Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis
Abstract
:1. Introduction and Background
1.1. Digitalization of Building Data
1.2. Interoperability Frameworks and the Role of Semantic Interoperability
1.3. Ontologies and the Semantic Web
1.4. Contribution of This Review
- combining a systematic approach to reviewing the academic and gray literature with a deeper analysis of a select number of ontologies and use cases that have high value for building control and analytics applications affecting energy concerns;
- surveying schemas that cover multiple stages of the building life cycle; and
- providing the reader with a comprehensive list of metadata schemas that are documented and publicly available.
- RQ1: What is the landscape of building-related metadata schemas/ontologies in the academic/gray literature?
- RQ2: Given a selection of relevant ontologies, what are the overlaps and gaps among these metadata schemas that support building operational applications?
- RQ3: How does this subset of schemas support a building modeler targeting three use cases of high value to efficiency and grid interactivity?
2. Method
3. Results of the Review: Metadata Schemas for Buildings
3.1. Definitions
3.1.1. Information Stack (Knowledge Hierarchy)
3.1.2. Metadata
3.1.3. Schema, Taxonomy, Ontology, and Linked Data
3.1.4. Tag, Tagging, and Folksonomy
3.1.5. Model and Instance
3.1.6. Knowledge Base
3.2. Metadata Schemas
3.2.1. Schemas for Building Design and Energy Modeling
3.2.2. Schemas for Building Operations: Sensor Networks, IoT, and Smart Homes
3.2.3. Schemas for Building Operations: Commercial Building Automation and Monitoring
3.2.4. Schemas for Building Operations: Grid-Interactive Efficient Building (GEB) Applications
3.2.5. Schemas for Building Operations: Occupants and Behavior
3.2.6. Schemas for Building Operations: Asset Management and Audits
4. Use Cases
4.1. Use Case 1: Energy Audits
4.2. Use Case 2: Automated Fault Detection and Diagnostics
4.3. Use Case 3: Optimal Control of HVAC
4.4. Core Concepts
5. Results of the Review: Assessing Core Concepts in Five Ontologies
5.1. Building Topology Ontology (BOT)
5.2. Semantic Sensor Network/Sensor, Observation, Sample, and Actuator (SSN/SOSA)
5.3. Smart Applications REFerence Ontology (SAREF) and Extensions
5.4. RealEstateCore (REC)
5.5. Brick Schema
6. Discussion and Conclusions
6.1. The Landscape of Metadata Schemas for Building Energy Applications
Challenges in Collecting and Identifying Schemas
6.2. Comparing Use Cases across the Ontologies
6.2.1. Testing Ontologies vs. Core Concepts
6.2.2. Challenges and Gaps Applying the Ontologies to Our Use Cases
6.3. Answers to the Research Questions
6.4. Limitations of the Review
6.5. Future Work
- Create and maintain a public repository of schemas and ontologies for building energy applications. A centralized database and search engine will reduce the effort required to search and identify existing schemas, and hopefully promote the reuse of concepts, as demonstrated in other disciplines (i.e., medicine). Answering our first research question demonstrated the variability of this landscape, and fostering a community driven repository will be necessary to sufficiently maintain a grasp on the evolution of ontologies relevant for building modeling and energy use cases.
- Develop and share additional use cases. We faced the challenge of identifying useful but tractable use cases to use in our review. With our analysis of five schemas, in particular our attempts representing the model building, we noted the importance of a building modeler’s role in producing a useful product that can support energy applications. Future endeavors should work to produce public use cases and reference models (both conceptual and instantiated using particular ontologies) that clearly examine and weigh trade-offs modelers face building these key resources. The decisions individual modelers, as well as communities, make are nuanced, and individuals have to balance leveraging standardized elements of schemas with the need to convey the most expressive depiction of a situation that can be used to illuminate meaningful problems. These examples should be of the appropriate complexity to test and evaluate the completeness, extensibility, and usability of a schema. Use cases should also investigate the role of different actors in creating, updating, and using metadata models.
- Work with multiple stakeholders to harmonize and standardize schemas. Academia, industry, and other interested stakeholders (e.g., policymakers) should collaborate within a standard organization (e.g., ASHRAE) to create a standard schema addressing semantic interoperability for building applications. Such institutional frameworks allow communities to gather direct inputs from different parties and to create an informed, industry-relevant standard that is more likely to be adopted [21]. Furthermore, it provides a mechanism for updating and modifying the schema using formal procedures based on community consensus. From a technical perspective, the resulting schema should have the right level of detail to cover the target use cases but avoid over-complex solutions. The schema should follow best-practice guidelines by allowing reuse of concepts from existing ontologies (e.g., as in BACS [101]) and extensions for uncommon concepts of future application that have not been identified yet. Further, tools and reference implementation should be developed by the standard organization to facilitate adoption.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amasyali, K.; El-Gohary, N.M. A Review of Data-Driven Building Energy Consumption Prediction Studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Electricity Customers—Webpage. Available online: https://www.epa.gov/energy/electricity-customers (accessed on 21 January 2021).
- Lawrence, T.M.; Boudreau, M.-C.; Helsen, L.; Henze, G.; Mohammadpour, J.; Noonan, D.; Patteeuw, D.; Pless, S.; Watson, R.T. Ten Questions Concerning Integrating Smart Buildings into the Smart Grid. Build. Environ. 2016, 108, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Sinopoli, J. Smart Building Systems for Architects, Owners and Builders; Elsevier: Burlington, MA, USA, 2010; ISBN 978-1-85617-653-8. [Google Scholar]
- Neukomm, M.; Nubbe, V.; Fares, R. Grid-Interactive Efficient Buildings; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office, U.S. Department of Energy: Washington, DC, USA, 2019. Available online: https://www.osti.gov/biblio/1508212 (accessed on 17 December 2020).
