Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy
Abstract
:1. Introduction
- (1)
- How does spatial policy in Poland determine the development of distributed renewable energy? In which ranges is it positive and stimulating, and in which negative and destimulating?
- (2)
- In which parts of the country is the planning situation better organised, and are there any regularities related to communes’ morphological and functional specificity?
- (3)
- In which regions of the country should the settlement structure be particularly suited to developing dispersed renewable energy?
- (4)
- What legal and planning actions should be taken to promote the development of distributed renewable energy more effectively?
2. Determinants of Renewable Energy Development in Poland against the Background of Global Trends
3. Materials and Methods
4. Results—Determinants of the Location of Renewable Energy Sources in Poland
4.1. Planning Conditions
Type * | Included in the Analysis | Number of Communes | Area (km2) | Population (Thous.) |
---|---|---|---|---|
A | No | 33 | 5004 | 9563 |
B | Yes | 265 | 27,589 | 4873 |
C | No | 55 | 3399 | 4322 |
D | Yes | 201 | 21,468 | 2452 |
E | Yes | 142 | 10,265 | 3783 |
F | Yes | 137 | 19,964 | 1435 |
G | Yes | 222 | 33,856 | 1817 |
H | Yes | 496 | 62,971 | 3048 |
I | Yes | 665 | 86,532 | 5179 |
J | Yes | 261 | 41,657 | 1910 |
Total (Poland) | 2477 | 312,705 | 38,383 | |
Total % (“Yes”) | 96.4% | 97.3% | 63.8% |
4.2. Settlement Conditions
- ‒
- construction, modernisation, and maintenance costs of all line and point infrastructure,
- ‒
- the costs of establishing relationships since places with different socio-economic functions are too far away,
- ‒
- lower or no synergy effects and the so-called agglomeration benefits (scale).
5. Discussion
6. Conclusions
- ‒
- expanding the role of analyses in spatial management—first of all on a local scale (a postulate both to local authorities and national authorities responsible for the entire spatial management system);
- ‒
- wider correlation between the conditions for RES investments and the requirements of environmental, nature and landscape protection (both to the local authorities and national authorities);
- ‒
- Clarification of the scope of local spatial policy tools and the introduction of greater flexibility at the implementation stage (demand to national authorities);
- ‒
- comparison of barriers when applying spatial policy tools in different countries;
- ‒
- ways of solving spatial conflicts when determining the location and implementation of RES (including distributed renewable energy production) in different countries;
- ‒
- public participation in RES planning and implementation process. There is no doubt that dispersed development can be a significant stimulator of distributed renewable energy production. For this to be possible, it seems of key importance to modify the current spatial policy tools, first to the extent that will guarantee a wider than currently differentiation of the conditions for the development of individual areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szelenyi, I.; Beckett, K.; King, L.P. The socialist economic system. In The Handbook of Economic Sociology; Smelser, N.J., Swedberg, R., Eds.; Princeton University Press: New York, NY, USA, 1994; pp. 234–251. [Google Scholar]
- Węcławowicz, G. Contemporary Poland: Space and Society; UCL Press: London, UK, 1996. [Google Scholar]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Rezolucja Zgromadzenia Ogólnego A/RES/70/1 z dnia 25 Września 2015 r. (bez Odniesienia do Komitetu Głównego (A/70/L.1)). Agenda na Rzecz Zrównoważonego Rozwoju 2030. Available online: https://www.un.org.pl/agenda-2030-rezolucja (accessed on 29 March 2021).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA Relevance.). Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 1 March 2021).
- Komornicki, T.; Szejgiec-Kolenda, B.; Degórska, B.; Goch, K.; Śleszyński, P.; Bednarek-Szczepańska, M.; Siłka, P. Spatial planning determinants of cohesion policy implementation in Polish regions. Europa 2018, 21, 69–87. [Google Scholar] [CrossRef]
- Nadin, V.; Fernández Maldonado, A.; Zonneveld, W.; Stead, D.; Dąbrowski, M.; Piskorek, K.; Sarkar, A.; Schmitt, P.; Smas, L.; Cotella, G.; et al. COMPASS—Comparative Analysis of Territorial Governance and Spatial Planning Systems in Europe Applied Research 2016–2018 Final Report; ESPON: Luxembourg, 2018; Available online: https://www.espon.eu/planning-systems (accessed on 10 December 2020).
