A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications
Abstract
:1. Introduction
- Continuous input current;
- Quadratic voltage gain with reduced voltage stress across switches;
- High efficiency and easy control.
2. Structure and Working of the Proposed Converter
3. Design of Passive Components and Stress across Switches
3.1. Design of Inductors
3.2. Design of Capacitor
3.3. Voltage Stress across Switches
4. Comparison Assessment with Other Converters
5. Experimental Results
6. Efficiency Calculation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Tofoli, F.L.; Pereira, D.D.C.; de Paula, W.J.; Júnior, D.D.S.O. Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter. IET Power Electron. 2015, 8, 2044–2057. [Google Scholar] [CrossRef] [Green Version]
- Cornea, O.; Andreescu, G.-D.; Muntean, N.; Hulea, D. Bidirectional Power Flow Control in a DC Microgrid Through a Switched-Capacitor Cell Hybrid DC–DC Converter. IEEE Trans. Ind. Electron. 2017, 64, 3012–3022. [Google Scholar] [CrossRef]
- Shahir, F.M.; Babaei, E.; Farsadi, M. Voltage-Lift Technique Based Nonisolated Boost DC–DC Converter: Analysis and Design. IEEE Trans. Power Electron. 2017, 33, 5917–5926. [Google Scholar] [CrossRef]
- Padmanaban, S.; Bhaskar, M.S.; Maroti, P.K.; Blaabjerg, F.; Fedák, V. An original transformer and switched capacitor (T & SC)- based extension for DC-DC boost converter for high-voltage/low- current renewable energy applica-tions: Hardware implementation of a new T & SC boost converter. Energies 2018, 11, 783. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, S.; Babu, N.R. Design and Development of Single Switch High Step-Up DC–DC Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 6, 855–863. [Google Scholar] [CrossRef]
- Banaei, M.R.; Sani, S.G. Analysis and Implementation of a New SEPIC-Based Single-Switch Buck–Boost DC–DC Converter With Continuous Input Current. IEEE Trans. Power Electron. 2018, 33, 10317–10325. [Google Scholar] [CrossRef]
- Shanthi, T.; Prabha, S.U.; Sundaramoorthy, K. Non-isolated n-stage High Step-up DC-DC Converter for Low voltage DC Source Integration. IEEE Trans. Energy Convers. 2021. [Google Scholar] [CrossRef]
- Wu, B.; Li, S.; Liu, Y.; Smedley, K.M. A New Hybrid Boosting Converter for Renewable Energy Applications. IEEE Trans. Power Electron. 2016, 31, 1203–1215. [Google Scholar] [CrossRef]
- Gorji, S.A.; Mostaan, A.; My, H.T.; Ektesabi, M. Non-isolated buck–boost dc–dc converter with quadratic voltage gain ratio. IET Power Electron. 2019, 12, 1425–1433. [Google Scholar] [CrossRef]
- Diaz-Saldierna, L.; Morales-Saldaña, J.; Ortiz-Lopez, M. Switching regulator using a quadratic boost converter for wide DC conversion ratios. IET Power Electron. 2009, 2, 605–613. [Google Scholar] [CrossRef]
- Starzyk, J.A.; Jan, Y.-W.; Qiu, F. A DC-DC charge pump design based on voltage doublers. IEEE Trans. Circ. Syst. I Regul. Pap. 2001, 48, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.L.; Ye, H. Positive output multiple-lift push–pull switched capacitor Luo-converters. IEEE Trans. Ind. Electron. 2004, 51, 594–602. [Google Scholar] [CrossRef]