- Kramer, H.; Lin, G.; Curtin, C.; Crowe, E.; Granderson, J. Proving the Business Case for Building Analytics; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2020; Available online: https://escholarship.org/uc/item/5m66941j (accessed on 17 January 2021).
- Makridakis, S. The Forthcoming Information Revolution. Its Impact on Society and Firms. Futures 1995, 27, 799–821. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for Existing Buildings—Literature Review and Future Needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Bryde, D.; Broquetas, M.; Volm, J.M. The Project Benefits of Building Information Modelling (BIM). Int. J. Proj. Manag. 2013, 31, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Eadie, R.; McClean, M. An Investigation of Interoperability Issues between Building Information Modelling (BIM) and e-Procurement. In Proceedings of the Education, Science and Innovations, ESI 2015, Pernik, Bulgaria, 10 June 2015; pp. 7–12. [Google Scholar]
- AIA. AIA Integrated Project Delivery: A Guide. 2007. Available online: http://www.aia.org/groups/aia/documents/pdf/aiab083423.pdf (accessed on 17 December 2020).
- Domingues, P.; Carreira, P.; Vieira, R.; Kastner, W. Building Automation Systems: Concepts and Technology Review. Comput. Stand. Interfaces 2016, 45, 1–12. [Google Scholar] [CrossRef]
- Yao-Jung, W.; Kisch, T.; Hannigan, D.; Bernstein, R.; Poplawski, M. Interoperability for Networked Lighting Controls Published May 19, 2020 1 of 43; DesignLight Consortium: Medford, MA, USA, 2020; pp. 1–43. Available online: https://www.designlights.org/lighting-controls/reports-tools-resources/interoperability-for-networked-lighting-controls/report (accessed on 17 December 2020).
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the Development of Smart Buildings: A Review of Enabling Technologies and Applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Pritoni, M.; Weyandt, C.; Carter, D.; Elliott, J. Towards a Scalable Model for Smart Buildings. 2018. Available online: https://escholarship.org/uc/item/5b7966hh (accessed on 17 December 2020).
- Benndorf, G.A.; Wystrcil, D.; Réhault, N. Energy Performance Optimization in Buildings: A Review on Semantic Interoperability, Fault Detection, and Predictive Control. Appl. Phys. Rev. 2018, 5, 41501. [Google Scholar] [CrossRef] [Green Version]
- Akcamete, A.; Akinci, B.; Garrett, J. Potential Utilization of Building Information Models for Planning Maintenance Activities. In Proceedings of the International Conference on Computing in Civil and Building Engineering; Nottingham University Press: Nottingham, UK, 2010. [Google Scholar]
- Wu, W.; Issa, R.R.A. BIM-Enabled Building Commissioning and Handover. In Computing in Civil Engineering; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 237–244. [Google Scholar]
- VBIS. Virtual Buildings Information System (VBIS)—Webpage. Available online: https://vbis.com.au (accessed on 17 December 2020).
- DeGraw, J.; Field-Macumber, K.; Long, N.; Goel, S. BuildingSync® in Action: Example Implementations. In Proceedings of the 2018 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 12–17 August 2018; pp. 1–12. [Google Scholar]
- Bergmann, H.; Mosiman, C.; Saha, A.; Haile, S.; Livingood, W.; Bushby, S.; Fierro, G.; Bender, J.; Poplawski, M.; Granderson, J.; et al. Semantic Interoperability to Enable Smart, Grid-Interactive Efficient Buildings. In Proceedings of the ACEEE Summer Study in Energy Efficiency in Buildings, Pacific Grove, CA, USA, 17–21 August 2020. [Google Scholar]
- National Institute of Standards and Technology (NIST). NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0; U.S. Department of Commerce: Washington, DC, USA, 2012; p. 227. Available online: http://dx.doi.org/10.6028/NIST.SP.1108r3 (accessed on 17 December 2020).
- GridWise Architectural Council. GridWise Interoperability Context-Setting Framework; Smart Grids Interoperability: 2008. Available online: https://www.gridwiseac.org/pdfs/interopframework_v1_1.pdf (accessed on 17 December 2020).
- Hardin, D.; Stephan, E.G.; Wang, W.; Corbin, C.D.; Widergren, S.E. Buildings Interoperability Landscape; Pacific Northwest National Laboratory: Richland, WA, USA, 2015. Available online: https://www.osti.gov/biblio/1234792 (accessed on 17 December 2020).
- Merz, H.; Hansemann, T.; Hübner, C. Building Automation: Communication Systems with EIB/KNX, LON and BACnet, 2nd ed.; Signals and Communication Technology; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-73222-0. [Google Scholar]
- Balaji, B.; Bhattacharya, A.; Fierro, G.; Gao, J.; Gluck, J.; Hong, D.; Johansen, A.; Koh, J.; Ploennigs, J.; Agarwal, Y.; et al. Brick: Towards a Unified Metadata Schema For Buildings. In Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments, New York, NY, USA, 15–17 November 2016; pp. 41–50. [Google Scholar]
- American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). Standard 135-2020—BACnetTM—A Data Communication Protocol for Building Automation and Control Networks. Available online: https://www.ashrae.org/technical-resources/bookstore/bacnet (accessed on 17 December 2020).
- knx.org KNX Specifications. Available online: https://support.knx.org/hc/en-us/articles/360000040999-KNX-Specifications (accessed on 19 December 2020).
