Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA
Abstract
:1. Introduction
2. Modeling of Hydraulic PTO
2.1. Flow and Pressure of Each Branch
2.2. Output Force of Hydraulic Cylinder
2.3. Electromagnetic Torque of Permanent Magnet Synchronous Generator
3. Simulation of Hydraulic PTO
4. Data Results
4.1. Comparison of PTO Torque
4.2. Motion Characteristics: Comparison of Pitch Angle and Angular Velocity
4.3. Behaviors of Capture Energy: Comparison of Capture Power
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, Y. Principle and Device of the Ocean Wave Energy Conversion Generation; Shanghai Scientific and Technical Publishers: Shanghai, China, 2013. [Google Scholar]
- Falnes, J. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction, 1st ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Amadou, G.T. Energy Extraction from Ocean Waves by Heaving and Flexing Mechanical Systems. Ph.D. Thesis, Boston University, Boston, MA, USA, 2014; p. 225. [Google Scholar]
- Bedard, R.; Hagerman, G. Guidelines for Preliminary Estimation of Power Production by Offshore Wave Energy Conversion Devices; E2I EPRI: Palo Alto, CA, USA, 2003. [Google Scholar]
- Curto, D.; Franzitta, V.; Guercio, A. Sea Wave Energy. A Review of the Current Technologies and Perspectives. Energies 2021, 14, 6604. [Google Scholar] [CrossRef]
- Rusu, E. Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments. Energies 2014, 7, 4002–4018. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.F.; Ma, Z.H.; Fang, J.; Gao, S.; He, K.D. Research and Development of Multi Section Floating Mechanical Wave Energy Power Generation Device. Appl. Mech. Mater. 2014, 494–495, 711–716. [Google Scholar] [CrossRef]
- Boyle, G. (Ed.) Renewable Energy: Power for a Sustainable Future, 3rd ed.; Oxford University Press: Oxford, UK; Open University: Milton Keynes, UK, 2012; p. 566. [Google Scholar]
- Zanuttigh, B.; Angelelli, E. Experimental investigation of floating wave energy converters for coastal protection purpose. Coast. Eng. 2013, 80, 148–159. [Google Scholar] [CrossRef]
- Contestabile, P.; Crispino, G.; Lauro, E.D.; Ferrrante, V.; Gisoni, C.; Vicinanza, D. Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead. Renew. Energy 2020, 147, 705–718. [Google Scholar] [CrossRef]
- Kraemer, D.R.B.; McCormick, M.E. Ocean wave-energy conversion. In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 648–654. [Google Scholar] [CrossRef]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Pecher, A.; Kofoed, J.P.; Espedal, J.; Hagberg, S. Results of an Experimental Study of the Langlee Wave Energy Converter. In Proceedings of the Twentieth International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010. [Google Scholar]
- Tedd, J.; Peter Kofoed, J. Measurements of overtopping flow time series on the Wave Dragon, wave energy converter. Renew. Energy 2009, 34, 711–717. [Google Scholar] [CrossRef]
- de O. Falcão, A.F. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Sang, S.; Zhou, Y.; Jiang, X.L. Study on Nonlinear Motion Behavior of Coupled Heave-Pitch for the Classic Spar Platform Based on AQWA. Appl. Mech. Mater. 2012, 170–173, 2170–2174. [Google Scholar] [CrossRef]
- Wang, S.M.; Shi, F.B.; Lin, Z.N.; Zou, W. A Hydrodynamic Analysis of Offshore Platform Based on the AQWA. Appl. Mech. Mater. 2014, 615, 301–304. [Google Scholar] [CrossRef]
- He, H.; Qu, Q.; Li, J. Numerical Simulation of Section Systems in the Pelamis Wave Energy Converter. Adv. Mech. Eng. 2013, 5, 186056. [Google Scholar] [CrossRef]
- Zheng, S.M.; Zhang, Y.L. Study on the wave power absorption of a raft-typed wave energy collector. J. Eng. Heilongjiang Univ. 2014, 5, 7–13. [Google Scholar] [CrossRef]
- Chen, W.C.; Zhang, Y.L. Numerical study on conversion efficiency from wave energy to hydraulic energy by raft-type wave energy convertors. J. Hydroelectr. Eng. 2013, 32, 191–196. [Google Scholar]
- Luo, T. Modelling and Simulation of the Elamis-Type Wave Energy Converter Based on AQWA. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2015. [Google Scholar]
- Zhang, B.; You, S.; Liu, M.; Zhou, X. Design and Parameter Tuning of Nonlinear Active Disturbance Rejection Controller for Permanent Magnet Direct Drive Wind Power Converter System. IEEE Access 2021, 9, 33836–33848. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, G.H. Modeling and Simulation for Automotive Synchronous Generator System. Comput. Simul. 2012, 29, 329–332. [Google Scholar]
- Wang, Y. Permanent Magnet Wind Turbine Dynamic Simulation on MATLAB. Master’s Thesis, Dalian University of Technology, Dalian, China, 2009. [Google Scholar]
Project | Parameter | Number | Unit |
---|---|---|---|
Buoy | Length (L) | 10 | m |
Diameter (d) | 1 | m | |
Clearance (L3) | 1 | m | |
Submergence depth (d3) | 0.5 | m | |
Quality (M) | 4025.166 | kg | |
Rotational inertia (IXX) | 807.865 | kg·m2 | |
Rotational inertia (IZZ) | 36,180.897 | kg·m2 | |
Sea water | Water depth | 250 | m |
Density | 1025 | kg/m3 | |
Wave | Wave height | 0.4 | m |
Period | 3.62 | s | |
Anchor chain | Original length | 25.981 | m |
Rigidity | 1000 | N/m | |
Hydraulic cylinder | Piston diameter Piston rod diameter | 0.05 0.036 | M m |
High-pressure accumulator | Volume | 10 | L |
Low-pressure accumulator | Volume | 6.3 | L |
Hydraulic motor | Displacement | 5 | mL |
Working pressure | Pressure | 10–15 | MPa |
Action torque | Linear damping | 100,000 | ad/s |
Action torque | Coulomb torque | 17,000 | N·m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Wang, P.; Liu, Y.; Li, B. Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA. Energies 2022, 15, 3918. https://doi.org/10.3390/en15113918
Huang Q, Wang P, Liu Y, Li B. Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA. Energies. 2022; 15(11):3918. https://doi.org/10.3390/en15113918
Chicago/Turabian StyleHuang, Qitao, Peng Wang, Yudong Liu, and Bowen Li. 2022. "Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA" Energies 15, no. 11: 3918. https://doi.org/10.3390/en15113918
APA StyleHuang, Q., Wang, P., Liu, Y., & Li, B. (2022). Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA. Energies, 15(11), 3918. https://doi.org/10.3390/en15113918