Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Self-Heating in a Large-Scale Container
2.3. Measurement of Oxidation Kinetic Parameters
2.4. Measurement of Specific Heat Capacity and Heat of Reaction
2.5. Bed Model for Self-Heating of Biochar during Storage
2.5.1. Governing Equations
2.5.2. Numerical Methods
3. Results and Discussion
3.1. Kinetic Parameters of Biochar Oxidation at Low Temperature
3.2. Self-Heating in a Closed Metal Container
3.2.1. Comparison between Experimental and Simulation Results
3.2.2. Effect of Bed Void Fraction on Self-Heating
3.2.3. Effect of Storage Size
3.2.4. Effect of Ambient Temperature
3.2.5. Effect of Initial Char Temperatures
3.3. Comparison among Different Materials for Storage Containers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Dai, J.; Sokhansanj, S.; Grace, J.R.; Bi, X.; Lim, C.J.; Melin, S. Overview and some issues related to co-firing biomass and coal. Can. J. Chem. Eng. 2008, 86, 367–386. [Google Scholar] [CrossRef]
- Blackwood Technology. Co-Firing of Biomass; Blackwood Technol.: Hoofddrop, The Netherlands, 2017; Available online: http://www.blackwood-technology.com/applications/co-firing/ (accessed on 22 November 2021).
- Molino, A.; Larocca, V.; Chianese, S.; Musmarra, D. Biofuels production by biomass gasification: A review. Energies 2018, 11, 811. [Google Scholar] [CrossRef] [Green Version]
- Suopajärvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romar, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N.; et al. Use of biomass in integrated steelmaking—Status quo, future needs and comparison to other low-CO2steel production technologies. Appl. Energy 2018, 213, 384–407. [Google Scholar] [CrossRef] [Green Version]
- Mousa, E.; Wang, C.; Riesbeck, J.; Larsson, M. Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renew Sustain. Energy Rev. 2016, 65, 1247–1266. [Google Scholar] [CrossRef]
- Krigstin, S.; Wetzel, S.; Jayabala, N.; Helmeste, C.; Madrali, S.; Agnew, J.; Volpe, S. Recent health and safety incident trends related to the storage of woody biomass: A need for improved monitoring strategies. Forests 2018, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- Restuccia, F.; Mašek, O.; Hadden, R.M.; Rein, G. Quantifying self-heating ignition of biochar as a function of feedstock and the pyrolysis reactor temperature. Fuel 2019, 236, 201–213. [Google Scholar] [CrossRef]
- Drysdale, D. An Introduction to Fire Dynamics, 3rd ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Phounglamcheik, A.; Wretborn, T.; Umeki, K. Increasing efficiency of charcoal production with bio-oil recycling. Energy Fuels 2018, 32, 9650–9658. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, H.; Sheng, C. Self-Heating of Agricultural Residues during Storage and Its Impact on Fuel Properties. Energy Fuels 2018, 32, 4227–4236. [Google Scholar] [CrossRef]
- Hogland, W.; Marques, M. Physical, biological and chemical processes during storage and spontaneous combustion of waste fuel. Resour. Conserv. Recycl. 2003, 40, 53–69. [Google Scholar] [CrossRef]
- Krigstin, S.; Wetzel, S. A review of mechanisms responsible for changes to stored woody biomass fuels. Fuel 2016, 175, 75–86. [Google Scholar] [CrossRef]
- Juita; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Low temperature oxidation of linseed oil: A review. Fire Sci. Rev. 2012, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Cruz Ceballos, D.C.; Hawboldt, K.; Hellleur, R. Effect of production conditions on self-heating propensity of torrefied sawmill residues. Fuel 2015, 160, 227–237. [Google Scholar] [CrossRef]
- Fan, P.; Fan, S.; Sheng, C. Low temperature oxidation and its kinetics of cornstalk chars. Fuel 2016, 184, 915–921. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Combustion kinetics of secondary chars in the kinetic regime. Energy Fuels 2010, 24, 5741–5750. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, X.; Yu, L.; Liu, R.; Cai, J. Combustion kinetics of pine sawdust biochar. Therm. Anal. Calorim. 2016, 124, 1641–1649. [Google Scholar] [CrossRef]