- Granderson, J.; Lin, G. Building Energy Information Systems: Synthesis of Costs, Savings, and Best-Practice Uses. Energy Effic. 2016, 9, 1369–1384. [Google Scholar] [CrossRef] [Green Version]
- Ford, R.; Pritoni, M.; Sanguinetti, A.; Karlin, B. Categories and Functionality of Smart Home Technology for Energy Management. Build. Environ. 2017, 123, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Belli, A.; Santis, A.D.; Diamantini, C.; Frontoni, E.; Gambi, E.; Palma, L.; Pernini, L.; Pierleoni, P.; Potena, D.; et al. Interoperability Issues among Smart Home Technological Frameworks. In Proceedings of the 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 10–12 September 2014; pp. 1–7. [Google Scholar]
- ZigBee Alliance Project Connected Home over IP. Available online: https://www.connectedhomeip.com (accessed on 18 December 2020).
- Cagle, K. Data Dictionaries Aren’t Ontologies. Available online: https://www.linkedin.com/pulse/data-dictionaries-arent-ontologies-kurt-cagle (accessed on 17 December 2020).
- Gruninger, M.; Bodenreider, O.; Olken, F.; Obrst, L.; Yim, P. Ontology Summit 2007—Ontology, Taxonomy, Folksonomy: Understanding the Distinctions. Appl. Ontol. 2008, 3, 191–200. [Google Scholar] [CrossRef]
- Studer, R.; Benjamins, V.R.; Fensel, D. Knowledge Engineering: Principles and Methods. Data Knowl. Eng. 1998, 25, 161–197. [Google Scholar] [CrossRef] [Green Version]
- Berners-Lee, T.; Hendler, J.A.; Ora, L. The Semantic Web. Available online: https://www.scientificamerican.com/article/the-semantic-web (accessed on 17 December 2020).
- World Wide Web Consortium (W3C). RDF Primer. Available online: https://www.w3.org/TR/rdf-primer (accessed on 18 December 2020).
- World Wide Web Consortium (W3C). RDF Vocabulary Description Language 1.0: RDF Schema. Available online: https://www.w3.org/TR/2002/WD-rdf-schema-20020430 (accessed on 17 December 2020).
- World Wide Web Consortium (W3C). OWL Web Ontology Language Reference. Available online: https://www.w3.org/TR/owl-ref (accessed on 17 December 2020).
- World Wide Web Consortium (W3C). Shapes Constraint Language (SHACL). Available online: https://www.w3.org/TR/shacl (accessed on 17 December 2020).
- Peinl, R. Semantic Web: State of the Art and Adoption in Corporations. Künstl Intell 2016, 30, 131–138. [Google Scholar] [CrossRef]
- Schriml, L.M.; Arze, C.; Nadendla, S.; Chang, Y.-W.W.; Mazaitis, M.; Felix, V.; Feng, G.; Kibbe, W.A. Disease Ontology: A Backbone for Disease Semantic Integration. Nucleic Acids Res. 2012, 40, D940–D946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzitzikas, Y.; Allocca, C.; Bekiari, C.; Marketakis, Y.; Fafalios, P.; Doerr, M.; Minadakis, N.; Patkos, T.; Candela, L. Integrating Heterogeneous and Distributed Information about Marine Species through a Top Level Ontology. In Proceedings of the Metadata and Semantics Research, Thessaloniki, Greece, 19–22 November 2013; pp. 289–301. [Google Scholar]
- Hastings, J.; Chepelev, L.; Willighagen, E.; Adams, N.; Steinbeck, C.; Dumontier, M. The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web. PLoS ONE 2011, 6, e25513. [Google Scholar] [CrossRef] [Green Version]
- Fritzsche, D.; Grüninger, M.; Baclawski, K.; Bennett, M.; Berg-Cross, G.; Schneider, T.; Sriram, R.; Underwood, M.; Westerinen, A. Ontology Summit 2016 Communique: Ontologies within Semantic Interoperability Ecosystems. Appl. Ontol. 2017, 12, 91–111. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Yu, H.; Ong, E.; Wang, Y.; Liu, Y.; Huffman, A.; Huang, H.; Beverley, J.; Hur, J.; Yang, X.; et al. CIDO, a Community-Based Ontology for Coronavirus Disease Knowledge and Data Integration, Sharing, and Analysis. Sci. Data 2020, 7, 181. [Google Scholar] [CrossRef]
- Conway, M.; Dowling, J.; Chapman, W. Developing a Biosurveillance Application Ontology for Influenza-Like-Illness. In Proceedings of the 6th Workshop on Ontologies and Lexical Resources, Beijing, China, 22 August 2010; pp. 58–66. [Google Scholar]
- Wang, X.; Zhang, X.; Li, M. A Survey on Semantic Sensor Web: Sensor Ontology, Mapping and Query. IJUNESST 2015, 8, 325–342. [Google Scholar] [CrossRef]
- Li, W.; Tropea, G.; Abid, A.; Detti, A.; Gall, F.L. Review of Standard Ontologies for the Web of Things. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Honti, G.M.; Abonyi, J. A Review of Semantic Sensor Technologies in Internet of Things Architectures. Available online: https://www.hindawi.com/journals/complexity/2019/6473160 (accessed on 18 December 2020).
