedonic and instrumental perspectives to explain user intentions to explore a technology. Int. J. Hum. Comput. Stud. 2010, 68, 572–588. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.K.; Dhulla, T.V. Factors influencing professionals’ decision for cloud computing adoption. Int. J. Res. Adv. Technol. 2014, 2, 379–401. [Google Scholar]
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Ko, R.K.; Jagadpramana, P.; Mowbray, M.; Pearson, S.; Kirchberg, M.; Liang, Q.; Lee, B.S. TrustCloud: A framework for accountability and trust in cloud computing. In Proceedings of the 2011 IEEE World Congress on Services, Washington, DC, USA, 4–9 July 2011; pp. 584–588. [Google Scholar] [CrossRef]
- Ayyagari, R. Examination of hedonism in TAM research. In Proceedings of the 2006 Southern Association for Information Systems Conference, Umeå, Sweden, 10–12 May 2006. [Google Scholar]
- Akhtar, N.; Parwej, F.; Perwej, Y. A Perusal of Big Data Classification and Hadoop Technology. Sci. Educ. 2017, 4, 26–38. [Google Scholar]
- Shang, R.A.; Chen, Y.C.; Shen, L. Extrinsic versus intrinsic motivations for consumers to shop on-line. Inf. Manag. 2005, 42, 401–413. [Google Scholar] [CrossRef]
- Chitturi, A.K.; Swarnalatha, P. Exploration of various cloud security challenges and threats. In Soft Computing for Problem Solving; Springer: Singapore, 2020; pp. 891–899. [Google Scholar]
- Shaikh, A.H.; Meshram, B. Security issues in cloud computing. In Intelligent Computing and Networking; Springer: Singapore, 2021; pp. 63–77. [Google Scholar]
- Liu, Q.; Xue, B.; Huang, S. Investigating users switching intention for mobile map services: An extension of the push-pull-mooring model. Int. J. Mob. Commun. 2021, 19, 99–120. [Google Scholar] [CrossRef]
- Park, S.C.; Ryoo, S.Y. An empirical investigation of end-users’ switching toward cloud computing: A two factor theory perspective. Comput. Hum. Behav. 2013, 29, 160–170. [Google Scholar] [CrossRef]
- Wang, C.-S.; Jeng, Y.-L.; Huang, Y.-M. What influences teachers to continue using cloud services? The role of facilitating conditions and social influence. Electron. Libr. 2017, 35, 520–533. [Google Scholar] [CrossRef]
- Wu, C.; Toosi, A.N.; Buyya, R.; Ramamohanarao, K. Hedonic pricing of cloud computing services. IEEE Trans. Cloud Comput. 2021, 9, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A. Impact of utilitarian and hedonic shopping values on individual’s perceived benefits and risks in online shopping. Int. Manag. Rev. 2011, 7, 58–65. [Google Scholar]
- Kim, K.J.; Sundar, S.S. Does screen size matter for smartphones? Utilitarian and hedonic effects of screen size on smartphone adoption. Cyberpsychology Behav. Soc. Netw. 2014, 17, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Dickinger, A.; Arami, M.; Meyer, D. Reconsidering the adoption process: Enjoyment and social norms-antecedents of hedonic mobile technology use. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Kauai, HI, USA, 4–7 January 2006. [Google Scholar]
- Dickinger, A.; Arami, M.; Meyer, D. The role of perceived enjoyment and social norm in the adoption of technology with network externalities. Eur. J. Inf. Syst. 2008, 17, 4–11. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Pieper, T.M.; Ringle, C.M. The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Plan. 2012, 45, 320–340. [Google Scholar] [CrossRef]
- Dimoka, A. What does the brain tell us about trust and distrust? Evidence from a functional neuroimaging study. MIS Q. 2010, 34, 373–396. [Google Scholar]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Influence of experience on personal computer utilization: Testing a conceptual model. J. Manag. Inf. Syst. 1994, 11, 167–187. [Google Scholar] [CrossRef]
- Tzelgov, J. Automaticity and processing without awareness. Psyche 1999, 5, 18–23. [Google Scholar]
- Ariff, M.S.M.; Shan, T.K.; Zakuan, N.; Ishak, N.; Wahi, M.R. Examining Users’ E-Satisfaction in the Usage of Social Networking Sites; Contribution from Utilitarian and Hedonic Information Systems. IOP Conf. Ser. Mater. Sci. Eng. 2014, 58, 012004. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Chen, C. Validating the Satisfaction and Continuance Intention of E-Learning Systems: Combining TAM and IS Success Models. Int. J. Distance Educ. Technol. 2012, 10, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The Use of Partial Least Squares Path Modeling in International Marketing New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009; Volume 30, pp. 277–319. Available online: https://doi.org/10.1108/S1474-7979(2009)0000020014 (accessed on 24 March 2021).
