Improving ICTs (Mobile Phone and Internet) for Environmental Sustainability in the Western Balkan Countries
Abstract
:1. Introduction
2. Data and Methodology
3. Empirical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Statistics | CO2 Emissions (Metric Tons per Capita) | CO2 Emissions from Liquid Fuel Consumption (% of Total) | Mobile Cellular Subscriptions (per 100 People) | Individuals Using the Internet (% of Population) |
---|---|---|---|---|---|
Albania | Mean | 1.459219 | 3518.487 | 70.48267 | 26.82382 |
Standard Deviation | 0.2538902 | 312.9765 | 40.49354 | 25.05269 | |
Bosnia and Herzegovina | Mean | 4.951724 | 3736.215 | 62.03168 | 28.36726 |
Standard Deviation | 0.9854235 | 546.0209 | 34.2182 | 18.75791 | |
Kosovo | Mean | 5.936943 | 1692.932 | 32.3021 | 0.0913333 |
Standard Deviation | 0.4251391 | 139.9558 | 11.23467 | 0.0197248 | |
Montenegro | Mean | 3.528987 | 777.7374 | 158.5412 | 43.10726 |
Standard Deviation | 0.3922508 | 185.888 | 35.85418 | 15.15168 | |
North Macedonia | Mean | 4.745985 | 2708.079 | 71.61637 | 39.10649 |
Standard Deviation | 0.8117569 | 175.0457 | 37.65919 | 22.35685 | |
Serbia | Mean | 6.645 | 10,168.96 | 101.8913 | 44.60925 |
Standard Deviation | 0.9306903 | 2293.108 | 11.73191 | 12.47982 | |
European Union | Mean | 7.468982 | 41.74356 | 102.2405 | 54.98243 |
Standard Deviation | 0.5967262 | 1.605777 | 25.27747 | 18.60451 |
Variables | Possible Results | Policy Tool Selection | Policy Recommendations | Implementation Risks |
---|---|---|---|---|
Internet penetration (per 100 people) | An increase in Internet penetration does not increase CO2 emissions per capita and decreases CO2 from liquid fuel consumption. An increase in Internet penetration above the threshold for the countries where the Internet penetration is below the sample mean. | Internet Penetration | Policymakers can solve issues associated with affordability and lack of coverage. | The infrastructure and the income of the countries in the sample. |
References
- ICT and Environmental Sustainability; International Chamber of Commerce: Paris, France, 2010.
- Sahifa, I.; Philippa, B.; Chris, I.; Bueti, C.; Roll, G.; Figueiredo, A.; Anllo, G.; Hertoghs, M.; Wahl, A.; Suri, S.N.; et al. Frontier Technologies to Protect the Environment and Tackle Climate Change; International Telecommunication Union: Geneva, Switzerland, 2020. [Google Scholar]
- Santarius, T.; Pohl, J.; Lange, S. Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing? Sustainability 2020, 12, 7496. [Google Scholar] [CrossRef]
- Lasme, M.N.; Moinul, I.; Makoto, K. ICT and environmental sustainability: Any differences in developing countries? J. Clean. Prod. 2021, 297, 126642. [Google Scholar] [CrossRef]
- Higón, D.A.; Gholami, R.; Shirazi, F. ICT and environmental sustainability: A global perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Olatunji, A.S.; Simplice, A.A. The Critical Role of Education and ICT in Promoting Environmental Sustainability in Eastern and Southern Africa: A Panel VAR Approach. Technol. Forecast. Soc. Chang. 2022, 176, 121480, ISSN 0040-1625. [Google Scholar] [CrossRef]
- Chatti, W. Moving towards environmental sustainability: Information and communication technology (ICT), freight transport, and CO2 emissions. Heliyon 2021, 7, e08190. [Google Scholar] [CrossRef]
- Asongu, S.A.; Le Roux, S.; Biekpe, N. Enhancing ICT for environmental sustainability in sub-Saharan Africa. Technol. Forecast. Soc. Chang. 2018, 127, 209–216. [Google Scholar] [CrossRef]
- Tii, N.N.; Simplice, A.A. ICT for sustainable development: Global comparative evidence of globalisation thresholds. Telecommun. Policy 2022, 46, 102296, ISSN 0308-5961. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Youssef, A.B.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Malayaranjan, S.; Mohini, G.; Purwa, S. Does information and communication technology and financial development lead to environmental sustainability in India? An empirical insight. Telemat. Inform. 2021, 60, 101598, ISSN 0736-5853. [Google Scholar] [CrossRef]
- Anis, O.; Henda, O.; Sana, S.; Fateh, B. Environmental degradation and life satisfaction: Do governance and renewable energy matter? Technol. Forecast. Soc. Chang. 2022, 175, 121375, ISSN 0040-1625. [Google Scholar] [CrossRef]