- Bajaj, G.; Agarwal, R.; Singh, P.; Georgantas, N.; Issarny, V. A Study of Existing Ontologies in the IoT-Domain. arXiv 2017, arXiv:1707.00112. [Google Scholar]
- Esnaola-Gonzalez, I.; Bermúdez, J.; Fernandez, I.; Arnaiz, A. Ontologies for Observations and Actuations in Buildings: A Survey. Semantic Web 2020, 11, 593–621. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ploennigs, J.; Culler, D. Short Paper: Analyzing Metadata Schemas for Buildings: The Good, the Bad, and the Ugly. In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, New York, NY, USA, 4 November 2015; pp. 33–34. [Google Scholar]
- Butzin, B.; Golatowski, F.; Timmermann, D. A Survey on Information Modeling and Ontologies in Building Automation. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 8615–8621. [Google Scholar]
- Gilani, S.; Quinn, C.; McArthur, J.J. A Review of Ontologies within the Domain of Smart and Ongoing Commissioning. Build. Environ. 2020, 182, 107099. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ELSEVIER Home—Scopus: Access and Use Support Center. Available online: https://service.elsevier.com/app/home/supporthub/scopus (accessed on 18 December 2020).
- Linkeddata.es Smartcity Ontologies. Available online: http://smartcity.linkeddata.es (accessed on 17 December 2020).
- Linkeddata.es Linked Open Vocabularies (LOV). Available online: https://lov.linkeddata.es/dataset/lov/vocabs (accessed on 17 December 2020).
- M3 Semantic Web of Things Project Linked Open Vocabularies for Internet of Things (LOV4IoT). Available online: https://lov4iot.appspot.com (accessed on 17 December 2020).
- American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). BACNET Semantic Interoperability Working Group. Available online: http://www.bacnet.org/WG/SI/index.html (accessed on 18 December 2020).
- Project Haystack Project Haystack Forum—Working Groups. Available online: https://project-haystack.org/forum/wg (accessed on 18 December 2020).
- National Electrical Manufacturers Association (NEMA) ANSI C137 Lighting Systems Committee. Available online: https://www.nema.org/standards/technical/ansi-c137-lighting-systems-committee (accessed on 18 December 2020).
- Brickschema.org BrickSchema Github Issue Page. Available online: https://github.com/BrickSchema/Brick (accessed on 18 December 2020).
- Goodman, L.A. Snowball Sampling. Ann. Math. Stat. 1961, 32, 148–170. [Google Scholar] [CrossRef]
- Guarino, N. Formal Ontology and Information Systems. In Proceedings of the FOIS’98, Trento, Italy, 6–8 June 1998; IOS Press: Amsterdam, The Netherlands, 1998; p. 13. Available online: http://www.loa.istc.cnr.it/old/Papers/FOIS98.pdf (accessed on 5 April 2021).
- QUDT.org QUDT Ontology. Available online: http://www.qudt.org (accessed on 17 December 2020).
- Hobbs, J.R.; Pan, F. An Ontology of Time for the Semantic Web. ACM Trans. Asian Lang. Inf. Process. 2004, 3, 66–85. [Google Scholar] [CrossRef]
- Atta, N.; Talamo, C. Digital transformation in facility management (FM). IoT and big data for service innovation. In Research for Development; Springer International Publishing: Cham, Switzerland, 2020; pp. 267–278. [Google Scholar]
- American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). ASHRAE’s BACnet Committee, Project Haystack and Brick Schema Collaborating to Provide Unified Data Semantic Modeling Solution | Ashrae.Org. Available online: https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution (accessed on 17 December 2020).
- Department of Energy (DOE). Technical Meeting: Buildings Interoperability Vision. Available online: https://www.energy.gov/eere/buildings/downloads/technical-meeting-buildings-interoperability-vision (accessed on 18 December 2020).
- Rowley, J. The Wisdom Hierarchy: Representations of the DIKW Hierarchy. J. Inf. Sci. 2007, 33, 163–180. [Google Scholar] [CrossRef] [Green Version]
- World Wide Web Consortium (W3C). Linked Data Glossary. Available online: https://www.w3.org/TR/ld-glossary (accessed on 22 December 2020).
- Singer, P.; Niebler, T.; Hotho, A.; Strohmaier, M. Folksonomies. In Encyclopedia of Social Network Analysis and Mining; Alhajj, R., Rokne, J., Eds.; Springer: New York, NY, USA, 2017; pp. 1–5. ISBN 978-1-4614-7163-9. [Google Scholar]
- Brodie, M.; Mylopoulos, J. Knowledge bases versus databases. In On Knowledge Base Management Systems: Integrating Artificial Intelligence and Atabase Technologies; Springer: Berlin/Heidelberg, Germany, 1986; pp. 83–86. ISBN 978-0-387-96382-2. [Google Scholar]
- buildingSMART International Industry Foundation Classes (IFC) Website. Available online: https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes (accessed on 22 December 2020).
- gbXML. GbXML Website. Available online: https://www.gbxml.org (accessed on 22 December 2020).
- buildingSMART International IfcOWL Website. Available online: https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl (accessed on 21 December 2020).
- Pauen, N.; Schlütter, D.; Siwiecki, J.; Frisch, J.; van Treeck, C. Integrated representation of building service systems: Topology extraction and TUBES ontology. Bauphysik 2020, 42, 299–305. [Google Scholar] [CrossRef]
- Pauwels, P. SimModel Ontology Webpage. Available online: https://users.ugent.be/~pipauwel/ontologies/simmodel/readme.html (accessed on 22 December 2020).
- Benne, J. City Geography Markup Language (CityGML) Energy ADE 2.0—Webpage. Available online: http://www.citygmlwiki.org/index.php?title=CityGML_Energy_ADE_V._2.0 (accessed on 18 December 2020).