- Fan, F.; Zheng, Y.; Huang, Y.; Lu, Y.; Wang, Z.; Chen, B.; Zheng, Z. Combustion kinetics of biochar prepared by pyrolysis of macadamia shells. Bioresources 2017, 12, 3918–3932. [Google Scholar] [CrossRef] [Green Version]
- Phounglamcheik, A.; Wang, L.; Romar, H.; Kienzl, N.; Broström, M.; Ramser, K.; Skreiberg, Ø.; Umeki, K. Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips. Energy Fuels 2020, 34, 8353–8365. [Google Scholar] [CrossRef]
- Riva, L.; Cardarelli, A.; Andersen, G.J.; Buø, T.V.; Barbanera, M.; Bartocci, P.; Fantozzi, F.; Nielsen, H.K. On the self-heating behavior of upgrading biochar pellets blended with pyrolysis oil: Effects of process parameters. Fuel 2020, 278, 118395. [Google Scholar] [CrossRef]
- Tg Azhar, T.N.A. Self-Heating Behaviour of Torrefied and Non-Torrefied Biomass Fuels. Ph.D. Thesis, The University of Sheffield, Sheffield, UK, 2018. [Google Scholar]
- Schwarzer, L.; Jensen, P.A.; Wedel, S.; Glarborg, P.; Karlström, O.; Holm, J.K.; Dam-Johansen, K. Self-heating and thermal runaway of biomass—Lab-scale experiments and modeling for conditions resembling power plant mills. Fuel 2021, 294, 120281. [Google Scholar] [CrossRef]
- Ithaka Institute. The European Biochar Certificate 2021. Available online: https://www.european-biochar.org/en (accessed on 30 July 2021).
- Haugen, N.E.L.; Mitchell, R.E.; Tilghman, M.B. A comprehensive model for char particle conversion in environments containing O2 and CO2. Combust. Flame 2015, 162, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Tilghman, M.B.; Haugen, N.E.L.; Mitchell, R.E. Comprehensive Char Particle Gasification Model Adequate for Entrained-Flow and Fluidized-Bed Gasifiers. Energy Fuels 2017, 31, 2164–2174. [Google Scholar] [CrossRef]
- Biswas, A.K.; Umeki, K. Simplification of devolatilization models for thermally-thick particles: Differences between wood logs and pellets. Chem. Eng. J. 2015, 274, 181–191. [Google Scholar] [CrossRef]
- Koufopanos, C.A.; Lucchesi, A.; Maschio, G. Kinetic modelling of the pyrolysis of biomass and biomass components. Can. J. Chem. Eng. 1989, 67, 75–83. [Google Scholar] [CrossRef]
- Gupta, M.; Yang, J.; Roy, C. Specific heat and thermal conductivity of softwood bark and softwood char particles. Fuel 2003, 82, 919–927. [Google Scholar] [CrossRef]
Properties | Unit | Values |
---|---|---|
Bulk density | kg m−3 | 200 |
Skelton density | kg m−3 | 1350 |
Higher heating value | MJ kg−1 | 25.9 |
Proximate analysis | ||
Volatile matter | %, dry basis | 38.5 |
Fixed carbon | %, dry basis | 48.1 |
Ash (at 550 °C) | %, dry basis | 13.4 |
Ultimate analysis | ||
C | %, dry basis | 66.9 |
H | %, dry basis | 4.4 |
N | %, dry basis | 1.1 |
O | %, dry basis | 22.3 |
t = 0 |
---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phounglamcheik, A.; Johnson, N.; Kienzl, N.; Strasser, C.; Umeki, K. Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures. Energies 2022, 15, 380. https://doi.org/10.3390/en15010380
Phounglamcheik A, Johnson N, Kienzl N, Strasser C, Umeki K. Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures. Energies. 2022; 15(1):380. https://doi.org/10.3390/en15010380
Chicago/Turabian StylePhounglamcheik, Aekjuthon, Nils Johnson, Norbert Kienzl, Christoph Strasser, and Kentaro Umeki. 2022. "Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures" Energies 15, no. 1: 380. https://doi.org/10.3390/en15010380
APA StylePhounglamcheik, A., Johnson, N., Kienzl, N., Strasser, C., & Umeki, K. (2022). Self-Heating of Biochar during Postproduction Storage by O2 Chemisorption at Low Temperatures. Energies, 15(1), 380. https://doi.org/10.3390/en15010380