De-Emulsification and Gravity Separation of Micro-Emulsion Produced with Enhanced Oil Recovery Chemicals Flooding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Emulsion
2.2. Preparation of TiO2 Nanoparticles
2.3. Characterization of TiO2 Nanoparticles
2.4. Stability of Emulsion and Determination of Coalescence and Sedimentation
3. Results and Discussion
3.1. Properties of the TiO2 Nanoparticles
3.1.1. Crystalline Structure
3.1.2. Surface Morphology
3.2. ASP Emulsion Stability with and without TiO2 Nanoparticles
3.3. Droplet Size and Zeta Potential of Emulsion with and without TiO2 Nanoparticle
3.4. De-Stabilization of Emulsion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elanchezhiyan, S.S.; Prabhu, S.M.; Meenakshi, S. Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal. Int. J. Biol. Macromol. 2018, 112, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Al-Kayiem, H.; Aris, M. Stabilization of Produced Crude Oil Emulsion in the Presence of ASP. In Proceedings of the SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11–13 August 2015. [Google Scholar]
- Li, J.X.; Liu, Y.; Wu, D.; Meng, X.C.; Zhao, F.L. The synergistic effects of alkaline, surfactant, and polymer on the emulsification and destabilization of oil-in-water crude oil emulsion produced by alkaline-surfactant-polymer flooding. Pet. Sci. Technol. 2013, 31, 399–407. [Google Scholar] [CrossRef]
- Kudaibergenov, S.; Akhmedzhanov, T.; Zhappasbayev, B.Z.; Gussenov, I.S.; Shakhvorostov, A.J.I.J.C.S. Laboratory study of ASP flooding for viscous oil. Inter. J. Chem. Sci. 2015, 13, 2017–2025. [Google Scholar]
- Norrman, K.; Olesen, K.B.; Zimmermann, M.S.; Fadhel, R.; Vijn, P.; Sølling, T.I. Isolation and Characterization of Surface-Active Components in Crude Oil—Toward Their Application as Demulsifiers. Energy Fuels 2020, 34, 13650–13663. [Google Scholar] [CrossRef]
- Yang, F.; Tchoukov, P.; Qiao, P.; Ma, X.; Pensini, E.; Dabros, T.; Czarnecki, J.; Xu, Z. Studying demulsification mechanisms of water-in-crude oil emulsions using a modified thin liquid film technique. Colloids Surf. A Physicochem. Eng. Asp. 2018, 540, 215–223. [Google Scholar] [CrossRef]
- Demirbas, A.; Bamufleh, H.S.; Edris, G.; Alalayah, W.M. Treatment of contaminated wastewater. Pet. Sci. Technol. 2017, 35, 883–889. [Google Scholar] [CrossRef]
- Dickhout, J.M.; Moreno, J.; Biesheuvel, P.; Boels, L.; Lammertink, R.G.; de Vos, W.M. Produced water treatment by membranes: A review from a colloidal perspective. J. Colloid Interface Sci. 2017, 487, 523–534. [Google Scholar] [CrossRef]
- Ran, J.; Liu, J.; Zhang, C.; Wang, D.; Li, X. Experimental investigation and modeling of flotation column for treatment of oily wastewater. Int. J. Min. Sci. Technol. 2013, 23, 665–668. [Google Scholar] [CrossRef]
- Rajak, V.; Kumar, S.; Thombre, N.; Mandal, A. Synthesis of activated charcoal from saw-dust and characterization for adsorptive separation of oil from oil-in-water emulsion. Chem. Eng. Commun. 2018, 205, 897–913. [Google Scholar] [CrossRef]
- Rajak, V.; Relish, K.; Kumar, S.; Mandal, A. Mechanism and kinetics of separation of oil from oil-in-water emulsion by air flotation. Pet. Sci. Technol. 2015, 33, 1861–1868. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Zhang, W.; Fu, C.; Wang, Y.; Fu, S. Study on Demulsification-Flocculation Mechanism of Oil-Water Emulsion in Produced Water from Alkali/Surfactant/Polymer Flooding. Polymers 2019, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Van der Zande, M.J.; Muntinga, J.H.; Van den Broek, W. Emulsification of Production Fluids in the Choke Valve. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 27 September 1998. [Google Scholar]
- Skjefstad, H.S.; Dudek, M.; Øye, G.; Stanko, M. The effect of upstream inlet choking and surfactant addition on the performance of a novel parallel pipe oil–water separator. J. Pet. Sci. Eng. 2020, 189, 106971. [Google Scholar] [CrossRef]
- Deng, S.; Yu, G.; Jiang, Z.; Zhang, R.; Ting, Y.P. Destabilization of oil droplets in produced water from ASP flooding. Colloids Surf. A Physicochem. Eng. Asp. 2005, 252, 113–119. [Google Scholar] [CrossRef]