- Haller, A.; Janowicz, K.; Cox, S.J.D.; Le Phuoc, D.; Taylor, K.; Lefrancois, M. Semantic Sensor Network Ontology; Open Geospatial Consortium (OGC) & World Wide Web Consortium (W3C): 2020. Available online: https://w3c.github.io/sdw/ssn (accessed on 15 December 2020).
- World Wide Web Consortium (W3C) W3C Web of Things (WoT). Available online: https://www.w3.org/WoT (accessed on 17 December 2020).
- OneM2M Base Ontology—Repository. Available online: https://git.onem2m.org/MAS/BaseOntology (accessed on 22 December 2020).
- One Data Model Group One Data Model—Website. Available online: https://onedm.org (accessed on 22 December 2020).
- Lefrancois, M. SEAS—SEAS Ontology Specification. Available online: https://ci.mines-stetienne.fr/seas/index.html (accessed on 22 December 2020).
- Kofler, M. THINKHOME Ontology Webpage. Available online: https://www.auto.tuwien.ac.at/index.php/research-fields/ontology (accessed on 22 December 2020).
- Stavropoulos, T.G.; Vrakas, D.; Vlachava, D.; Bassiliades, N. BOnSAI: A Smart Building Ontology for Ambient Intelligence. In Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, Craiova, Romania, 13–15 June 2012. [Google Scholar] [CrossRef]
- Bonino, D.; De Russis, L. DogOnt: Ontology Modeling for Intelligent Domotic Environments—Specification Draft. Available online: http://iot-ontologies.github.io/dogont/documentation/index-en.html (accessed on 18 December 2020).
- Zacek, M.; Janosek, M. SBOnto: Ontology of Smart Building. Far East J. Electron. Commun. 2017, 17, 1101–1109. [Google Scholar] [CrossRef]
- European Telecommunications Standards Institute (ETSI). SAREF Ontology Portal. Available online: https://saref.etsi.org (accessed on 17 December 2020).
- Project Haystack Project Haystack Website (Haystack 3 Schema). Available online: https://www.project-haystack.org (accessed on 22 December 2020).
- Project Haystack Project Haystack Dev Website (Haysack 4 Schema). Available online: https://project-haystack.dev (accessed on 22 December 2020).
- Haystack Tagging Ontology (HTO) Website. Available online: https://lov.linkeddata.es/dataset/lov/vocabs/hto (accessed on 22 December 2020).
- Brickschema.org Brick Schema Ontology. Available online: https://brickschema.org (accessed on 17 December 2020).
- Google Google Digitalbuildings Ontology Repository. Available online: https://github.com/google/digitalbuildings (accessed on 22 December 2020).
- Kučera, A. Semantic BMS (SBMS). Ontology Repository. Available online: https://is.muni.cz/www/akucera/sbms/v1_0/?lang=en (accessed on 22 December 2020).
- Green Button Alliance. The Green Button Website. Available online: https://www.greenbuttondata.org (accessed on 22 December 2020).
- RealestateCore RealestateCore (REC). Ontology—Website. Available online: https://www.realestatecore.io (accessed on 17 December 2020).
- Rasmussen, M.H.; Pauwels, P.; Lefrançois, M.; Schneider, G.F.; Hviid, C.A.; Karlshøj, J. Recent changes in the Building Topology Ontology. In Proceedings of the 5th Linked Data in Architecture and Construction Workshop, Dijon, France, 13–15 November 2017. [Google Scholar] [CrossRef]
- Terkaj, W. Building Automation and Control Systems (BACS) Ontology—Repository. Available online: http://www.ontoeng.com/bacs_test (accessed on 18 December 2020).
- Bellini, P.; Nesi, P.; Soderi, M. Km4city Ontology Specification. Available online: http://wlode.disit.org/WLODE/extract?url=http://www.disit.org/km4city/schema (accessed on 22 December 2020).
- Yehong, L.; García-Castro, R.; O´Donnell, J.; Mihindukulasooriya, N.; Vega-Sánchez, S. An EM-KPI Ontology for Enhancing Energy Management at District and Building Levels—Specification. Available online: http://energy.linkeddata.es/em-kpi/ontology/index-en.html (accessed on 18 December 2020).
- International Standard Organization (ISO). ISO 17800:2017 Facility Smart Grid Information Model. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/15/71547.html (accessed on 22 December 2020).
- Esnaola-Gonzalez, I.; Díez, F.J. RESPOND Ontology Specification. Available online: https://respond-project.github.io/RESPOND-Ontology/respond/index-en.html (accessed on 22 December 2020).
- Lawrence Berkeley National Laboratory Occupant Behavior XML—ObXML Schema. Available online: https://behavior.lbl.gov/?q=obXML (accessed on 18 December 2020).
- Chávez Feria, S.; Poveda Villalón, M.; García Castro, R. Occupancy Profile Ontology—Specification Draft. Available online: https://bimerr.iot.linkeddata.es/def/occupancy-profile (accessed on 5 April 2021).
- Orozco, A.T.; Mouakher, A.; Ben Sassi, I.; Nicolle, C. An Ontology-Based Thermal Comfort Management System In Smart Buildings (OnCom). In Proceedings of the 11th International Conference on Management of Digital EcoSystems, New York, NY, USA, 12 November 2019; pp. 300–307. [Google Scholar]
- Lawrence Berkeley National Laboratory. BEDES Dictionary—Version 2.4. Available online: https://bedes.lbl.gov/bedes-online (accessed on 17 December 2020).
- World Wide Web Consortium (W3C). Ontology for Property Management—Draft Report. Available online: https://w3c-lbd-cg.github.io/opm (accessed on 22 December 2020).