- Rosner, A.; Wesołowska, M. Deagrarianisation of the Economic Structure and the Evolution of Rural Settlement Patterns in Poland. Land 2020, 9, 523. [Google Scholar] [CrossRef]
- Stasiak, A. Changes in rural settlement in Poland up to 2000. Geogr. Pol. 1989, 56, 109–114. [Google Scholar]
- Śleszyński, P.; Kowalewski, A.; Markowski, T.; Legutko-Kobus, P.; Nowak, M. The contemporary economic costs of spatial chaos: Evidence from Poland. Land 2020, 9, 214. [Google Scholar] [CrossRef]
- Florida, R. The Geography of Coronavirus, City Lab, 3.04.2020. Available online: https://www.bloomberg.com/news/articles/2020-04-03/what-we-know-about-density-and-covid-19-s-spread (accessed on 13 March 2020).
- Komornicki, T. Spatial planning in Poland the territorial perspective. In Territorio y Estados: Elementos para la Coordinación de las Políticas de Ordenación del Territorio en el Siglo XXI; Tirant lo Blanch: Valencia, Spain, 2018; pp. 529–562. ISBN 9788416556854. [Google Scholar]
- Lityński, P.; Hołuj, A. Urban Sprawl Risk Delimitation: The Concept for Spatial Planning Policy in Poland. Sustainability 2020, 12, 2637. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, T.; Mikuła, Ł. The Housing Market in Poland in the Liberalized Spatial Planning System: The National Context and Metropolitan Dimension of the Poznań Agglomeration. In Housing and Housing Politics in European Metropolises. Jahrbuch Stadtregion; Wehrhahn, R., Pohlan, J., Hannemann, C., Othengrafen, F., Schmidt-Lauber, B., Eds.; Springer: Wiesbaden, Germany, 2019. [Google Scholar] [CrossRef]
- Aguirre, M.; Ibikunle, G. Determinants of renewable energy growth: A global sample analysis. Energy Policy 2014, 69, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.J.; Stephens, J.C. Political power and renewable energy futures: A critical review. Energy Res. Soc. Sci. 2018, 35, 78–93. [Google Scholar] [CrossRef]
- Sareen, S. Energy distribution trajectories in two Western Indian states: Comparative politics and sectoral dynamics. Energy Res. Soc. Sci. 2018, 35, 17–27. [Google Scholar] [CrossRef]
- Zawalińska, K.; Kinnunen, J.; Gradziuk, P.; Celińska-Janowicz, D. To Whom Should We Grant a Power Plant? Economic Effects of Investment in Nuclear Energy in Poland. Energies 2020, 13, 2687. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G.; Andreopoulou, Z.; Zafeiriou, E.A. Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece. Sustainability 2018, 10, 531. [Google Scholar] [CrossRef] [Green Version]
- Lazaroiu, G.; Mihaescul, L.; Jarcu, E.A.; Stanescu, L.A.; Ciupageanu, D.A. Renewable energy employment in Romania: An environmental impact discussion. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Albena, Bulgaria, 18–24 August 2020; Volume 20, pp. 177–184. Available online: https://www.sgem.org/index.php/elibrary?view=publication&task=show&id=7229 (accessed on 29 March 2021).
- Barragán-Escandón, A.; Terrados-Cepeda, J.; Zalamea-León, E. The Role of Renewable Energy in the Promotion of Circular Urban Metabolism. Sustainability 2017, 9, 2341. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Fang, J.; Paramati, S.R.; Jiang, K. Determinants of renewable and non-renewable energy demand in China. Struct. Chang. Econ. Dyn. 2020, 54, 202–209. [Google Scholar] [CrossRef]
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Johnstone, N.; Haščič, I.; Popp, D. Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environ. Resour. Econ. 2010, 45, 133–155. [Google Scholar] [CrossRef]
- Dogru, T.; Bulut, U.; Kocak, E.; Isik, C.; Suess, C.; Sirakaya-Turk, E. The nexus between tourism, economic growth, renewable energy consumption, and carbon dioxide emissions: Contemporary evidence from OECD countries. Environ. Sci. Pollut. Res. Int. 2020, 27, 40930–40948. [Google Scholar] [CrossRef]
- Gan, L.; Eskeland, G.S.; Kolshus, H.H. Green electricity market development: Lessons from Europe and the US. Energy Policy 2007, 35, 144–155. [Google Scholar] [CrossRef]
- UNIDO. Global Value Chains and Industrial Development: Lessons from China, South-East and South Asia; UNIDO: Vienna, Austria, 2018; Available online: https://www.unido.org/sites/default/files/files/2018-06/EBOOK_GVC.pdf (accessed on 29 March 2021).