- Chu, Z.; Feng, Y.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 2015, 54, 2328–2338. [Google Scholar] [CrossRef]
- Doshi, B.; Sillanpää, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262–277. [Google Scholar] [CrossRef]
- Wang, C.-F.; Yang, S.Y.; Kuo, S.W. Eco-friendly superwetting material for highly effective separations of oil/water mixtures and oil-in-water emulsions. Sci. Rep. 2017, 7, 1–9. [Google Scholar]
- Aleem, W.; Mellon, N.; Khan, J.A.; Al-Kayiem, H.H. Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer. J. Dispers. Sci. Technol. 2020, 1–13. [Google Scholar] [CrossRef]
- Khan, J.A.; Irawan, S.; Thurai, A.S.; Cai, B. Quantitative Analysis of Blowout Preventer Flat Time for Well Control Operation: Value Added Data Aimed at Performance Enhancement. Eng. Fail. Anal. 2020, 120, 104982. [Google Scholar] [CrossRef]
- Khan, J.A.; Irfan, M.; Irawan, S.; Yao, F.K.; Abdul Rahaman, M.S.; Shahari, A.R.; Glowacz, A.; Zeb, N. Comparison of Machine Learning Classifiers for Accurate Prediction of Real-Time Stuck Pipe Incidents. Energies 2020, 13, 3683. [Google Scholar] [CrossRef]
- Khalilnezhad, A.; Rezvani, H.; Ganji, P.; Kazemzadeh, Y. A Complete Experimental Study of Oil/Water Interfacial Properties in the Presence of TiO2 Nanoparticles and Different Ions. Oil Gas Sci. Technol.-Rev. d’IFP Energ. Nouv. 2019, 74, 39. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Jia, X.; Guo, Z. An easy preparation of photo-response TiO 2@ copper wire mesh with quick on/off switchable superwetting for high efficiency oil–water separation. New J. Chem. 2018, 42, 17563–17573. [Google Scholar] [CrossRef]
- Cheraghian, G. Effects of titanium dioxide nanoparticles on the efficiency of surfactant flooding of heavy oil in a glass micromodel. Pet. Sci. Technol. 2016, 34, 260–267. [Google Scholar] [CrossRef]
- Cheraghian, G. Effect of nano titanium dioxide on heavy oil recovery during polymer flooding. Pet. Sci. Technol. 2016, 34, 633–641. [Google Scholar] [CrossRef]
- Hassan, Y.M.; Guan, B.H.; Zaid, H.M.; Hamza, M.F.; Adil, M.; Adam, A.A.; Hastuti, K. Application of Magnetic and Dielectric Nanofluids for Electromagnetic-Assistance Enhanced Oil Recovery: A Review. Crystals 2021, 11, 106. [Google Scholar] [CrossRef]
- Shah, R.D. Application of Nanoparticle Saturated Injectant Gases for EOR of Heavy Oils. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4 October 2009. [Google Scholar]
- Ehtesabi, H.; Ahadian, M.M.; Taghikhani, V.; Ghazanfari, M.H. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids. Energy Fuels 2014, 28, 423–430. [Google Scholar] [CrossRef]
- Khan, J.A.; Al-Kayiem, H.H.; Aleem, W.; Saad, A.B. Influence of alkali-surfactant-polymer flooding on the coalescence and sedimentation of oil/water emulsion in gravity separation. J. Pet. Sci. Eng. 2019, 173, 640–649. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Khan, J.A. Evaluation of Alkali/Surfactant/Polymer Flooding on Separation and Stabilization of Water/Oil Emulsion by Statistical Modelling. Energy Fuels 2017, 31, 9290–9301. [Google Scholar] [CrossRef]
- Schramm, L.L. Emulsions: Fundamentals and applications in the petroleum industry. Adv. Chem. 1992, 231, 3–24. [Google Scholar]
- Kokal, S.L. Crude oil emulsions: A state-of-the-art review. SPE Prod. Facil. 2005, 20, 5–13. [Google Scholar] [CrossRef]
- Li, J.-G.; Ishigaki, T.; Sun, X. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 2007, 111, 4969–4976. [Google Scholar] [CrossRef]
- Mostaghni, F.; Abed, Y. Structural determination of Co/TiO2 nanocomposite: XRD technique and simulation analysis. Mater. Sci. Poland 2016, 34, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, M.Z.; Azam, M.A.; Teridi, M.A.M.; Singh, P.K.; Mohamad, A.A. Recent Characterisation of Sol-Gel Synthesised TiO2 Nanoparticles. Recent Appl. Sol-Gel Synth. 2017. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.K.; Son, H.A.; Kim, H.T.; Kim, J.W. Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles. Energy Fuels 2017, 31, 7777–7782. [Google Scholar] [CrossRef]
