Surface Microgravity Monitoring of Underground Water Migration: A Case Study in Wieliczka, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Hydrological Conditions
2.3. History of the Catastrophe
2.4. Microgravity Method
3. Results
3.1. General Gravity Survey
3.2. Microgravity Monitoring
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ρ | bulk density, Mg·m−3 |
gM | measurement value of gravity, nm·s−2 |
δgF | free-air correction, nm·s−2 |
δgB | Bouguer correction, nm·s−2 |
gN | latitude correction, nm·s−2 |
δgT | terrain correction, nm·s−2 |
δgG | mining correction, nm·s−2 |
g | gravity value with corrections, nm·s−2 |
References
- Xu, Y.; Ma, L.; Yu, Y. Water Preservation and Conservation above Coal Mines Using an Innovative Approach: A Case Study. Energies 2020, 13, 2818. [Google Scholar] [CrossRef]
- Staniszewski, R.; Cais-Sokolińska, D.; Kaczyński, Ł.K.; Bielska, P. Use of Bioluminescence for Monitoring Brown Coal Mine Waters from Deep and Surface Drainage. Energies 2021, 14, 3558. [Google Scholar] [CrossRef]
- Li, S.; Liu, B.; Nie, L.; Liu, Z.; Tian, M.; Wang, S.; Su, M.; Guo, Q. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review. J. Rock Mech. Geotech. Eng. 2015, 7, 469–478. [Google Scholar] [CrossRef]
- Liang, Q. Water Disaster Investigation and Control in Coal Mine of Southern China. In Proceedings of the 3rd International Symposium on Mine Safety Science and Engineering, Montreal, QC, Canada, 13–19 August 2016; pp. 254–257. [Google Scholar]
- Cui, F.; Wu, Q.; Lin, Y.; Zeng, Y.; Zhang, K. Damage Features and Formation Mechanism of the Strong Water Inrush Disaster at the Daxing Co Mine, Guangdong Province, China. Mine Water Environ. 2018, 37, 346–350. [Google Scholar] [CrossRef]
- Stepancikova, P.; Dohnal, J.; Panek, T.; Łój, M.; Smolkova, V.; Slihan, K. The application of electrical resistivity tomography and gravimetric survey as useful tools in an active tectonics study of the Sudetic Marginal Fault (Bohemian Massif, central Europe). J. Appl. Geophys. 2011, 74, 69–80. [Google Scholar] [CrossRef]
- Porzucek, S.; Madej, J. Recognition of geological structures at Starunia palaeontological site and vicinity (Carpathian region, Ukraine) based on gravity surveys. Ann. Soc. Geol. Pol. 2009, 79, 357–363. [Google Scholar]
- Porzucek, S.; Madej, J. Detection of near-surface geological heterogeneity at Starunia palaeontological site and vicinity (Carpathian region, Ukraine) based on microgravity survey. Ann. Soc. Geol. Pol. 2009, 79, 365–374. [Google Scholar]
- Porzucek, S.; Loj, M. Microgravity Survey to Detect Voids and Loosening Zones in the Vicinity of the Mine Shaft. Energies 2021, 14, 3021. [Google Scholar] [CrossRef]
- Łój, M. Microgravity monitoring discontinuous terrain deformation in a selected area of shallow coal extraction. In Proceedings of the SGEM2014, Albena, Bulgaria, 17–26 June 2014; Volume 1, pp. 521–528. [Google Scholar]
- Davis, K.; Li, Y.; Batzle, M. Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics 2008, 73, WA61–WA69. [Google Scholar] [CrossRef]
- Chapman, D.S.; Sahm, E.; Gettings, P. Monitoring aquifer recharge using repeated high-precision gravity measurements: A pilot study in South Weber, Utah. Geophysics 2008, 73, WA83–WA93. [Google Scholar] [CrossRef] [Green Version]
- Creutzfeldt, B.; Güntner, A.; Klügel, T.; Wziontek, H. Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany. Geophysics 2008, 73, WA95–WA104. [Google Scholar] [CrossRef] [Green Version]
