Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves
Abstract
:1. Introduction
- (i)
- to investigate the course of the pyrolysis process of birch, maple, and rowan tree leaves using a pyrolytic oven manufactured by the Czylok company and a thermogravimetric Fourier transform-infrared (TG/FT-IR) measuring unit;
- (ii)
- to compare structural-chemical parameters of the pyrolysis products of birch, maple, and rowan samples;
- (iii)
- to determine the extraction yield of birch, maple, and rowan samples and to investigate the obtained products of extraction using the techniques of Fourier transform- infrared (FT-IR) and ultraviolet (UV) spectroscopies and X-ray diffraction (XRD).
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Pyrolysis Products
3.2. Analysis of Extraction Products
3.3. Analysis of Pyrolysis Process in a TG/FT-IR Unit
4. Conclusions
- (i)
- The yield of extraction of birch, maple, and rowan leaves is 22.12 ± 0.20%, 17.20 ± 0.03%, and 17.78 ± 1.30%, respectively.
- (ii)
- The removal of such an amount of material reduces the burden on the environment caused by dangerous chemical compounds present in the composition of volatile products of pyrolysis (aromatic hydrocarbons, compounds with carbonyl groups, alcohols, phenols, water vapour).
- (iii)
- The composition of extracted material has greater homogeneity in groups of compounds with carbonyl chromophore groups compared to the composition of the condensate that is formed during pyrolysis.
- (iv)
- The separation of extracted material into fractions will enrich the raw material platform with materials that can be used to obtain phytochemicals and other chemical reagents.
- (v)
- The removal of dangerous compounds from the material of leaves will increase the amount of energy resources that can be solely subjected to combustion or added to other species of combusted biomass.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATR | attenuated total reflectance |
BL | birch leaves |
DTG | differential thermogravimetric curve |
ED-XRF | energy dispersive X-ray fluorescence |
FT-IR | Fourier-transform infrared spectroscopy |
HHV | higher heating value |
ML | maple leaves |
RBL | residual birch leaves |
RML | residual maple leaves |
RL | rowan leaves |
RRL | residual rowan leaves |
TEM | transmission electron microscope |
TG/FT-IR | thermogravimetric Fourier-transform infrared measured unit |
UV | ultraviolet spectroscopy |
XRD | X-ray diffraction |
References
- Tálos-Nebehaj, E.; Hofmann, T.; Albert, L. Seasonal changes of natural antioxidant content in the leaves of Hungarian forest trees. Ind. Crop. Prod. 2017, 98, 53–59. [Google Scholar] [CrossRef]
- Taamalli, A.; Sánchez, J.L.; Jebabli, H.; Trabelsi, N.; Abaza, L.; Carretero, A.S.; Cho, J.Y.; Román, D.A. Monitoring the Bioactive Compounds Status in Olea europaea According to Collecting Period and Drying Conditions. Energies 2019, 12, 947. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Mourant, D.; Gunawan, R.; Lievens, C.; Wang, X.S.; Ling, K.; Bartle, J.; Li, C.-Z. Yield and properties of bio-oil from the pyrolysis of mallee leaves in a fluidised-bed reactor. Fuel 2012, 102, 506–513. [Google Scholar] [CrossRef]
- Mythili, R.; Venkatachalam, P.; Subramanian, P.; Uma, D. Characterization of bioresidues for biooil production through pyrolysis. Bioresour. Technol. 2013, 138, 71–78. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, S.; Lee, J.; Mehta, A.; Kumar, S.; Kim, K.-H.; Basu, S.; Rawat, M. Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Sci. Total. Environ. 2020, 720, 137604. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhou, Q.; Xie, Y.; Liu, J.; Long, G.; Cheng, S.; Liu, M. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst. Appl. Energy 2016, 179, 1232–1241. [Google Scholar] [CrossRef] [Green Version]
- Raghuvansi, S.K.S.; Prasad, R.; Mishra, A.S.; Chaturvedi, O.H.; Tripathi, M.K.; Misra, A.K.; Jakhmola, R.C.; Saraswat, B.L.; Jakhmola, R.C. Effect of inclusion of tree leaves in feed on nutrient utilization and rumen fermentation in sheep. Bioresour. Technol. 2007, 98, 511–517. [Google Scholar] [CrossRef]
- Bilba, K.; Arsene, M.; Ouensanga, A. Study of banana and coconut fibers: Botanical composition, thermal degradation and textural observations. Bioresour. Technol. 2007, 98, 58–68. [Google Scholar] [CrossRef]
- Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO2 Capture Performance. ACS Appl. Mater. Interfaces 2012, 4, 5800–5806. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, S.; Xu, K.; Zhang, Y.; Zhang, L.; Lou, G.; Wu, Y.; Zhu, E.; Chen, H.; Shen, Z.; et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 2018, 181, 36–45. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Xiao, J.; Jiang, H.; Hu, T.; Meng, C. Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode. J. Alloys Compd. 2019, 782, 1103–1113. [Google Scholar] [CrossRef]
- Wei, X.; Li, Y.; Gao, S. Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. J. Mater. Chem. A 2017, 5, 181–188. [Google Scholar] [CrossRef]
- Kalamdhad, A.S.; Singh, Y.K.; Ali, M.; Khwairakpam, M.; Kazmi, A.A. Rotary drum composting of vegetable waste and tree leaves. Bioresour. Technol. 2009, 100, 6442–6450. [Google Scholar] [CrossRef]
- Moharana, P.C.; Biswas, D.R. Assessment of maturity indices of rock phosphate enriched composts using variable crop residues. Bioresour. Technol. 2016, 222, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- Yalaltdinova, A.; Kim, J.; Baranovskaya, N.; Rikhvanov, L. Populus nigra L. as a bioindicator of atmospheric trace element pollution and potential toxic impacts on human and ecosystem. Ecol. Indic. 2018, 95, 974–983. [Google Scholar] [CrossRef]
- Pourkhabbaz, A.; Rastin, N.; Olbrich, A.; Langenfeld-Heyser, R.; Polle, A. Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L. Bull. Environ. Contam. Toxicol. 2010, 85, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Alaimo, M.G.; Varrica, D. Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment. Int. J. Environ. Res. Public Health 2020, 17, 881. [Google Scholar] [CrossRef] [Green Version]
- Oo, H.M.; Karin, P.; Chollacoop, N.; Hanamura, K. Physicochemical characterization of forest and sugarcane leaf combustion’s particulate matters using electron microscopy, EDS, XRD and TGA. J. Environ. Sci. 2021, 99, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Makkawi, Y.; El Sayed, Y.; Salih, M.; Nancarrow, P.; Banks, S.; Bridgwater, T. Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renew. Energy 2019, 143, 719. [Google Scholar] [CrossRef]
- Enes, T.; Aranha, J.; Fonseca, T.; Lopes, D.; Alves, A.; Lousada, J. Thermal Properties of Residual Agroforestry Biomass of Northern Portugal. Energies 2019, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- Regueiro, A.; Jezerská, L.; Pérez-Orozco, R.; Patiño, D.; Zegzulka, J.; Nečas, J. Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor. Energies 2019, 12, 1352. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Shu, L.; Wang, Q.; Wang, M.; Tian, X. Emissions of volatile organic compounds from heated needles and twigs of Pinus pumila. J. For. Res. 2011, 22, 243–248. [Google Scholar] [CrossRef]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Emission factors of ultrafine particulate matter (PM < 0.1 μm) and particle-bound polycyclic aromatic hydrocarbons from biomass combustion for source apportionment. Chemosphere 2021, 262, 127846. [Google Scholar] [CrossRef]
- Li, W.; Shao, L. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J. Geophys. Res. Space Phys. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Davis, J.; Tiwari, K.; Novosselov, I. Soot morphology and nanostructure in complex flame flow patterns via secondary particle surface growth. Fuel 2019, 245, 447–457. [Google Scholar] [CrossRef]
- Chang, Q.; Gao, R.; Gao, M.; Yu, G.; Wang, F. The structural evolution and fragmentation of coal-derived soot and carbon black during high-temperature air oxidation. Combust. Flame 2020, 216, 111–125. [Google Scholar] [CrossRef]
- Li, D.; Li, W.; Chen, H.; Li, B. The adjustment of hydrogen bonds and its effect on pyrolysis property of coal. Fuel Process. Technol. 2004, 85, 815–825. [Google Scholar] [CrossRef]
- Fang-Jing, L.; Wei, X.Y.; Zong, Z.-M.; Fan, M. Characterization of the oxygenated chemicals produced from supercritical methanolysis of modified lignites. Energy Fuels 2016, 30, 2636–2646. [Google Scholar] [CrossRef]
- Lazdovica, K.; Kampars, V.; Liepina, L.; Vilka, M. Comparative study on thermal pyrolysis of buckwheat and wheat straws by using TGA-FTIR and Py-GC/MS methods. J. Anal. Appl. Pyrolysis 2017, 124, 1–15. [Google Scholar] [CrossRef]
- Zubkova, V.; Strojwas, A.; Bielecki, M.; Kieush, L.; Koverya, A. Comparative study of pyrolytic behavior of the biomass wastes originating in the Ukraine and potential application of such biomass. Part 1. Analysis of the course of pyrolysis process and the composition of formed products. Fuel 2019, 254, 115688. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Matínez Cortizas, A. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 63–70. [Google Scholar] [CrossRef]
