Harvesting Technologies and Costs of Biomass Production from Energy Crops Cultivated on Farms in the Małopolska Region
Abstract
:1. Introduction
2. Fundamentals of Perennial Energy Crop Production
3. Research Methodology
- –
- the area of holding (utilised agricultural area),
- –
- the area of the farm owner’s dwelling to be heated,
- –
- number of persons living in the dwelling,
- –
- year of construction of the dwelling,
- –
- the estimated efficiency of the heating installation of the residential building,
- –
- types of tractors and agricultural machinery at the disposal of agricultural holding that can be used to harvest perennial energy crops (especially ‘straw’ crops, i.e., Miscanthus giganteus and Sida hermaphrodita)—agricultural tractors and balers, windrowers.
- –
- the type of biomass that can be used for heating purposes on the farms under study—Miscanthus giganteus, Pennsylvania sida, energy willow;
- –
- the agricultural holding has a residential building with a specific area to be heated, and the total needs of the holding for energy for heating (EG) include two components:EG = ES + EP (MJ year−1)
- –
- biomass from energy crops with an assumed calorific value will be used to heat the dwelling;
- –
- the total annual energy demand for social purposes on the farm comprises:ES = EW + ED (MJ year−1)
- –
- energy used per year for water heating, calculated according to the formula:EW = i · q · (TC—TZ) · cw · 365 (MJ year−1)
- –
- energy need for heating a residential building calculated using the formula:ED = F · XE (MJ year−1)
- –
- annual biomass demand to cover energy needs for social purposes:(t · year−1)
- –
- energy value of biomass (MJ kg−1), η is the boiler efficiency of the heating system (%), 1000;
- –
- conversion of requirements from kilograms to tonnes;
- –
- the area under energy crops, from which the specific biomass yield Pjs.m. will cover the annual energy demand for social purposes:
- –
- daily hot water consumption q = 80 l person−1;
- –
- hot water temperature TC = 55 °C;
- –
- cold water temperature Tz = 10 °C;
- –
- specific heat of water cw = 4.19 · 10–3 MJ (kg K−1);
- –
- energy consumption index for a house built before 1998 XE1 = 1260 MJ (m2 year)−1 (CPPAI 2001);
- –
- energy consumption index for a house built after 1998 XE2 = 432 MJ (m2 year)−1 (PN-91/B02020).
- –
- Module 1: enabling an estimation of the energy demand for heating a building (conventional energy carriers or biomass) and producing an estimated energy audit for the building;
- –
- Module 2: enabling the estimation of the labour and energy cost of biomass production in field crops and the cost of biomass production and energy in biomass;
- –
- Module 3: enabling the estimation of labour and energy cost for the production of compact biofuels (briquettes or pellets) from biomass;
- –
- Module 4: containing a database of technical equipment for biomass production, processing, and combustion.
- –
- diesel oil price—1.15 EUR l−1;
- –
- price of baling twine—9.29 EUR kg−1;
- –
- operator work costs—3.11 EUR rbh−1;
- –
- labour costs for an assistant—2.43 EUR rbh−1;
- –
- exchange rate of 1 EUR (on average according to the National Bank of Poland in 2020)—4.52 PLN;
- –
- prices of tractors and machinery were averaged from the 1st quarter of 2020.
4. Technology of Harvesting Energy Crops
5. Research Findings and Discussion
- –
- 0.6 ha–2.51 ha (average 1.28 ha) for giant Miscanthus giganteus,
- –
- 0.88 ha–3.65 ha (average 1.87 ha) for Sida hermaphrodita,
- –
- 0.49 ha–2.02 ha (average 1.03 ha) for energy willow.
6. Conclusions
- The level of demand for energy for social purposes in the studied agricultural holdings in the Małopolska region was estimated at an average of 141157 MJ year−1. On the other hand, the demand for biomass from energy crops ranged from 10.3 t year−1 (dry mass) for energy willow to 13.1 t year−1 for Pennsylvania sida.
- The theoretical area of cultivation of the analysed energy crops, from which the biomass obtained would cover the demand for energy used for social purposes in the studied agricultural holdings, should be 1.28 ha for Miscanthus giganteus, 1.87 ha for Pennsylvania mallow, and 1.03 ha for energy willow.
- The Biobkalkulator computer application used for research is an added value and turned out to be a very helpful tool to estimate the cost of biomass production from selected perennial energy crops. However, it should be emphasized that an important role in its application is played by the input data obtained from farms selected for the research.