- Madej, J.; Porzucek, S.; Jakiel, K. Water hazard of the northern border of the Wieliczka Salt Mine area in the light of temporal gravity changes. Geologia 2008, 34, 321–334. [Google Scholar]
- Brudnik, K.; Jakiel, K.; Madej, J.; Porzucek, S. Zagrożenie zabudowy miejskiej Wieliczki ze strony struktur antropogenicznych w świetle badań grawimetrycznych. In Proceedings of the Sympozjum Warsztaty’2001, Przywracanie wartooeci u¿ytkowych terenom górniczym”, Wieliczka, Poland, 29 May–1 June 2001; pp. 423–432. [Google Scholar]
- Oszczypko, N.; Krzywiec, P.; Popadyuk, I.; Peryt, T. Carpathian Foredeep Basin (Poland and Ukraine)–its sedimentary, structural and geodynamic evolution. Am. Ass. Petrol. Geol. Mem. 2006, 84, 293–350. [Google Scholar]
- Czapowski, G.; Bukowski, K. Geology and resources of salt deposits in Poland: The state of the art. Geol. Quart. 2010, 54, 509–518. [Google Scholar]
- Szybist, A. Przekrój geologiczny A–A (bezpośrednie otoczenie poprzeczni Mina) Skala 1:200. In Proceedings of the Projekt Techniczny Likwidacji Poprzeczni Mina na Odcinku od Tamy Wodnej do Tamy T-4 w Kopalni Soli “Wieliczka”, Akademia Górniczo-Hutnicza, Wydział Wiertnictwa, Nafty i Gazu. Kraków, Poland, 26 October 2011. [Google Scholar]
- D’Obyrn, K.; Postawa, A. Selected hydrochemical ratios of waters from inflows at level VI in “Wieliczka” Salt Mine. Geology Geophys. Environ. 2013, 39, 163–174. [Google Scholar]
- D’Obyrn, K.; Postawa, A. Assessment of the qualitative and quantitative stability of “Wieliczka” Salt Mine (Poland) brines and of their possible use for medicinal purposes. Geol. Quart. 2014, 58, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Loj, M.; Porzucek, S. Detailed analysis of the gravitational effects caused by the buildings in microgravity survey. Acta Geophys. 2019, 67, 1799–1807. [Google Scholar] [CrossRef] [Green Version]
- Moritz, H. Geodetic Reference System 1980. Bull. Geod. 1984, 58, 388–398. [Google Scholar] [CrossRef]
- Brudnik, K.; Jakiel, K.; Przybyło, J. Charakterystyka hydrogeologiczna górotworu północnego przedpola poprzeczni Mina. In Proceedings of the III Spotkania Polskiego Stowarzyszenia Górnictwa Solnego, Wieliczka, Poland, 18–19 September 1995; pp. 107–108. [Google Scholar]
- Pringle, J.K.; Styles, P.; Howell, C.P.; Branston, M.W.; Furner, R.; Toon, S.M. Long-term time-lapse microgravity and geotechnical monitoring of relict salt mines, Marston, Cheshire, UK. Geophysics 2008, 77, B287–B294. [Google Scholar] [CrossRef]
- Maj, A.; Kortas, G.; Ulmaniec, P. Ground uplift after the closure of water leaks in the Mina drift of the Wieliczka Salt Mine. Geol. Geophys. Environ. 2012, 38, 9–22. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porzucek, S.; Loj, M.; d’Obyrn, K. Surface Microgravity Monitoring of Underground Water Migration: A Case Study in Wieliczka, Poland. Energies 2022, 15, 4012. https://doi.org/10.3390/en15114012
Porzucek S, Loj M, d’Obyrn K. Surface Microgravity Monitoring of Underground Water Migration: A Case Study in Wieliczka, Poland. Energies. 2022; 15(11):4012. https://doi.org/10.3390/en15114012
Chicago/Turabian StylePorzucek, Slawomir, Monika Loj, and Kajetan d’Obyrn. 2022. "Surface Microgravity Monitoring of Underground Water Migration: A Case Study in Wieliczka, Poland" Energies 15, no. 11: 4012. https://doi.org/10.3390/en15114012
APA StylePorzucek, S., Loj, M., & d’Obyrn, K. (2022). Surface Microgravity Monitoring of Underground Water Migration: A Case Study in Wieliczka, Poland. Energies, 15(11), 4012. https://doi.org/10.3390/en15114012