- Lee, S.-W.; Do, H.-L. Quadratic Boost DC–DC Converter With High Voltage Gain and Reduced Voltage Stresses. IEEE Trans. Power Electron. 2018, 34, 2397–2404. [Google Scholar] [CrossRef]
- Wai, R.-J.; Lin, C.-Y.; Duan, R.-Y. High-efficiency DC-DC converter with high voltage gain and reduced switch stress. IEEE Trans. Ind. Electron. 2007, 54, 354–364. [Google Scholar] [CrossRef]
- Lee, J.; Liang, T.; Chen, J. Isolated coupled-inductor-integrated DC-DC converter with non-dissipative snubber for solar energy applications. IEEE Trans. Ind. Electron. 2014, 61, 3337–3348. [Google Scholar] [CrossRef]
- Azizkandi, M.E.; Sedaghati, F.; Shayeghi, H.; Blaabjerg, F. A High Voltage Gain DC–DC Converter Based on Three Winding Coupled Inductor and Voltage Multiplier Cell. IEEE Trans. Power Electron. 2019, 35, 4558–4567. [Google Scholar] [CrossRef]
- Duong, T.-D.; Nguyen, M.-K.; Tran, T.-T.; Lim, Y.-C.; Choi, J.-H. Transformerless High Step-Up DC-DC Converters with Switched-Capacitor Network. Electronics 2019, 8, 1420. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Zaid, M.; Sarwar, A.; Tariq, M.; Sarwer, Z. A New Transformerless Quadratic Boost Converter with High Voltage Gain. Smart Sci. 2020, 8, 1–21. [Google Scholar] [CrossRef]
- Park, K.B.; Moon, G.W.; Youn, A.J. Non isolated high step-up boost converter integrated with sepic converter. IEEE Trans. Power Electron. 2010, 25, 2266–2275. [Google Scholar] [CrossRef]
- Meraj, M.; Bhaskar, M.S.; Iqbal, A.; Al-Emadi, N.; Rahman, S. Interleaved Multilevel Boost Converter With Minimal Voltage Multiplier Components for High-Voltage Step-Up Applications. IEEE Trans. Power Electron. 2020, 35, 12816–12833. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, S.; Zhang, Y.; Huang, Y. An Interleaved Zero-Voltage Zero-Current Switching High Step-Up DC-DC Converter. IEEE Access 2021, 9, 5563–5572. [Google Scholar] [CrossRef]
- Alzahrani, A.; Ferdowsi, M.; Shamsi, P. A Family of Scalable Non-Isolated Interleaved DC-DC Boost Converters with Voltage Multiplier Cells. IEEE Access 2019, 7, 11707–11721. [Google Scholar] [CrossRef]
- Dwari, S.; Parsa, L. An Efficient High-Step-Up Interleaved DC–DC Converter with a Common Active Clamp. IEEE Trans. Power Electron. 2010, 26, 66–78. [Google Scholar] [CrossRef]
- Deng, J.; Wang, H.; Shang, M. A ZVS Three-Port DC/DC Converter for High-Voltage Bus-Based Photovoltaic Systems. IEEE Trans. Power Electron. 2019, 34, 10688–10699. [Google Scholar] [CrossRef]
- Babaei, E.; Maheri, H.M.; Sabahi, M.; Hosseini, S.H. Extendable Non-isolated High Gain DC-DC Converter Based on Active–Passive Inductor Cells. IEEE Trans. Ind. Electron. 2018, 65, 9478–9487. [Google Scholar] [CrossRef]
- Lakshmi, M.; Hemamalini, S. Non-isolated High Gain DC–DC Converter for DC Microgrids. IEEE Trans. Ind. Electron. 2018, 65, 1205–1212. [Google Scholar] [CrossRef]
- Iqbal, A.; Member, S. A New Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications. IEEE Access 2019, 7, 89857–89868. [Google Scholar]
- Rosas-Caro, C.J.; Mancilla-David, F.; Mayo-Maldonado, J.C.; Gonzalez-Lopez, J.M.; Torres-Espinosa, H.L.; Valdez-Resendiz, J.E. A Transformer-less High-Gain Boost Converter with Input Current Ripple Cancelation at a Selectable Duty Cycle. IEEE Trans. Ind. Electron. 2013, 60, 4492–4499. [Google Scholar] [CrossRef]