- The costs of biomass production from energy crops in the agricultural holdings under study depended, to a considerable extent, on the harvesting technology used, the machinery used, and its efficiency. Regarding Miscanthus giganteus and Sida hermaphrodita, the harvesting was carried out using rotary mowers and small windrow balers. The costs of biomass production amounted to 424.7 EUR ha−1 for Miscanthus giganteus and 1260.5 278.9 EUR ha−1 for Sida hermaphrodita. In conversion per tonne, it was, respectively, 37.6 EUR t−1 for Miscanthus giganteus and 30.0 EUR t−1 for mullein.
- In the case of harvesting energy willow in the form of whole shoots, inefficient and labour-intensive technologies using chainsaws and scythes were applied. It influenced the level of willow biomass production costs, which were the highest among the assessed plants and amounted, on average, to 612.1 EUR ha−1 and EUR 6∙t−1.
- The analysis presented in the paper and the results obtained may help in making a decision by potential owners of farms about cultivating perennial energy crops in order to produce biomass, taking into account the use of their own machinery for harvesting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.-H.; Budzianowski, W.; Lee, K.T. Preface—Sustainable Biofuels. Energy Convers. Manag. 2017, 141, 1. [Google Scholar] [CrossRef]
- Dacko, M.; Płonka, A.; Satoła, Ł.; Dacko, A. Sustainable Development According to the Opinions of Polish Experts. Energies 2021, 14, 5325. [Google Scholar] [CrossRef]
- BP Statistical Review of World Energy, British Petroleum 2019. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 17 September 2020).
- The World Counts 2019. Available online: https://www.theworldcounts.com/ (accessed on 17 September 2020).
- Bhaskar, T.; Bhavya, B.; Singh, R.; Naik, D.V.; Kumar, A.; Goyal, H.B. Thermochemical Conversion of Biomass to Biofuels. In Biofuels Alternative Feedstocks and Conversion Processes; Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E., Eds.; Academic Press: Oxford, UK, 2011; pp. 51–77. ISBN 9780123850997. [Google Scholar]
- Rosales-Calderon, O.; Arantes, V. A review on commercial scale high value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 2019, 12, 240. [Google Scholar] [CrossRef] [Green Version]
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The Importance of Renewable Energy Sources in Poland’s Energy Mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Ul Hai, I.; Sher, F.; Yaqoob, A.; Liu, H. Assessment of biomass energy potential for SRC willow woodchips in a pilot scale bubbling fluidised bed gasifier. Fuel 2019, 258, 116143. [Google Scholar] [CrossRef]
- Dyrektywa Parlamentu Europejskiego i Rady 2009/28/WE z dnia 23 kwietnia 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych zmieniająca i w następstwie uchylająca dyrektywy 2001/77/WE oraz 2003/30/WE (Dz.U. UE L 09.140.16). Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02009L0028-20151005&from=GA (accessed on 17 September 2020).
- Szczukowski, S.; Tworkowski, J.; Stolarski, M.; Kwiatkowski, J.; Krzyżaniak, M.; Lajszner, W.; Graban, Ł. Wieloletnie Rośliny Energetyczne; MULTICO Oficyna Wydawnicza: Warszawa, Poland, 2012; p. 156. ISBN 978-83-7763-051-8. [Google Scholar]
- Rosenqvist, H.; Dawson, M. Economics of willow growing in Northern Ireland. Biomass Bioenergy 2005, 28, 7–14. [Google Scholar] [CrossRef]