- Mata, T.M.; Martins, A.A.; Sikdar, S.K.; Costa, C.A.V.; Caetano, N.S. Sustainability analysis of biofuels through the supply chain using indicators. Sustain. Energy Technol. Assess. 2013, 3, 53–60. [Google Scholar] [CrossRef]
- Garcia-Casals, X.; Ferroukhi, R.; Parajuli, B. Measuring the socio-economic footprint of the energy transition. Energy Transit. 2019, 3, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Mainali, B. Sustainability of Rural Energy Access in Developing Countries. Ph.D. Thesis, Royal Institute of Technology-KTH, Stockholm, Sweden, 2014. [Google Scholar]
- Waldenström, C.; Ferguson, R.; Sundberg, C.; Tidåker, P.; Westholm, E.; Åkersko, A. Bioenergy from agriculture: Challenges for the rural development program in Sweden. Soc. Nat. Resour. 2016, 29, 1467–1482. [Google Scholar] [CrossRef]
- Dai, H.; Xuxuan, X.; Xie, Y.; Liu, J.; Masui, T. Green growth: The economic impacts of large-scale renewable energy development in China. Appl. Energy 2016, 162, 435–449. [Google Scholar] [CrossRef]
- Nagaj, R.; Korpysa, J. Impact of COVID-19 on the Level of Energy Poverty in Poland. Energies 2020, 13, 4977. [Google Scholar] [CrossRef]
- Chiradeja, P.; Ramakumar, R. An approach to quantify the technical benefis of distributed generation. IEEE Trans. Energy Convers. 2004, 19, 764–773. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Taylor, J.P.; Johnson, D.W.; Hobbs, P.V.; Ferek, R.J. Effects of aerosols on cloud albedo: Evaluation of Twomey’s parameterisation of cloud susceptibility using measurements of ship tracks. J. Atmos. Sci. 2000, 57, 2684–2695. [Google Scholar] [CrossRef] [Green Version]
- Willis, H.L.; Scott, W.G. Distributed Power Generation. Planning and Evaluation; CRC Press: New York, NY, USA, 2018. [Google Scholar]
- Rae, C.; Kerr, S.; Maroto-Valer, M.M. Upscaling smart local energy systems: A review of technical barriers. Renew. Sustain. Energy Rev. 2020, 131, 110020. [Google Scholar] [CrossRef]
- Dugan, R.C.; McDermott, T.E.; Ball, G.J. Planning for distributed generation. IEEE Ind. Appl. Mag. 2001, 7, 80–88. [Google Scholar] [CrossRef]
- Lewandowska, A.; Chodkowska-Miszczuk, J.; Rogatka, K. Development of renewable energy sources in big cities in Poland in the context of urban policy. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Herran, D.S.; Nakata, T. Design of decentralised energy systems for rural electrification in developing countries considering regional disparity. Appl. Energy 2012, 91, 130–145. [Google Scholar] [CrossRef]
- Agarwal, U.; Jain, N. Distributed Energy Resources and Supportive Methodologies for their Optimal Planning under Modern Distribution Network. Technol. Econ. Smart Grids Sustain. Energy 2019, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Koirala, B.P.; Koliou, E.; Friege, J.; Hakvoort, R.A.; Herder, P.M. Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renew. Sustain. Energy Rev. 2016, 56, 722–744. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.; Roscia, M.; Lazaroiu, G.C.; Pagano, M. Analysis of Sustainable and Competitive Energy System. Available online: https://ieeexplore.ieee.org/abstract/document/7016516 (accessed on 29 March 2021).