- Miller, M. Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online; Que Publishing: Indianapolis, IN, USA, 2008. [Google Scholar]
- Kaewkitipong L l Chen, C.C.; Ractham, P. Using social media to enrich information systems field trip experiences: Students’ satisfaction and continuance intentions. Comput. Hum. Behav. 2016, 63, 256–263. [Google Scholar] [CrossRef]
- Singh, N.; Sinha, N.; Liébana-Cabanillas, F.J. Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. Int. J. Inf. Manag. 2020, 50, 191–205. [Google Scholar] [CrossRef]
- Peijian, S.; Wenbo, C.; Cheng, Z.; Lihua, H. Determinants of Information Technology Usage Habit. In Proceedings of the PACIS 2007, Auckland, New Zealand, 4–6 July 2007; Volume 4. [Google Scholar]
- Shiau, W.-L.; Chau, P.Y. Does altruism matter on online group buying? Perspectives from egotistic and altruistic motivation. Inf. Technol. People 2015, 28, 677–698. [Google Scholar] [CrossRef]
- Padhy, R.P.; Suresh, C.S. SLAs in Cloud Systems: The Business Perspective. Int. J. Comput. Sci. Technol. 2012, 3, 481–488. [Google Scholar]
- Hong, J.-C.; Lin, P.-H.; Hsieh, P.-C. The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch. Comput. Hum. Behav. 2017, 67, 264–272. [Google Scholar] [CrossRef]
- White, B.J.; Brown, J.A.E.; Deale, C.S.; Hardin, A.T. Collaboration using cloud computing and traditional systems. Issues Inf. Syst. 2009, 10, 27–32. [Google Scholar]
- Lee, C.-P.; Shim, J. An empirical study on user satisfaction with mobile business applications use and hedonism. J. Inf. Technol. Theory Appl. 2006, 8, 6. [Google Scholar]
- Kaewkitipong, L. The thai medical tourism supply chain: Its stakeholders, their collaboration and information exchange. Thammasat Rev. 2018, 21, 60–90. [Google Scholar]
- Casaló, L.V.; Flavián, C.; Ibáñez-Sánchez, S. Understanding consumer interaction on instagram: The role of satisfaction, hedonism, and content characteristics. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 369–375. [Google Scholar] [CrossRef]
- Varghese, B.; Leitner, P.; Ray, S.; Chard, K.; Barker, A.; Elkhatib, Y.; Herry, H.; Hong, C.-H.; Singer, J.; Tso, F.P.; et al. Cloud futurology. Computer 2019, 52, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing; NIST Special Publication; National Institute of Standards and Technology: Gaithersburg, MA, USA, 2011; Volume 800, pp. 1–4. [Google Scholar]
- Sultan, N. Making use of cloud computing for healthcare provision: Opportunities and challenges. Int. J. Inf. Manag. 2014, 34, 177–184. [Google Scholar] [CrossRef]
- Pavlou, P.A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar]
- Turel, O. Quitting the use of a habituated hedonic information system: A theoretical model and empirical examination of Facebook users. Eur. J. Inf. Syst. 2015, 24, 431–446. [Google Scholar] [CrossRef]
- Aarts, H.; Dijksterhuis, A. Habits as knowledge structures: Automaticity in goal-directed behavior. J. Personal. Soc. Psychol. 2000, 78, 53. [Google Scholar] [CrossRef]
- Fouquet, M.; Niedermayer, H.; Carle, G. Cloud computing for the masses. In Proceedings of the 1st ACM Workshop on User-provided Networking: Challenges and Opportunities, Rome, Italy, 1 December 2009. [Google Scholar]
- Gardner, B. Habit as automaticity, not frequency. Eur. Health Psychol. 2012, 14, 32–36. [Google Scholar]
- Bajaj, A.; Nidumolu, S.R. A feedback model to understand information system usage. Inf. Manag. 1998, 33, 213–224. [Google Scholar] [CrossRef]
- Pearson, S.; Benameur, A. Privacy, security and trust issues arising from cloud computing. In Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, IN, USA, 30 November–3 December 2010. [Google Scholar]
- Nguyen, T.D.; Nguyen, D.T.; Cao, T.H. Acceptance and use of information system: E-learning based on cloud computing in Vietnam. In Proceedings of the ICT-EurAsia 2014: Information and Communication Technology, Bali, Indonesia, 14–17 April 2014; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Brender, N.; Markov, I. Risk perception and risk management in cloud computing: Results from a case study of Swiss companies. Int. J. Inf. Manag. 2013, 33, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Van der Heijden, H. User acceptance of hedonic information systems. MIS Q. 2004, 28, 695–704. [Google Scholar] [CrossRef]