- Kameya, Y.; Yabe, H. Optical and superhydrophilic characteristics of TiO2 coating with subwavelength surface structure consisting of spherical nanoparticle aggregates. Coatings 2019, 9, 547. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Guo, L.; Fan, H.; Meng, L.; Li, Y. Flocculation, coalescence and migration of dispersed phase droplets and oil–water separation in heavy oil emulsion. J. Pet. Sci. Eng. 2012, 81, 177–181. [Google Scholar] [CrossRef]
- Ye, F.; Wang, Z.; Mi, Y.; Kuang, J.; Jiang, X.; Huang, Z.; Luo, Y.; Shen, L.; Yuan, H.; Zhang, Z.J.C.; et al. Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater. Colloids Surfaces 2020, 586, 124251. [Google Scholar] [CrossRef]
- Bi, Y.; Li, W.; Liu, C.; Xu, Z.; Jia, X.J.E. Dendrimer-based demulsifiers for polymer flooding oil-in-water emulsions. Energy Fuels 2017, 31, 5395–5401. [Google Scholar] [CrossRef]
- Di, W.; Meng, X.; Zhao, F.; Zhang, R.; Yan, C.; Wang, Q.; Liang, H. Emulsification and Stabilization of ASP Flooding Produced Liquid. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 8 March 2015. [Google Scholar]
- Yang, L.; Wang, Z.; Zhuge, X.; Wang, S. Study on Emulsification Behavior and Optimized Separation Technology of High Concentration Polymer Flooding Produced Liquid in Daqing Oilfield. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 18–21 March 2019. [Google Scholar]
- Liang, H.; Esmaeili, H. Application of nanomaterials for demulsification of oily wastewater: A review study. Environ. Technol. Innov. 2021, 22, 101498. [Google Scholar] [CrossRef]
- Goh, P.S.; Ong, C.S.; Ng, B.C.; Ismail, A.F. 5—Applications of Emerging Nanomaterials for Oily Wastewater Treatment. In Nanotechnology in Water and Wastewater Treatment; Ahsan, A., Ismail, A.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 101–113. [Google Scholar] [CrossRef]
- Chen, C.; Weng, D.; Mahmood, A.; Chen, S.; Wang, J. Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl. Mater. Interfaces 2019, 11, 11006–11027. [Google Scholar] [CrossRef]
- Li, Y.; Cao, L.; Hu, D.; Yang, C. Uncommon wetting on a special coating and its relevance to coalescence separation of emulsified water from diesel fuel. Sep. Purif. Technol. 2017, 176, 313–322. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Z.; Ren, L.; Meng, X.; Gu, W. Study on stability of produced water in ASP flooding based on critical micellar theory. Polym. Bull. 2020, 1–14. [Google Scholar]
- Krishnan, S.; Chandran, K.; Sinnathambi, C.M. Wastewater Treatment Technologies Used for the Removal of Different Surfactants: A Comparative. Int. J. Appl. Chem. 2016, 12, 727–739. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.K.A.; Khan, J.A.; Ullah, H.; Al-Kayiem, H.H.; Irawan, S.; Irfan, M.; Glowacz, A.; Liu, H.; Glowacz, W.; Rahman, S. De-Emulsification and Gravity Separation of Micro-Emulsion Produced with Enhanced Oil Recovery Chemicals Flooding. Energies 2021, 14, 2249. https://doi.org/10.3390/en14082249
Khan MKA, Khan JA, Ullah H, Al-Kayiem HH, Irawan S, Irfan M, Glowacz A, Liu H, Glowacz W, Rahman S. De-Emulsification and Gravity Separation of Micro-Emulsion Produced with Enhanced Oil Recovery Chemicals Flooding. Energies. 2021; 14(8):2249. https://doi.org/10.3390/en14082249
Chicago/Turabian StyleKhan, Mohammad Kamal Asif, Javed Akbar Khan, Habib Ullah, Hussain H. Al-Kayiem, Sonny Irawan, Muhammad Irfan, Adam Glowacz, Hui Liu, Witold Glowacz, and Saifur Rahman. 2021. "De-Emulsification and Gravity Separation of Micro-Emulsion Produced with Enhanced Oil Recovery Chemicals Flooding" Energies 14, no. 8: 2249. https://doi.org/10.3390/en14082249
APA StyleKhan, M. K. A., Khan, J. A., Ullah, H., Al-Kayiem, H. H., Irawan, S., Irfan, M., Glowacz, A., Liu, H., Glowacz, W., & Rahman, S. (2021). De-Emulsification and Gravity Separation of Micro-Emulsion Produced with Enhanced Oil Recovery Chemicals Flooding. Energies, 14(8), 2249. https://doi.org/10.3390/en14082249