- Dong, B.; Lam, K.P.; Huang, Y.C.; Dobbs, G.M. A Comparative Study of the IFC and GbXML Informational Infrastructures for Data Exchange in Computational Design Support Environments. In Proceedings of the Building Simulation, Beijing, China, 3–6 September 2007; p. 8. [Google Scholar]
- Open Geospatial Consortium (OGC). CityGML—Webpage. Available online: https://www.ogc.org/standards/citygml (accessed on 21 January 2021).
- Haller, A.; Janowicz, K.; Cox, S.J.D.; Le Phuoc, D.; Taylor, K.; Lefrancois, M. Semantic Sensor Network Ontology (SSN)—W3C Reccomendation; Open Geospatial Consortium (OGC) & World Wide Web Consortium (W3C): 2017. Available online: https://www.w3.org/TR/vocab-ssn (accessed on 15 December 2020).
- RealEstateCore Full. Available online: https://doc.realestatecore.io/3.2/full.html (accessed on 21 December 2020).
- Degha, H.E.; Laallam, F.Z.; Said, B.; Saba, D. Onto-SB: Human Profile Ontology for Energy Efficiency in Smart Building. In Proceedings of the 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa, Algeria, 24–25 October 2018; pp. 1–8. [Google Scholar]
- Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN Ontology of the W3C Semantic Sensor Network Incubator Group. SSRN Electron. J. 2012. [Google Scholar] [CrossRef] [Green Version]
- Hammar, K.; Wallin, E.O.; Karlberg, P.; Hälleberg, D. The RealEstateCore Ontology. In The Semantic Web—ISWC 2019; Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan, A., Song, J., Lefrançois, M., Gandon, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 130–145. [Google Scholar]
- Rosenberg, D.; Kendall, S. Use Case Driven Object Modelling with UML, A Practical Approach; Addison Wesley: New York, NY, USA, 2004. [Google Scholar]
- Lawrence Berkeley National Laboratory. Audit Definition in BEDES Dictionary. Available online: https://bedes.lbl.gov/bedes-online/audit (accessed on 17 December 2020).
- American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). ANSI/ASHRAE/ACCA Standard 211-2018. 2018. Available online: https://www.ashrae.org/technical-resources/bookstore/standards-180-and-211 (accessed on 5 April 2021).
- NYC Mayor’s Office of Sustainability. Local Law 87—LL87: Energy Audits & Retro-Commissioning. Available online: https://www1.nyc.gov/html/gbee/html/plan/ll87.shtml (accessed on 17 December 2020).
- Lawrence Berkeley National Laboratory. A Primer on Organizational Use of Energy Management and Information Systems (EMIS); U.S. Department of Energy: Washington, DC, USA, 2015; pp. 35–43.
- Shi, Z.; O’Brien, W. Development and Implementation of Automated Fault Detection and Diagnostics for Building Systems: A Review. Autom. Constr. 2019, 104, 215–229. [Google Scholar] [CrossRef]
- Granderson, J.; Lin, G.; Singla, R.; Mayhorn, E.; Ehrlich, P.; Vrabie, D.; Frank, S. Commercial Fault Detection and Diagnostics Tools: What They Offer, How They Differ, and What’s Still Needed. Available online: https://doi.org/10.20357/B7V88H (accessed on 5 April 2021).
- Drgoňa, J.; Arroyo, J.; Cupeiro Figueroa, I.; Blum, D.; Arendt, K.; Kim, D.; Ollé, E.P.; Oravec, J.; Wetter, M.; Vrabie, D.L.; et al. All You Need to Know about Model Predictive Control for Buildings. Annu. Rev. Control 2020, 50, 190–232. [Google Scholar] [CrossRef]
- Blum, D.H.; Arendt, K.; Rivalin, L.; Piette, M.A.; Wetter, M.; Veje, C.T. Practical Factors of Envelope Model Setup and Their Effects on the Performance of Model Predictive Control for Building Heating, Ventilating, and Air Conditioning Systems. Appl. Energy 2019, 236, 410–425. [Google Scholar] [CrossRef]
- Atam, E.; Helsen, L. Control-Oriented Thermal Modeling of Multizone Buildings: Methods and Issues: Intelligent Control of a Building System. IEEE Control Syst. Mag. 2016, 36, 86–111. [Google Scholar] [CrossRef]
- Rasmussen, M.H.; Pauwels, P.; Lefrançois, M.; Schneider, G.F.; Hviid, C.A.; Karlshøj, J. Building Topology Ontology. Available online: https://w3c-lbd-cg.github.io/bot (accessed on 17 December 2020).
- LINKED BUILDING DATA COMMUNITY GROUP. Linked Building Data Community Group Webpage. Available online: https://www.w3.org/community/lbd (accessed on 17 December 2020).
- Haller, A.; Janowicz, K.; Cox, S.J.D.; Le Phuoc, D.; Taylor, K.; Lefrancois, M. Semantic Sensor Network Ontology—Origins of SSN and SOSA; Open Geospatial Consortium (OGC) & World Wide Web Consortium (W3C): 2017. Available online: https://www.w3.org/TR/vocab-ssn/#Developments (accessed on 15 December 2020).
- World Wide Web Consortium (W3C). Spatial Data on the Web Working Group. Available online: https://www.w3.org/2015/spatial/wiki/Main_Page (accessed on 17 December 2020).