- Volk, T.A.; Abrahamson, L.P.; Nowak, C.A.; Smart, L.B.; Tharakan, P.J.; White, E.H. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 2006, 30, 715–727. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Gołaszewski, J. Energy intensity and energy ratio in producing willow chips as feedstock for an integrated biorefinery. Biosyst. Eng. 2014, 123, 19–28. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Lindsey, C.A.; Abrahamson, L.P.; White, E.H. Evaluating the impact of three incentive programs on co-firing willow biomass with coal in New York State. Energy Policy 2005, 33, 337–347. [Google Scholar] [CrossRef]
- Kisiel, R.; Stolarski, M.; Szczukowski, S.; Tworkowski, J. Biomasa pozyskiwana z gruntów rolniczych źródłem energii. Zagad. Ekon. Rol. 2006, 4, 90–101. [Google Scholar]
- Walle, I.V.; Van Camp, N.; Van de Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I—Biomass production after 4 years of tree growth. Biomass Bioenergy 2007, 31, 267–275. [Google Scholar] [CrossRef]
- Grzybek, A. Zapotrzebowanie na biomasę i strategie energetycznego jej wykorzystania. Studia I Rap. IUNG-PIB 2008, 11, 9–23. [Google Scholar] [CrossRef]
- Kuś, J.; Faber, A.; Stasiak, M.; Kawalec, A. Produkcyjność wybranych gatunków roślin uprawianych na cele energetyczne w różnych siedliskach. Studia I Rap. IUNG-PIB 2008, 11, 68–80. [Google Scholar]
- Dubas, J. Wierzba. In Rośliny Energetyczne; Kościk, B., Ed.; Wydawnictwo AR w Lublinie: Lublin, Poland, 2003; pp. 56–78. [Google Scholar]
- Król, K. Wierzba wiciowa—Cenna roślina energetyczna. Tech. Rol. Ogrod. Leśna 2004, 3, 18–22. [Google Scholar]
- Godet, J.D. Przewodnik Do Rozpoznawania Drzew I Krzewów; Oficyna Wydawnicza „Delta” W–Z: Warszawa, Poland, 2000; p. 255. ISBN 9788371758812. [Google Scholar]
- Szczukowski, S.; Tworkowski, J.; Stolarski, M. Wierzba Energetyczna; Wydawnictwo Plantpress: Kraków, Poland, 2004; p. 46. ISBN 83-85982-86-8. [Google Scholar]
- Dubas, J.W.; Tomczyk, A. Zakładanie, Pielęgnacja I Ochrona Plantacji Wierzb Energetycznych; Wydawnictwo SGGW: Warszawa, Poland, 2005; pp. 29–30. [Google Scholar]
- Jasiulewicz, M. Efektywność ekonomiczna uprawy wierzby na gruntach marginalnych i możliwości wykorzystania biomasy w energetyce rozproszonej. In Ekonomiczne Uwarunkowania Stosowania Odnawialnych Źródeł Energii; Wydawnictwo Wieś Jutra: Warszawa, Poland, 2009; pp. 92–101. [Google Scholar]
- Szczukowski, S.; Tworkowski, J. Produktywność wierzb krzewiastych Salix sp. na glebie organicznej. Inżynieria Ekol. 2000, 1, 138–144. [Google Scholar]
- Szczukowski, S.; Tworkowski, J. Produktywność oraz wartość energetyczna biomasy wierzb krzewiastych Salix sp. na różnych typach gleb w pradolinie Wisły. Postępy Nauk. Rol. 2001, 2, 30–39. [Google Scholar]
- Szczukowski, S.; Tworkowski, J. Plantacje energetyczne wierzby i innych roślin wieloletnich. Wieś Jutra 2004, 3, 53–55. [Google Scholar]
- Borkowska, H.; Styk, B. Ślazowiec Pensylwański. In Rośliny Energetyczne; Kościk, B., Ed.; Wydawnictwo AR w Lublinie: Lublin, Poland, 2003; pp. 79–95. [Google Scholar]
- Borkowska, H.; Styk, B. Ślazowiec Pensylwański (Sida Hermaphrodita Rusby). In Uprawa I Wykorzystanie; Wydawnictwo AR w Lublinie: Lublin, Poland, 2006; p. 69. [Google Scholar]
- Kowalczyk-Juśko, A. Przydatność Wybranych Gatunków Roślin Do Energetycznego Wykorzystania. In Biomasa Jako Źródło Energii; Jackowska, I., Ed.; Wydawnictwo Wieś Jutra: Warszawa, Poland, 2009; pp. 39–50. [Google Scholar]