- Ackermann, T.; Widjaja, T.; Benlian, A.; Buxmann, P. Perceived IT security risks of cloud computing: Conceptualization and scale development. In Proceedings of the ICIS 2012, Orlando, FL, USA, 16–19 December 2012. [Google Scholar]
- Troshani, I.; Rampersad, G.; Wickramasinghe, N. Cloud Nine? An Integrative Risk Management Framework for Cloud Computing. In Proceedings of the Bled eConference, Bled, Slovenia, 12–15 June 2011. [Google Scholar]
- Khan, K.M.; Malluhi, Q. Establishing trust in cloud computing. IT Prof. 2010, 12, 20–27. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, J.; Wang, X.; Tao, B.; Zhou, W. A cloud service trust evaluation model based on combining weights and gray correlation analysis. Secur. Commun. Netw. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Garg, S.K.; Buyya, R. SLA-based resource allocation for software as a service provider (SaaS) in cloud computing environments. In Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Newport Beach, CA, USA, 23–26 May 2011; pp. 195–204. [Google Scholar]
- Ding, S.; Wang, Z.; Wu, D.; Olson, D.L. Utilizing customer satisfaction in ranking prediction for personalized cloud service selection. Decis. Support Syst. 2017, 93, 1–10. [Google Scholar] [CrossRef]
- Laplante, A.; Downie, J.S. The utilitarian and hedonic outcomes of music information-seeking in everyday life. Libr. Inf. Sci. Res. 2011, 33, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Yang, S.; Zhang, Y.; Liang, C.; Xia, C. Combining QoS prediction and customer satisfaction estimation to solve cloud service trustworthiness evaluation problems. Knowl. Based Syst. 2014, 56, 216–225. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Xu, F.; Du, J.T. Factors influencing users’ satisfaction and loyalty to digital libraries in Chinese universities. Comput. Hum. Behav. 2018, 83, 64–72. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Hadji, B.; Degoulet, P. Information system end-user satisfaction and continuance intention: A unified modeling approach. J. Biomed. Inform. 2016, 61, 185–193. [Google Scholar] [CrossRef]
- Parthasarathy, M.; Bhattacherjee, A. Understanding post-adoption behavior in the context of online services. Inf. Syst. Res. 1998, 9, 362–379. [Google Scholar] [CrossRef] [Green Version]
- Chiu, P.-S.; Chao, I.-C.; Kao, C.-C.; Pu, Y.-H.; Huang, Y.-M. Implementation and evaluation of mobile e-books in a cloud bookcase using the information system success model. Libr. Hi Tech 2016, 34, 207–223. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X.R.; Yang, X.; Qiao, Z. Easy come or easy go? Empirical evidence on switching behaviors in mobile payment applications. Inf. Manag. 2019, 56, 103–150. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.J. An integrated adoption model of mobile cloud services: Exploration of key determinants and extension of technology acceptance model. Telemat. Inform. 2014, 31, 376–385. [Google Scholar] [CrossRef]
- Keskin, T.; Taskin, N. Strategic pricing of horizontally differentiated services with switching costs: A pricing model for cloud computing. Int. J. Electron. Commer. 2015, 19, 34–53. [Google Scholar] [CrossRef]
- Limayem, M.; Cheung, C.M. Understanding information systems continuance: The case of Internet-based learning technologies. Inf. Manag. 2008, 45, 227–232. [Google Scholar] [CrossRef]
- Cheng, Y.-M. Quality antecedents and performance outcome of cloud-based hospital information system continuance intention. J. Enterp. Inf. Management. 2020, 33, 654–683. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; pp. 655–690. [Google Scholar]