- Kabuth, A.; Dahmke, A.; Beyer, C.; Bilke, L.; Dethlefsen, F.; Dietrich, P.; Duttmann, R.; Ebert, M.; Feeser, V.; Görke, U.J.; et al. Energy storage in the geological subsurface: Dimensioning, risk analysis and spatial planning: The ANGUS+ project. Environ. Earth Sci. 2017, 76, 23. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Duić, N.; Krajac˘ić, G.; da Graça Carvalho, M. Two energy system analysis models: A comparison of methodologies and results. Energy 2007, 32, 948–954. [Google Scholar] [CrossRef]
- Szyrski, M. Rola Samorządu Terytorialnego w Rozwoju Odnawialnych Źródeł Energii (OZE). Analiza Administracyjnoprawna; Wolters Kluwer: Worsaw, Poland, 2017. [Google Scholar]
- Meschede, H.; Child, M.; Breyer, C. Assessment of sustainable energy system configuration for a small Canary island in 2030. Energy Convers. Manag. 2018, 165, 363–372. [Google Scholar] [CrossRef]
- Dorotić, H.; Doračić, B.; Dobravec, V.; Pukšec, T.; Krajačić, G.; Duić, N. Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources. Renew. Sustain. Energy Rev. 2019, 99, 109–124. [Google Scholar] [CrossRef]
- Gawlik, L. The Polish power industry in energy transformation process. Miner. Econ. 2018, 31, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Asensio, C.; Lozano, F.J.; Ortega, E.; Kikvidze, Z. Study on the effectiveness of an agricultural technique based on aeolian deposition, in a semiarid environment. Environ. Eng. Manag. J. 2015, 14, 1143–1150. [Google Scholar] [CrossRef]
- Lazaroiu, G.; Ciupageanu, D.A.; Vatuiu, T. Highlights of renewable energy integration impact: Evolution and perspectives in Romania. In Proceedings of the 21st International Symposium on Electrical Apparatus & Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2020. [Google Scholar]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Ferrer, J.N.; Cătuţi, M.; Stroia, C.; Bryhn, J. Comparative Study on the Governance Structure and Energy Policies in EU Macro-Regional Strategies; Research Report; Thinking Ahead for Europe; CEPS: Brussels, Belgium, 2019; p. 2. [Google Scholar]
- Alper, A.; Oguz, O. The role of renewable Energy consumption in economic growth: Evidence from assymetric causality. Renew. Sustain. Energy Rev. 2016, 60, 953–959. [Google Scholar] [CrossRef]
- Łączak, A.; Bazan-Krzywoszańska, A.; Mrówczyńska, M.; Skiba, M. Renewable Energy Sources in the Lubusz Voivodship (Poland). The Present Conditions and Perspectives for Development. Civ. Environ. Eng. Rep. 2018, 28, 31–67. [Google Scholar] [CrossRef]
- Szulc, H. Historical geography of rural settlement in Poland. In Geographie Historique et Culturelle de l’Europe: Hommage au Professeur Xavier de Planhol; Pitte, J.R., de Planhol, X., Eds.; Presses de l’Université de Paris-Sorbonne: Paris, France, 1995; pp. 381–393. [Google Scholar]
- Heffner, K.; Gibas, P. Centra regionów a spójność regionalna w Polsce. Res. Pap. Wrocław Univ. Econ. 2017, 466, 98–110. [Google Scholar]
- Śleszyński, P.; Komornicki, T. Functional classification of Poland’s communes (gminas) for the needs of the monitoring of spatial planning [Klasyfikacja funkcjonalna gmin Polski na potrzeby monitoringu planowania przestrzennego]. Przegląd Geogr. 2016, 88, 469–488. [Google Scholar] [CrossRef]
- Nowak, M. The Role and Effects of Case—Low in Spatial Competition. An analysis of selected cases. Biul. Kom. Przestrz. Zagospod. Kraj. PAN 2017, 265, 172–180. [Google Scholar]
- Karwińska, A.; Böhm, A.; Kudłacz, M. The phenomenon of urban sprawl in modern Poland: Causes, effects and remedies. Zarządzanie Publiczne/Public Gov. 2018, 3, 26–43. [Google Scholar] [CrossRef] [Green Version]
- Lorens, P. Trends and problems of contemporary urbanisation processes in Poland. In Spatial Planning and Urban Development in the New EU Member States; Altrock, U., Ed.; Routledge: Abingdon, UK, 2017; pp. 109–126. Available online: https://www.routledge.com/Spatial-Planning-and-Urban-Development-in-the-New-EU-Member-States-From/Altrock-Guntner-Peters/p/book/9780754646846 (accessed on 22 April 2017).