- Janowicz, K.; Haller, A.; Cox, S.J.D.; Phuoc, D.L.; Lefrancois, M. SOSA: A Lightweight Ontology for Sensors, Observations, Samples, and Actuators. J. Web Semant. 2019, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Daniele, L.; Garcia-Castro, R.; Lefrançois, M.; Poveda-Villalon, M. SAREF: The Smart Applications REFerence Ontology. Available online: https://saref.etsi.org/core/v3.1.1 (accessed on 17 December 2020).
- Daniele, L.; den Hartog, F.; Roes, J. Created in Close Interaction with the Industry: The Smart Appliances REFerence (SAREF) Ontology. Lect. Notes Bus. Inf. Process. 2015, 225, 100–112. [Google Scholar] [CrossRef]
- SAREF Extension for Building. Available online: https://saref.etsi.org/saref4bldg/v1.1.2 (accessed on 21 December 2020).
- International Standard Organization (ISO). ISO 16739-1:2018—Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries—Part 1: Data Schema. 2018. Available online: https://www.iso.org/standard/70303.html (accessed on 5 April 2021).
- SAREF4ENER: An Extension of SAREF for the Energy Domain Created in Collaboration with Energy@Home and EEBus Associations. Available online: https://saref.etsi.org/saref4ener/v1.1.2 (accessed on 21 December 2020).
- SAREF4SYST: An Extension of SAREF for Typology of Systems and Their Inter-Connections. Available online: https://saref.etsi.org/saref4syst/v1.1.2 (accessed on 21 December 2020).
- W3C Semantic Web Interest Group: Basic Geo (WGS84 Lat/Long) Vocabulary. Available online: https://www.w3.org/2003/01/geo (accessed on 21 December 2020).
- STARTPAGE. Available online: https://www.realestatecore.io (accessed on 17 December 2020).
- GETTING STARTED. Available online: https://www.realestatecore.io/getting-started (accessed on 21 December 2020).
- RealEstateCore Device Module. Available online: https://doc.realestatecore.io/3.2/device.html#Actuator (accessed on 21 December 2020).
- RealEstateCore Actuation Module. Available online: https://doc.realestatecore.io/3.2/actuation.html (accessed on 21 December 2020).
- Brickschema.org Brick Ontology Documentation—Relationships. Available online: https://docs.brickschema.org/brick/relationships.html (accessed on 17 December 2020).
- Tchouanguem Djuedja, J.F.; Karray, M.H.; Foguem, B.K.; Magniont, C.; Abanda, F.H. Interoperability Challenges in Building Information Modelling (BIM). In Enterprise Interoperability VIII; Popplewell, K., Thoben, K.-D., Knothe, T., Poler, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 275–282. [Google Scholar]
- Naghshbandi, S.N. BIM for Facility Management: Challenges and Research Gaps. Civ. Eng. J. 2016, 2, 679–684. [Google Scholar] [CrossRef]
- Gyrard, A.; Bonnet, C.; Boudaoud, K.; Serrano, M. LOV4IoT: A Second Life for Ontology-Based Domain Knowledge to Build Semantic Web of Things Applications. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Vienna, Austria, 22–24 August 2016; pp. 254–261. [Google Scholar]
- Fierro, G.; Koh, J.; Nagare, S.; Zang, X.; Agarwal, Y.; Gupta, R.K.; Culler, D.E. Formalizing Tag-Based Metadata With the Brick Ontology. Front. Built Env. 2020, 6, 558034. [Google Scholar] [CrossRef]
- Seydoux, N.; Lefrançois, M.; Médini, L. Positionnement sur le Web Sémantique des Objets Interopérabilité, mise en œuvre et Perspectives 2019. Available online: https://zwifi.eu/public/docs/presentations/conferences/2019-06_ic.pdf (accessed on 5 April 2021).
- Institute of Genome Sciences Disease Ontology—Institute for Genome Sciences @ University of Maryland. Available online: https://disease-ontology.org (accessed on 17 December 2020).
- Department of Energy (DOE). Commercial Reference Buildings. Available online: https://www.energy.gov/eere/buildings/commercial-reference-buildings (accessed on 22 December 2020).
- American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE). Guideline 36-2018—High Performance Sequences of Operation for Hvac Systems 2018. Available online: https://www.techstreet.com/ashrae/standards/guideline-36-2018-high-performance-sequences-of-operation-for-hvac-systems?product_id=2016214 (accessed on 5 April 2021).
- Fierro, G.; Pritoni, M.; AbdelBaky, M.; Raftery, P.; Peffer, T.; Thomson, G.; Culler, D.E. Mortar: An Open Testbed for Portable Building Analytics. In Proceedings of the 5th Conference on Systems for Built Environments, Association for Computing Machinery, New York, NY, USA, 7 November 2018; pp. 172–181. [Google Scholar]
- WebThings Framework by Mozilla. Available online: https://iot.mozilla.org/framework (accessed on 21 December 2020).