- Kuś, J.; Matyka, M. Uprawa Roślin Na Cele Energetyczne; IUNG—PIB: Puławy, Poland, 2010; p. 64. ISBN 978-83-7562-072-6. [Google Scholar]
- Faber, A.; Kuś, J.; Matyka, M. Uprawa Roślin Na Potrzeby Energetyki; W&B Wiesław Krzewiński: Warszawa, Poland, 2009; p. 30. [Google Scholar]
- Roszewski, R. Miskant Olbrzymi—Miscanthus Giganteus Sinensis Giganteus. In Nowe Rośliny Uprawne Na Cele Spożywcze, Przemysłowe I Jako Odnawialne Źródła Energii; Wydawnictwo SGGW: Warszawa, Poland, 1996; pp. 123–135. [Google Scholar]
- Majtkowska, G.; Majtkowski, W. Trawy Źródłem Energii. In Trawy I Rośliny Motylkowe; Wydawnictwo Biznes-Press Sp. z o.o. Warszawa: Warszawa, Poland, 2005; pp. 94–97. [Google Scholar]
- Sawicki, B.; Kościk, K. Trawy I Zbiorowiska Trawiaste. In Rośliny Energetyczne; Kościk, B., Ed.; Wydawnictwo AR w Lublinie: Lublin, Poland, 2003; pp. 111–135. [Google Scholar]
- Kozak, M. Możliwości uprawy i wykorzystania miskanta olbrzymiego na cele energetyczne w Polsce cz. I. Ekonatura 2006, 4, 18. [Google Scholar]
- Igliński, B.; Buczkowski, R.; Cichosz, M. Technologie Bioenergetyczne; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2009; p. 318. ISBN 978-83-231-2441-2. [Google Scholar]
- Lisowski, A. Technologie Zbioru Roślin Energetycznych; Wydawnictwo SGGW: Warszawa, Poland, 2010; ISBN 978-83-7583-222-8. [Google Scholar]
- Kwaśniewski, D. Modelowe technologie zbioru a koszty produkcji biomasy z trzyletniej wierzby energetycznej. Inżynieria Rol. 2011, 4, 167–176. [Google Scholar]
- Kwaśniewski, D. Koszty i opłacalność produkcji biomasy z trzyletniej wierzby energetycznej. Inżynieria Rolnicza 2011, 15, 145–154. [Google Scholar]
- Matyka, M. Produkcyjne I Ekonomiczne Aspekty Uprawy Roślin Wieloletnich Na Cele Energetyczne; Wydawnictwo IUNG-PIB: Puławy, Poland, 2013; pp. 1–94. [Google Scholar]
- Styles, D.; Thorne, F.; Jones, M.B. Energy crops in Ireland: An economic comparison of willow and Miscanthus giganteus production with conventional farming systems. Biomass Bioenergy 2007, 32, 5. [Google Scholar] [CrossRef]
- Nordborg, M.; Berndes, G.; Dimitriou, I.; Henriksson, A.; Mola-Yudego, B.; Rosenqvist, H. Energy analysis of willow production for bioenergy in Sweden. Renew. Sustain. Energy Rev. 2018, 93, 473–482. [Google Scholar] [CrossRef]
- Frączek, J.; Cieślikowski, B.; Juliszewski, T.; Kwaśniewski, D.; Kuboń, M.; Kurpaska, S.; Mudryk, K.; Szeląg-Sikora, A.; Wójcik, A.; Wróbel, M. Ekonomiczno-Organizacyjne Aspekty Produkcji Biopaliw; Wydawnictwo PTIR: Kraków, Poland, 2014; p. 181. ISBN 978-83-64377-02-0. [Google Scholar]
- Ericsson, K.; Rosenqvist, H.; Ganko, E.; Pisarek, M.; Nilsson, L. An agroeconomic analysis of willow cultivation in Poland. Biomasy Bioenergy 2006, 30, 16–27. [Google Scholar] [CrossRef]
- Cupiał, M.; Szeląg-Sikora, A.; Niemiec, M. Farm. Machinery and Processes Management in Sustainable Agriculture, Huyghebaert, B., Lorencowicz, E., Uziak, J., Eds.; Department of Machinery Exploitation and Management of Production Processes University of Life Sciences in Lublin: Lublin, Poland, 2015; pp. 64–69. [Google Scholar]
- Kowalczyk, Z.; Cupiał, M. Contemporary Research Trends in Agricultural Engineering BIO. Web. Conf. 2018, 10, 01011. [Google Scholar] [CrossRef] [Green Version]
- BiOBkalkulator. Available online: http://biob.wipie.ur.krakow.pl/biobkalk/ (accessed on 12 October 2021).