- Fornell, C.; Bookstein, F.L. Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. J. Mark. Res. 1982, 19, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.-L.; Chen, J.C.; Weng, C.-C. Measuring social influence, user perception, innovation attributes and user satisfaction in the enterprise resource planning context. Int. J. Bus. Syst. Res. 2009, 3, 413–436. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Gupta, A.; Dhiman, N.; Yousaf, A.; Arora, N. Social comparison and continuance intention of smart fitness wearables: An extended expectation confirmation theory perspective. Behav. Inf. Technol. 2020, 39, 1–14. [Google Scholar] [CrossRef]
- Posner, M.I. Chronometric Explorations of Mind; Lawrence Erlbaum: Mahwah, NJ, USA, 1978. [Google Scholar]
- Fishbein, M.; Ajzen, I. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Scheepers, R.; Scheepers, H.; Ngwenyama, O.K. Contextual influences on user satisfaction with mobile computing: Findings from two healthcare organizations. Eur. J. Inf. Syst. 2006, 15, 261–268. [Google Scholar] [CrossRef]
- Holsapple, C.W.; Wu, J. User acceptance of virtual worlds: The hedonic framework. ACM SIGMIS Database DATABASE Adv. Inf. Syst. 2007, 38, 86–89. [Google Scholar] [CrossRef]
- Liaqat, M.; Chang, V.; Gani, A.; Ab Hamid, S.H.; Toseef, M.; Shoaib, U.; Ali, R.L. Federated cloud resource management: Review and discussion. J. Netw. Comput. Appl. 2017, 77, 87–105. [Google Scholar] [CrossRef]
- Ogara, S.O.; Koh, C.E.; Prybutok, V.R. Investigating factors affecting social presence and user satisfaction with mobile instant messaging. Comput. Hum. Behav. 2014, 36, 453–459. [Google Scholar] [CrossRef]
Construct | Survey Items | Source |
---|---|---|
Social Influence (SI) |
| [23] |
Automaticity (AUTO) |
| [44] |
Hedonicity (HEDO) |
| [36] |
Perceived Risk (PR) |
| [42] |
Trust in Provider (TIP) |
| [22] |
Service Quality (SQ) |
| [32] |
Behavioral intention to use cloud computing (BI) |
| [71] |
Construct | CA | CR | AVE | AUTO | CONT | HEDO | INT | PR | SAT | SI | SQ | TIP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUTO | 0.7958 | 0.8779 | 0.7063 | 0.8404 | ||||||||
CONT | 0.8645 | 0.9161 | 0.7848 | 0.5235 | 0.8859 | |||||||
HEDO | 0.8823 | 0.9271 | 0.8092 | 0.5886 | 0.6735 | 0.8996 | ||||||
INT | 0.9301 | 0.9556 | 0.8776 | 0.4872 | 0.7054 | 0.7008 | 0.9368 | |||||
PR | 0.8622 | 0.9158 | 0.7838 | 0.0879 | 0.0924 | −0.0033 | 0.0696 | 0.8853 | ||||
SAT | 0.7767 | 0.8993 | 0.817 | 0.4915 | 0.7296 | 0.7178 | 0.6527 | 0.1276 | 0.9039 | |||
SI | 0.8044 | 0.9101 | 0.835 | 0.3420 | 0.4220 | 0.4862 | 0.4819 | 0.0000 | 0.4530 | 0.9138 | ||
SQ | 0.7693 | 0.8665 | 0.684 | 0.5007 | 0.5658 | 0.6917 | 0.5730 | 0.0103 | 0.5915 | 0.3481 | 0.8270 | |
TIP | 0.8575 | 0.9127 | 0.7771 | 0.3815 | 0.3539 | 0.4940 | 0.4136 | −0.1872 | 0.3266 | 0.2744 | 0.5050 | 0.8815 |
Hypothesized Path | Path Coefficient | t-Statistics | Hypothesis Test Results |
---|---|---|---|
H1: SI→SAT | 0.131 | 1.880 * | Supported |
H2: HEDO→SAT | 0.521 | 6.610 *** | Supported |
H3: AUTO→SAT | 0.061 | 0.862 | Rejected |
H4: PR→SAT | 0.110 | 2.113 ** | Supported |
H5: TIP→SAT | −0.083 | 1.078 | Rejected |
H6: SQ→SAT | 0.185 | 2.441 ** | Supported |
H7: SAT→BI | 0.653 | 12.515 *** | Supported |
H8: BI→CON | 0.705 | 17.202 *** | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sithipolvanichgul, J.; Chen, C.; Land, J.; Ractham, P. Enhancing User Experiences with Cloud Computing via Improving Utilitarian and Hedonic Factors. Energies 2021, 14, 1822. https://doi.org/10.3390/en14071822
Sithipolvanichgul J, Chen C, Land J, Ractham P. Enhancing User Experiences with Cloud Computing via Improving Utilitarian and Hedonic Factors. Energies. 2021; 14(7):1822. https://doi.org/10.3390/en14071822
Chicago/Turabian StyleSithipolvanichgul, Juthamon, Charlie Chen, Judy Land, and Peter Ractham. 2021. "Enhancing User Experiences with Cloud Computing via Improving Utilitarian and Hedonic Factors" Energies 14, no. 7: 1822. https://doi.org/10.3390/en14071822
APA StyleSithipolvanichgul, J., Chen, C., Land, J., & Ractham, P. (2021). Enhancing User Experiences with Cloud Computing via Improving Utilitarian and Hedonic Factors. Energies, 14(7), 1822. https://doi.org/10.3390/en14071822