- Zhao, X.-B. Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: A continued work. J. Chem. Technol. Biotechnol. 2008, 6, 950–956. [Google Scholar] [CrossRef]
- Rao, C.N.R. Ultra-Violet and Visible Spectroscopy. Chemical Applications; Butterworth and Co (Publishers) Ltd.: London, UK, 1975; pp. 58–62. [Google Scholar]
- Ramos-Carmona, S.; Martínez, J.D.; Pérez, J.F. Torrefaction of patula pine under air conditions: A chemical and structural characterization. Ind. Crop. Prod. 2018, 118, 302–310. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. Energy Fuels 2006, 20, 388–393. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Hu, J.; Zhang, H.; Xiao, R. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 2016, 90, 209–217. [Google Scholar] [CrossRef]
- Hosoya, T.; Kawamoto, H.; Saka, S. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J. Anal. Appl. Pyrolysis 2007, 80, 118–125. [Google Scholar] [CrossRef]
- Liu, Q.; Zhong, Z.; Wang, S.; Luo, Z. Interactions of biomass components during pyrolysis: A TG-FTIR study. J. Anal. Appl. Pyrolysis 2011, 90, 213–218. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, B.; Liu, J.; Sun, Y.; Jiang, X. Influence of interactions between biomass components on physicochemical characteristics of char. J. Anal. Appl. Pyrolysis 2019, 144, 104704. [Google Scholar] [CrossRef]
- Wang, M.; Tian, J.; Roberts, D.G.; Chang, L.; Xie, K. Interactions between corncob and lignite during temperature-programmed co-pyrolysis. Fuel 2015, 142, 102–108. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Qiu, Y.; Che, L.; Xue, C. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Sci. Total. Environ. 2019, 646, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.N.; Ali, M.F.; Shirokoff, J. Use of X-ray diffraction in assessing the aging pattern of asphalt fractions. Fuel 2002, 81, 51–58. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Hauser, A.; Rana, M.S.; Lababidi, H.M.S.; Behbehani, M. Changes in asphaltene structure during thermal cracking of residual oils: XRD study. Fuel 2015, 150, 558–564. [Google Scholar] [CrossRef]
- Couhert, C.; Commandre, J.-M.; Salvador, S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 2009, 88, 408–417. [Google Scholar] [CrossRef] [Green Version]
Main Characteristics | BL | ML | RL |
---|---|---|---|
C [%] | 49.39 ± 0.21 | 41.99 ± 1.02 | 48.55 ± 0.04 |
H [%] | 6.97 ± 0.05 | 5.71 ± 0.03 | 6.69 ± 0.05 |
N [%] | 0.78 ± 0.71 | 1.46 ± 0.03 | 1.33 ± 0.07 |
S [%] | 0.06 ± 0.05 | a | 0.07 ± 0.01 |
O a [%] | 34.42 ± 0.22 | 34.49 ± 0.28 | 33.05 ± 0.04 |
A [%] | 8.38 ± 0.06 | 16.35 ± 0.02 | 10.32 ± 0.02 |
HHV b [MJ/Kg] | 21.72 ± 0.22 | 17.46 ± 0.28 | 21.19 ± 0.04 |
Elements | BL | ML | RL |
---|---|---|---|
Ca [%] | 2.39 ± 0.02 | 3.06 ± 0.02 | 3.92 ± 0.03 |
K [%] | 3.30 ± 0.03 | 1.64 ± 0.02 | 1.84 ± 0.02 |
Fe [mg/kg] | 125 ± 18 | 231 ± 21 | 579 ± 28 |
P [mg/kg] | 603 ± 115 | 2999 ± 118 | 1152 ± 133 |
S [mg/kg] | 2475 ± 94 | 1707 ± 71 | 3563 ± 106 |
Si [mg/kg] | 2129 ± 133 | 2224 ± 114 | 11,577 ± 227 |
Sr [mg/kg] | 38 ± 1 | 78 ± 1 | 99 ± 2 |
Zn [mg/kg] | 98 ± 6 | 12 ± 3 | 27 ± 4 |
Sample | Yield of Char [%] | Yield of Condensate [%] |
---|---|---|
BL | 33.8 | 4.1 |
ML | 41.8 | 1.9 |
RL | 35.1 | 3.1 |
Sample | Yield of Extract Calculated from the Mass of the Extract [%] | Yield of Extract Calculated from the Mass of the After-Extraction Residue [%] |
---|---|---|
BL | 22.12 ± 0.20 | 24.13 ± 1.74 |
ML | 17.20 ± 0.03 | 17.93 ± 1.77 |
RL | 17.78 ± 1.30 | 19.26 ± 2.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubkova, V.; Strojwas, A.; Bielecki, M. Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves. Energies 2021, 14, 2091. https://doi.org/10.3390/en14082091
Zubkova V, Strojwas A, Bielecki M. Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves. Energies. 2021; 14(8):2091. https://doi.org/10.3390/en14082091
Chicago/Turabian StyleZubkova, Valentina, Andrzej Strojwas, and Marcin Bielecki. 2021. "Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves" Energies 14, no. 8: 2091. https://doi.org/10.3390/en14082091
APA StyleZubkova, V., Strojwas, A., & Bielecki, M. (2021). Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves. Energies, 14(8), 2091. https://doi.org/10.3390/en14082091