- Lorencowicz, E. Poradnik Użytkowania Techniki Rolniczej W Tabelach; Agencja Promocji Rolnictwa i Agrobiznesu: Bydgoszcz, Poland, 2007; p. 68. ISBN 83-91453-7-8. [Google Scholar]
- Muzalewski, A. Koszty Eksploatacji Maszyn; ITP Falenty: Warszawa, Poland, 2010; p. 34. [Google Scholar]
- Hutsol, T.; Yermakov, S.; Firman, J.; Duganets, V.; Bodnar, A. Analysis of Technical Solutions of Planting Machines, Which Can Be Used in Planting Energy Willow. In Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Sadowski, A.; Jankowiak, J.; Bieńkowski, J. Ekonomiczna efektywność uprawy wierzby. Fragm. Agron. 2007, 4, 153–159. [Google Scholar]
- Matyka, M. Opłacalność i konkurencyjność produkcji wybranych roślin energetycznych. Studia I Rap. IUNG-PIB 2008, 11, 113–123. [Google Scholar]
- Stolarski, M.; Szczukowski, S.; Tworkowski, J. Ekonomiczne aspekty produkcji biomasy wierzby w systemie Eko-Salix. Rocz. Nauk. Rol. 2010, 97, 82–89. [Google Scholar]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M. Koszty założenia polowych plantacji szybko rosnących roślin drzewiastych. Rocz. Nauk. Rol. 2012, 99, 129–140. [Google Scholar]
- Matyka, M. Opłacalność I Konkurencyjność Produkcji Roślin Energetycznych. In Odnawialne Źródła Energii. Rolnicze Surowce Energetyczne; Kołodziej, B., Matyka, M., Eds.; Powszechne Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2012; pp. 407–416. ISBN 978-83-09-01139-2. [Google Scholar]
Farm | Utilised Agricultural Area (ha) | Number of Persons Forming the Household | Area of the Residential Building (m2) | Year of Construction of the Dwelling | Efficiency of the Heating System of a Residential Building(%) |
---|---|---|---|---|---|
1 | 6.79 | 5 | 140 | 1999 | 70 |
2 | 7.34 | 6 | 180 | 2010 | 80 |
3 | 7.36 | 4 | 140 | 2002 | 70 |
4 | 9.91 | 4 | 150 | 1996 | 70 |
5 | 15.91 | 3 | 200 | 1997 | 70 |
6 | 16.29 | 3 | 180 | 2001 | 70 |
7 | 19.55 | 4 | 120 | 2009 | 80 |
8 | 34.28 | 3 | 190 | 1990 | 70 |
9 | 38.34 | 5 | 200 | 1999 | 70 |
10 | 46.60 | 4 | 210 | 2008 | 80 |
Average value | 20.24 | 4 | 171 | — | — |
Description | Unit | Miscanthus Giganteus | Sida Hermaphrodita | Energy Willow |
---|---|---|---|---|
Dry matter yield | t ha−1 | 8 | 9 | 10 |
Calorific value | MJ kg−1 | 17 | 15 | 19 |
Costs of establishing a plantation | EUR ha−1 | 4555 | 2312 | 1774 |
Planned period of use of the plantation | years | 18 | 18 | 25 |
Plantation depreciation costs | EUR (ha year)−1 | 253 | 128 | 71 |
Farm | Harvesting Technology for Miscanthus Giganteus and Sida Hermaphrodita | Mowing | Ironing | Transport | |||
---|---|---|---|---|---|---|---|
Tractor | Mower | Tractor | Press | Tractor | Trailer | ||
1 | A | C330 | Z125/2K | C330 | Z511 | U4512 | D732 |
2 | B | C360 | Z070/1 | C360 | Z224/1 | Z4320 | T654 |
3 | A | U3514 | Z105/1 | U3514 | Z511 | U3514 | T058 |
4 | B | C360 | Z070/1 | C360 | Z224/1 | U4512 | D732 |
5 | A | C360 | Z125/2K | C360 | Z224/1 | C360 | T654 |