Phase of the Building Life Cycle | Group | Schemas (Year Created, [Reference]) |
---|---|---|
Design and energy modeling | - | Industry Foundation Classes (IFC) (2013, [76]) Green Building XML (gbXML) (2000, [77]) ifcOWL (2016, [78]) Tubes (2020, [79]) SimModel Ontology (2014, [80]) EnergyADE (2014, [81]) |
Operations | Sensor networks, Internet of Things (IoT), and smart homes | Semantic Sensor Network/Sensor, Observation, Sample, and Actuator (SSN/SOSA) (2011, [82]) Web Thing Model (WoT) (2015, [83]) oneM2M BaseOntology’s (2016, [84]) One Data Model (OneDM) (2018, [85]) Smart Energy Aware Systems (SEAS) (2016, [86]) ThinkHome (2011, [87]) Building Ontology for Ambient Intelligence (BOnSAI) (2012, [88]) DogOnt (2008, [89]) Ontology of Smart Building (SBOnto) (2017, [90]) Smart Applications REFerence (SAREF) (2014, [91]) |
Commercial building automation and monitoring | Project Haystack 3 (2014, [92]) BASont (2012, [90])Project Haystack 4 (2019, [93]) Haystack Tagging Ontology (HTO) (2016, [94]) Brick Schema (2016, [95]) Google Digital Building Ontology (2020, [96]) Semantic BMS ontology (SBMS) (2016, [97]) CTRLont (2017, [97]) Green Button (2011, [98]) RealEstateCore (REC) (2017, [99]) Building Topology Ontology (BOT) (2019, [100]) Building Automation and Control Systems (BACS) (2017, [101]) Knowledge Model for City (KM4City) (2014, [102]) EM-KPI Ontology (2017, [103]) | |
Grid-interactive efficient building (GEB) applications | Facility Smart Grid Information Model (2017, [104]) RESPOND (2020, [105]) | |
Occupants and behavior | DNAs Framework (obXML) (2015, [106]) Occupancy Profile (OP) Ontology (2020, [107]) Onto-SB: Human Profile Ontology for Energy Efficiency in Smart Building (2018, [90]) OnCom (2019, [108]) | |
Asset management and audits | Building Energy Data Exchange Specification (BEDES) (2014, [109]) Virtual Buildings Information System (VBIS) (2020, [19]) Ontology of Property Management (OPM) (2018, [110]) |
Category | Concept | Properties | Relationships to/from |
---|---|---|---|
Zones and Spaces | Space | Function Floor area | Composed of spaces Adjacent to spaces |
Zone | Floor area | Overlaps one or more spaces Overlaps other zones | |
Building, floor | Orientation | Composed of spaces | |
Envelope | Envelope element | Type of envelope element (wall, roof, floor, window) Envelope characteristics (e.g., thermal resistance, storage, solar seat gain coefficient) | Part of space |
Building Systems and Equipment | System | Type of system | Composed of components |
Equipment | Type of equipment Rated power draw Rated efficiency Remaining lifespan | Serves zone Located in space Metered by meter Connected to equipment | |
HVAC equipment | Rated capacity | ||
Lighting equipment | Rated (max.) luminous flux Minimum relative light output Rated (max.) power Correlated color temperature Spectral power distribution Rated input voltage Rated (max.) input current | Serves zone/space Located in space Metered by (internal/external) meter Connected to electrical junction box or other equipment | |
Other end use | Type of end use | ||
Component | Type of component | Part of system Located in space Connected to component | |
Control Devices | Control device | Has points | |
Control point | Input/Output type Physical/Virtual type Type of virtual point (setpoints, command, alarm) Unit of measure Control interval | Linked to sensor/actuator Linked to time series data | |
Control strategy | Schedule Event | Has inputs Has outputs Linked to sensor Linked to actuator Linked to time series data | |
Sensor/Actuator | Sensor | Type of sensor Unit of measure Measurement interval Reporting interval | Senses/Measures point Senses/Measures equipment Aggregates measurements |
Actuator | Unit of measure Actuation interval | Actuates point Actuates equipment Integrates/Prioritizes actuations |
Concepts | BOT | SSN/SOSA | SAREF | REC | Brick |
---|---|---|---|---|---|
Zones and Spaces | Floor area and other geometry missing (U1, U2, U3) | No concept of locations, spaces, zones (U1, U2, U3) | Floor area and geometry missing, as is the function of a space (U1, U2, U3) | Does not define concepts and properties related to Zones (U1, U2, U3) | Geometry such as floor area not currently modeled (U1, U2, U3) |
Envelope | Properties or characteristics would require external schema to represent (U1, U3) | Properties of envelope elements missing (U1, U3) | May be able to represent the envelope element but not its properties (U1, U3) | Concept not included in current schema but under development in an extension (U1, U3) | |
Building Systems and Equipment | Properties and units of measurement require using external schema (U1, U2, U3) | Meters and sub-meters would likely have to be implemented by modeler (U1, U2, U3) | Properties of equipment not included (U1, U2, U3) | ||
Control Devices | Missing concept of Schedule or Points, including Setpoints (U1, U2, U3) | Schedules for control strategies missing (U1, U2, U3) | Schedules for control strategy missing (U1, U2, U3) | Missing concepts of Schedule or Points (U1, U2, U3) | |
Sensors and Actuators | Properties would be missing along with units of measurement (U1, U2, U3) | Does not provide idioms and properties for contextualizing what is being sensed or actuated (U1, U2, U3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pritoni, M.; Paine, D.; Fierro, G.; Mosiman, C.; Poplawski, M.; Saha, A.; Bender, J.; Granderson, J. Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis. Energies 2021, 14, 2024. https://doi.org/10.3390/en14072024
Pritoni M, Paine D, Fierro G, Mosiman C, Poplawski M, Saha A, Bender J, Granderson J. Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis. Energies. 2021; 14(7):2024. https://doi.org/10.3390/en14072024
Chicago/Turabian StylePritoni, Marco, Drew Paine, Gabriel Fierro, Cory Mosiman, Michael Poplawski, Avijit Saha, Joel Bender, and Jessica Granderson. 2021. "Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis" Energies 14, no. 7: 2024. https://doi.org/10.3390/en14072024
APA StylePritoni, M., Paine, D., Fierro, G., Mosiman, C., Poplawski, M., Saha, A., Bender, J., & Granderson, J. (2021). Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis. Energies, 14(7), 2024. https://doi.org/10.3390/en14072024