- Izdebski, W.; Śleszyński, P.; Malinowski, Z.; Kursa, M. Analiza morfometryczna planów miejscowych w Polsce. Infrastrukt. i Ekol. Teren. Wiej. 2018, 2, 331–347. [Google Scholar] [CrossRef]
- Mickiewicz, P.; Nowak, M. Environmental protection and integrated development planning in local spatial policy on the example of Poland. Ann. Univ. Apulensis Ser. Oecon. 2020, 22, 11–18. [Google Scholar] [CrossRef]
- Śleszyński, P.; Nowak, M.; Sudra, P.; Załęczna, M.; Blaszke, M. Economic Consequences of Adopting Local Spatial Development Plans for the Spatial Management System: The Case of Poland. Land 2021, 10, 112. [Google Scholar] [CrossRef]
- Parysek, J.J. Asking about the future of spatial management in Poland (thirteen years on from the 2003 legal regulation). Ruch Praw. Ekon. I Socjol. 2016, 78, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Cotella, G. Spatial planning in Poland between European influence and dominant market forces. In Spatial Planning Systems and Practices in Europe. A Comparative Perspective on Continuity and Changes; Reimer, M., Getimis, P., Blotevogel, H., Eds.; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Nowak, M. The Statekholders and Municipal Authorities in the Spatial Competition. Biul. Kom. Przestrz. Zagospod. Kraj. PAN 2017, 265, 22–35. [Google Scholar]
- Nawrot, F. Budowa instalacji odnawialnych źródeł energii a planowanie przestrzenne. Prawne Probl. Górnictwa I Ochr. Środowiska 2017, 1, 71–89. [Google Scholar]
- Biegańska, J.; Szymańska, D. The scale and the dynamics of permanent migration in rural and peri-urban areas in Poland—Some problems. Bull. Geogr. Socio-Econ. Ser. 2013, 21, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Gałka, J.; Warych-Juras, A. Suburbanization and migration in polish metropolitan areas during political transition. Acta Geogr. Slov. 2018, 58, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Gutry-Korycka, M. (Ed.) Urban Sprawl; Warsaw Agglomeration Case Study; Warsaw Uniwersity Press: Warsaw, Poland, 2005. [Google Scholar]
- Stanny, M.; Czarnecki, A. Level and determinants of sustainable rural development in the Region of Green Lungs of Poland. Rural Areas Dev. 2010, 7, 197–212. [Google Scholar] [CrossRef]
- Sharma, D.; Bartels, R. Distributed Electricity Generation in Competitive Energy Markets: A Case Study in Australia, International Association for Energy Economics. Energy J. 1997, 18. [Google Scholar] [CrossRef]
- Miskinis, V.; Norvaisa, E.; Galinis, A.; Konstantinaviciute, I. Trends of distributed generation development in Lithuania. Energy Policy 2011, 39, 4656–4663. [Google Scholar] [CrossRef]
- Kaundinya, D.P.; Balachandra, P.; Ravindranath, N.H.; Ashok, V. A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of Tumkur district, India. Energy 2013, 52, 77–88. [Google Scholar] [CrossRef]
- Śleszyński, P.; Sudra, P. Zastosowanie metody minimalnego drzewa rozpinającego (najkrótszego dendrytu) w ocenie efektywności i spójności sieci osadniczej województwa mazowieckiego. Przegląd Geogr. 2019, 91, 61–80. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Czerwińska, J. Smog Episodes in Poland. Atmosphere 2020, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Gawlikowska, A.P. Odnawialne źródła energii w planowaniu przestrzennym na przykładzie energetyki wiatrowej. Kwart. Archit. I Urban. 2013, 58, 131–159. [Google Scholar]
- Tomczak, A. Otwarty Krajobraz Kulturowy z Zabytkiem w Tle. Formy Ochrony Przyrody na Przykładach z Ziemi Łódzkiej; Politechnika Łódzka: Łódź, Poland, 2018. [Google Scholar]
- Stremke, S.; Koh, J. Sustainable energy transition: Properties and constraints of regenerative energy systems with respect to spatial planning and design. In Proceedings of the 3rd CIB International Conference on Smart and Sustainable Built Environments, Department(s) Landscape Architecture and Spatial Planning, WIMEK, Delft, The Netherlands, 15–19 June 2009. [Google Scholar]