6 | A | U3512 | Z125 | U3512 | Z511 | U3512 | T058 |
7 | A | C360 | Z175 | C360 | Z224/1 | U4512 | D732 |
8 | A | Z5320 | ŻTR165 | Z5320 | Z224/1 | Z5320 | D732 |
9 | C | Pronar 82A | Z010 | Pronar 82A | Z276 | Pronar 82A | T127 |
10 | C | Z5340 | ŻTR165 | Z5340 | Z581/1 | U6012 | T150/1 |
Farm | Technology of Harvesting Willow Energy | Mowing (Harvesting) | Transport | ||
---|---|---|---|---|---|
Chainsaw or Petrol-Driven Lawnmower | Number of People * | Tractor | Trailer | ||
1 | D | Stihl MS230 | 1 + 2 | U4512 | D732 |
2 | E | Solo 142 | 1 + 2 | C360 | T654 |
3 | D | Stihl MS310 | 1 + 1 | U3514 | T058 |
4 | E | Stihl FS75X | 1 + 1 | U4512 | D732 |
5 | E | Solo 134 | 1 + 2 | C360 | T654 |
6 | D | Stihl MS270 | 1 + 1 | U3512 | T058 |
7 | D | Stihl MS230 | 1 + 2 | U4512 | D732 |
8 | E | Solo 142 | 1 + 2 | Z5320 | D732 |
9 | D | Stihl MS310 | 1 + 1 | Pronar 82A | T127 |
10 | D | Stihl MS390 | 1 + 2 | U6012 | T150/1 |
Farm | Energy for Social Purposes (Es) | Biomass Demand (Dry Matter) (ZB) | ||||
---|---|---|---|---|---|---|
Energy to Heat Water | Energy to Heat Your Home | Total | Miscanthus Giganteus | Sida Hermaphrodita | Energy Willow | |
(MJ·Year−1) | (t·Year−1) | |||||
1 | 27,528.3 | 60,480.0 | 88,008.3 | 7.4 | 8.4 | 6.6 |
2 | 33,034.0 | 77,760.0 | 110,794.0 | 8.1 | 9.2 | 7.3 |
3 | 22,022.6 | 60,480.0 | 82,502.6 | 6.9 | 7.9 | 6.2 |
4 | 22,022.6 | 189,000.0 | 211,022.6 | 17.7 | 20.1 | 15.9 |
5 | 16,517.0 | 252,000.0 | 268,517.0 | 22.6 | 25.6 | 20.2 |
6 | 16,517.0 | 77,760.0 | 94,277.0 | 7.9 | 9.0 | 7.1 |
7 | 22,022.6 | 51,840.0 | 73,862.6 | 5.4 | 6.2 | 4.9 |
8 | 16,517.0 | 239,400.0 | 255,917.0 | 21.5 | 24.4 | 19.2 |
9 | 27,528.3 | 86,400.0 | 113,928.3 | 9.6 | 10.9 | 8.6 |
10 | 22,022.6 | 90,720.0 | 112,742.6 | 8.3 | 9.4 | 7.4 |
Basic descriptive statistics | ||||||
Min. value | 16,517.0 | 51,840.0 | 73,862.6 | 5.4 | 6.2 | 4.9 |
Average value | 22,573.2 | 118,584.0 | 141,157.2 | 11.5 | 13.1 | 10.3 |
Max value | 33,034.0 | 252,000.0 | 268,517.0 | 22.6 | 25.6 | 20.2 |
Standard deviation | 5475.0 | 77,249.3 | 74,336.8 | 6.4 | 7.3 | 5.8 |
Farm | Theoretical Cultivated Area (ha): | ||
---|---|---|---|
Miscanthus Giganteus | Sida Hermaphrodita | Energy Willow | |
1 | 0.82 | 1.20 | 0.66 |
2 | 0.91 | 1.32 | 0.73 |
3 | 0.77 | 1.12 | 0.62 |
4 | 1.97 | 2.87 | 1.59 |
5 | 2.51 | 3.65 | 2.02 |
6 | 0.88 | 1.28 | 0.71 |
7 | 0.60 | 0.88 | 0.49 |
8 | 2.39 | 3.48 | 1.92 |
9 | 1.06 | 1.55 | 0.86 |
10 | 0.92 | 1.34 | 0.74 |
Basic descriptive statistics | |||
Min. value | 0.60 | 0.88 | 0.49 |
Average value | 1.28 | 1.87 | 1.03 |
Max. value | 2.51 | 3.65 | 2.02 |
Standard deviation | 0.72 | 1.04 | 0.58 |
Farm | Biomass Harvesting Costs | Production Costs Biomass | ||
---|---|---|---|---|
Mowing Costs and Baling | Transport Costs | |||
(EUR ha−1) | (EUR ha−1) | (EUR t−1) | ||
1 | 94.7 | 66.2 | 414.1 | 36.6 |
2 | 84.9 | 32.4 | 370.5 | 32.8 |
3 | 103.9 | 60.7 | 417.8 | 37.0 |