- Guepfrih, M.F.; Waltrich, G.; Lazzarin, T.B. High Step-Up Dc-Dc Converter Using Built-in Transformer Voltage Multiplier Cell and Dual Boost Concepts. IEEE J. Emerg. Sel. Top. Power Electron. 2021. [Google Scholar] [CrossRef]
- Andrade, A.M.S.S.; Faistel, T.; Guisso, R.A.; Toebe, A. Hybrid High Voltage Gain Transformerless DC-DC Converter. IEEE Trans. Ind. Electron. 2021. [Google Scholar] [CrossRef]
- Mahmood, A.; Zaid, M.; Ahmad, J.; Khan, M.A.; Khan, S.; Sifat, Z.; Lin, C.-H.; Sarwar, A.; Tariq, M.; Alamri, B. A Non-inverting High Gain DC-DC Converter with Continuous Input Current. IEEE Access 2021, 9, 54710–54721. [Google Scholar] [CrossRef]
- Khan, S.; Mahmood, A.; Tariq, M.; Zaid, M.; Khan, I.; Rahman, S. Improved Dual Switch Non-Isolated High Gain Boost Converter for DC microgrid Application. In Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2–5 February 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Khan, S.; Zaid, M.; Mahmood, A.; Ahmad, J.; Alam, A. A Single Switch High Gain DC-DC converter with Reduced Voltage Stress. In Proceedings of the 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 27–29 November 2020; pp. 1–6. [Google Scholar]
- Zaid, M.; Ahmad, J.; Sarwar, A.; Sarwer, Z.; Tariq, M.; Alam, A. A Transformerless Quadratic Boost High Gain DC-DC Converter. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar]
Topology | Inductors | Capacitors | Switches | Diodes | Total Components | Voltage Gain | Normalized Voltage Stress |
---|---|---|---|---|---|---|---|
[4] | 2 | 3 | 1 | 3 | 9 | ||
[6] | 2 | 3 | 1 | 4 | 10 | ||
[7] | 4 | 6 | 1 | 3 | 14 | ||
[9] | 4 | 1 | 2 | 7 | 14 | ||
[10] | 2 | 2 | 1 | 3 | 8 | ||
[11] | 2 | 2 | 1 | 3 | 8 | ||
[28] | 3 | 3 | 1 | 3 | 9 | ||
Proposed | 2 | 2 | 2 | 2 | 8 |
Elements | Rating/Model |
---|---|
Vin | 24 V, 10 V |
Po (max) | 150 W |
fs | 50 kHz |
R (Load) | 250 Ω, 300 Ω |
Inductors | L1 = L2 = 330 µH, ESR = 0.2 Ω |
Capacitors | C1 = C2 = 33 µF 200 V, ESR = 0.15 Ω |
S1 and S2 | SPW52N50C3 |
D1 and D2 | SF8L60USM |
Gate Drivers IC | TLP250H |
Microcontroller | STM32 Nucleo H743ZI2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; Zaid, M.; Sarwar, A.; Lin, C.-H.; Asim, M.; Yadav, R.K.; Tariq, M.; Satpathi, K.; Alamri, B. A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications. Energies 2021, 14, 2629. https://doi.org/10.3390/en14092629
Ahmad J, Zaid M, Sarwar A, Lin C-H, Asim M, Yadav RK, Tariq M, Satpathi K, Alamri B. A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications. Energies. 2021; 14(9):2629. https://doi.org/10.3390/en14092629
Chicago/Turabian StyleAhmad, Javed, Mohammad Zaid, Adil Sarwar, Chang-Hua Lin, Mohammed Asim, Raj Kumar Yadav, Mohd Tariq, Kuntal Satpathi, and Basem Alamri. 2021. "A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications" Energies 14, no. 9: 2629. https://doi.org/10.3390/en14092629
APA StyleAhmad, J., Zaid, M., Sarwar, A., Lin, C. -H., Asim, M., Yadav, R. K., Tariq, M., Satpathi, K., & Alamri, B. (2021). A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications. Energies, 14(9), 2629. https://doi.org/10.3390/en14092629