- Legutko-Kobus, P. Partycypacja jako element programowania rozwoju lokalnego. Studia Z Polityki Publicznej 2018, 3, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Holtmeyer, M.L.; Wang, S.; Axelbaum, R.L. Considerations for decision-making on distributed power generation in rural area. Energy Policy 2013, 63, 708–715. [Google Scholar] [CrossRef]
- Markowski, T. Main Issues in the Spatial Development of Poland in the European Context. Eur. Spat. Res. Policy 2007, 14, 7–29. [Google Scholar]
- Berisha, E.; Cotella, G.; Janin-Rivolin, U.; Solly, A. Spatial governance and planning systems and the public control of spatial development: A European typology. Eur. Plann. Stud. 2020, 29, 181–200. [Google Scholar] [CrossRef]
- Nadin, V.; Stead, D. Spatial planning in the United Kingdom 1990–2013. In Spatial Planning Systems and Practices in Europe. A Comparative Perspective on Continuity and Changes; Reimer, M., Getimis, P., Blotevogel, H., Eds.; Routledge: New York, NY, USA, 2014; pp. 198–214. ISBN 9780415727242. [Google Scholar]
- Muñoz-Gielen, D. Urban governance, property rights, land readjustment and public value capturing. Eur. Urban. Reg. Stud. 2014, 21, 60–78. [Google Scholar] [CrossRef]
- Zerriffi, H. Rural Electrification Strategies for Distributed Generation; Springer: Vancouver, BC, Canada, 2011. [Google Scholar] [CrossRef]
- Szlachta, J. Agenda Terytorialna Unii Europejskiej 2030 jako podstawa kształtowania europejskiej polityki przestrzennej. In Polityka Przestrzenna w Czasie Kryzysu; Nowak, M., Ed.; Scholar: Warsaw, Poland, 2021; pp. 139–156. [Google Scholar]
- Geography of COVID-19 Outbreak and First Policy Answers in European Regions and Cities; Espon Study; Policy Brief; EconomiX: Luxembourg, 2020.
- Bouzarovski, S.; Tirado Herrero, S. Geographies of injustice: The socio-spatial determinants of energy poverty in Poland, the Czech Republic and Hungary. Post-Communist Econ. 2017, 29, 27–50. [Google Scholar] [CrossRef] [Green Version]
- Śleszyński, P.; Bański, J.; Degórski, M.; Komornicki, T. Delimitation of problem areas in Poland. Geogr. Pol. 2017, 90, 131–138. [Google Scholar] [CrossRef] [Green Version]
Commune Type | Planing Coverage (%) | Including in Communes with Population Density (Persons per 1 sq. km) | ||
---|---|---|---|---|
Total | below 50 | 50–150 | above 150 | |
BD | 42.1 | 13.6 | 39.0 | 63.4 |
EFG | 29.9 | 21.4 | 36.5 | 42.0 |
HIJ | 28.1 | 23.6 | 33.1 | 58.0 |
Total | 31.2 | 22.7 | 35.1 | 54.0 |
Commune Type | Planing Coverage (%) | Including in Communes with Population Density (Persons per 1 sq. km) | ||
---|---|---|---|---|
Total | below 50 | 50–150 | above 150 | |
BD | 2.19 | 0.65 | 2.08 | 3.21 |
EFG | 1.19 | 0.36 | 1.28 | 3.73 |
HIJ | 0.93 | 0.77 | 1.04 | 3.34 |
Total | 1.29 | 0.68 | 1.32 | 3.79 |
Size | Number of Villages | Share of Number (%) | Number of Population (thous.) | Share of Population (%) |
---|---|---|---|---|
<33 | 1450 | 3.5 | 22 | 0.1 |
34–100 | 7751 | 18.6 | 537 | 3.6 |
101–333 | 19,499 | 46.8 | 3822 | 25.4 |
334–1000 | 10,168 | 24.4 | 5575 | 37.0 |
1001–3333 | 2587 | 6.2 | 4178 | 27.7 |
>3333 | 204 | 0.5 | 939 | 6.2 |
Total | 41,659 | 100.0 | 15,073 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śleszyński, P.; Nowak, M.; Brelik, A.; Mickiewicz, B.; Oleszczyk, N. Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy. Energies 2021, 14, 1935. https://doi.org/10.3390/en14071935
Śleszyński P, Nowak M, Brelik A, Mickiewicz B, Oleszczyk N. Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy. Energies. 2021; 14(7):1935. https://doi.org/10.3390/en14071935
Chicago/Turabian StyleŚleszyński, Przemysław, Maciej Nowak, Agnieszka Brelik, Bartosz Mickiewicz, and Natalia Oleszczyk. 2021. "Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy" Energies 14, no. 7: 1935. https://doi.org/10.3390/en14071935
APA StyleŚleszyński, P., Nowak, M., Brelik, A., Mickiewicz, B., & Oleszczyk, N. (2021). Planning and Settlement Conditions for the Development of Renewable Energy Sources in Poland: Conclusions for Local and Regional Policy. Energies, 14(7), 1935. https://doi.org/10.3390/en14071935