4 | 84.9 | 33.3 | 371.3 | 32.9 |
5 | 83.0 | 68.5 | 404.7 | 35.8 |
6 | 98.6 | 54.2 | 405.9 | 35.9 |
7 | 82.5 | 66.2 | 401.9 | 35.6 |
8 | 89.1 | 66.8 | 409.1 | 36.2 |
9 | 119.8 | 200.4 | 573.4 | 50.7 |
10 | 97.0 | 128.0 | 478.1 | 42.3 |
Basic descriptive statistics | ||||
Min. value | 82.5 | 32.4 | 370.5 | 32.8 |
Average value | 93.8 | 77.7 | 424.7 | 37.6 |
Max. value | 119.8 | 200.4 | 573.4 | 50.7 |
Standard deviation | 11.7 | 50.5 | 60.0 | 5.3 |
Farm | Biomass Harvesting Costs | Production Costs Biomass | ||
---|---|---|---|---|
Mowing Costs and Baling | Transport Costs | |||
(PLN ha−1) | (EUR ha−1) | (EUR t−1) | ||
1 | 91.8 | 54.5 | 274.8 | 29.5 |
2 | 80.4 | 32.4 | 241.4 | 26.0 |
3 | 99.5 | 50.0 | 277.9 | 29.9 |
4 | 80.4 | 33.3 | 242.2 | 26.0 |
5 | 77.8 | 56.4 | 262.7 | 28.2 |
6 | 94.2 | 50.2 | 272.8 | 29.3 |
7 | 78.1 | 54.5 | 261.1 | 28.1 |
8 | 84.7 | 55.0 | 268.2 | 28.8 |
9 | 115.4 | 117.2 | 361.1 | 38.8 |
10 | 92.6 | 105.3 | 326.4 | 35.1 |
Basic descriptive statistics | ||||
Min. value | 77.8 | 32.4 | 241.4 | 26.0 |
Average value | 89.5 | 60.9 | 278.9 | 30.0 |
Max. value | 115.4 | 117.2 | 361.1 | 38.8 |
Standard deviation | 11.8 | 28.1 | 37.3 | 4.0 |
Farm | Biomass Harvesting Costs | Biomass Production Costs | ||
---|---|---|---|---|
Shear Costs | Transport Costs | |||
(PLN ha−1) | (EUR ha−1) | (EUR t−1) | ||
1 | 1737.2 | 502.7 | 566.5 | 28.3 |
2 | 1483.1 | 468.2 | 502.7 | 25.1 |
3 | 2244.1 | 410.3 | 658.3 | 32.9 |
4 | 2058.3 | 502.7 | 637.6 | 31.9 |
5 | 2003.6 | 468.2 | 617.9 | 30.9 |
6 | 2157.6 | 412 | 639.5 | 32.0 |
7 | 1737.2 | 502.7 | 566.5 | 28.3 |
8 | 1391.5 | 481.6 | 485.4 | 24.3 |
9 | 2244.1 | 694.5 | 721.1 | 36.0 |
10 | 2272.9 | 687.1 | 725.8 | 36.3 |
Basic descriptive statistics | ||||
Min. value | 1391.5 | 410.3 | 485.4 | 24.3 |
Average value | 1933.0 | 513.0 | 612.1 | 30.6 |
Max. value | 2272.9 | 694.5 | 725.8 | 36.3 |
Standard deviation | 325.3 | 99.6 | 82.0 | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaśniewski, D.; Płonka, A.; Mickiewicz, P. Harvesting Technologies and Costs of Biomass Production from Energy Crops Cultivated on Farms in the Małopolska Region. Energies 2022, 15, 131. https://doi.org/10.3390/en15010131
Kwaśniewski D, Płonka A, Mickiewicz P. Harvesting Technologies and Costs of Biomass Production from Energy Crops Cultivated on Farms in the Małopolska Region. Energies. 2022; 15(1):131. https://doi.org/10.3390/en15010131
Chicago/Turabian StyleKwaśniewski, Dariusz, Aleksandra Płonka, and Paweł Mickiewicz. 2022. "Harvesting Technologies and Costs of Biomass Production from Energy Crops Cultivated on Farms in the Małopolska Region" Energies 15, no. 1: 131. https://doi.org/10.3390/en15010131
APA StyleKwaśniewski, D., Płonka, A., & Mickiewicz, P. (2022). Harvesting Technologies and Costs of Biomass Production from Energy Crops Cultivated on Farms in the Małopolska Region. Energies, 15(1), 131. https://doi.org/10.3390/en15010131