- Belaid, F.; Elsayed, A.H.; Omri, A. Key drivers of renewable energy deployment in the MENA Region: Empirical evidence using panel quantile regression. Struct. Chang. Econ. Dyn. 2021, 57, 225–238. [Google Scholar] [CrossRef]
- Banja, M.; Đukanović, G.; Belis, C. Status of Air Pollutants and Greenhouse Gases in the Western Balkans; EUR 30113 EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-16861-4. [Google Scholar] [CrossRef]
- Berishaj, V. Western Balkans Greenhouse Gas Emission Reduction Targets 2030; Climate Action Network Europe: Brussels, Belgium, 2021. [Google Scholar]
- Knez, S.; Štrbac, S.; Podbregar, I. Climate change in the Western Balkans and EU Green Deal: Status, mitigation and challenges. Energ. Sustain. Soc. 2022, 12, 1. [Google Scholar] [CrossRef]
- CEE Bankwatch Network. Round-Up of Legal Breaches and Health Impacts; CEE Bankwatch Network: Prague, Czech Republic, 2021. [Google Scholar]
- Vranjanac, Z.; Zivkovic, N.; Vasovic, D.; Janackovic, G.; Dimitrovski, D. Comparative analysis of CO2 emissions indicators in EU countries and western Balkan countries—Assessment of their contribution to climate change. J. Environ. Prot. Ecol. 2018, 19, 453–461. [Google Scholar]
- Asongu, S.A.; Nwachukwu, J.C.; Pyke, C. The comparative economics of ICT, environmental degradation and inclusive human development in Sub-Saharan Africa. Soc. Indic. Res. 2019, 143, 1271–1297. [Google Scholar]
- Penard, T.; Poussing, N.; Yebe, G.Z.; Ella, P.N. Comparing the determinants of internet and cell phone use in Africa: Evidence from Gabon. Commun. Strateg. 2012, 86, 65–83. [Google Scholar]
- Asongu, S.A. Globalization, (fighting) corruption and development: How are these phenomena linearly and nonlinearly related in wealth effect? J. Econ. Stud. 2014, 41, 346–369. [Google Scholar] [CrossRef]
- Tony, F.L.; Kwan, D.S. African entrepreneurs and international coordination in petty businesses: The case of low-end mobile phones sourcing in Hong Kong. J. Afr. Bus. 2015, 15, 66–83. [Google Scholar] [CrossRef]
- Amavilah, A.; Asongu, S.A.; Andres, A.R. Effects of globalization on peace and stability: Implications for governance and the knowledge economy of African countries. Technol. Forecast. Soc. Chang. 2017, 122, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Tchamyou, V.S.; Asongu, S.A. Information sharing and financial sector development in Africa. J. Afr. Bus. 2017, 18, 24–49. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.M.; Kruger, A.B. Environmental Impacts of the North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991; p. 3914. [Google Scholar]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey. Energy Econ. 2013, 36, 262–267. [Google Scholar] [CrossRef]
- Balaguer, J.; Cantavella, M. The Role of Education in the Environmental Kuznets Curve, Evidence from Australian Data. Energy Econ. 2018, 70, 289–296. [Google Scholar] [CrossRef]
- Mesagan, E.P.; Olunkwa, C.N. Heterogeneous analysis of energy consumption, financial development, and pollution in Africa: The relevance of regulatory quality. Util. Policy 2022, 74, 101328. [Google Scholar]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error components models. J. Econ. 1995, 68, 29–52. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. A note on the theme of too many instruments. Oxf. Bull. Econ. Stat. 2009, 71, 135–158. [Google Scholar] [CrossRef]
- Roodman, D. How to do xtabond2: An introduction to difference and system GMM in Stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Love, I.; Zicchino, L. Financial development and dynamic investment behaviour: Evidence from panel VAR. Q. Rev. Econ. Financ. 2006, 46, 190–210. [Google Scholar] [CrossRef]
- Baltagi, B.H. Forecasting with panel data. J. Forecast. 2008, 27, 153–173. [Google Scholar] [CrossRef]
- Boateng, A.; Asongu, S.A.; Akamavi, R.; Tchamyou, V.S. Information Asymmetry and Market Power in the African Banking Industry; Working Paper No. 16/032; African Governance and Development Institute: Yaoundé, Cameroon, 2016. [Google Scholar]
- Brambor, T.; Clark, W.M.; Golder, M. Understanding interaction models: Improving empirical analyses. Polit. Anal. 2006, 14, 63–82. Available online: http://www.jstor.org/stable/25791835 (accessed on 20 October 2021). [CrossRef] [Green Version]
- Awe, Y. Air Quality Management in Bosnia and Herzegovina, World Bank Group. 2019. CID: 20.500.12592/3jr3xj. Available online: https://policycommons.net/artifacts/1282893/air-quality-management-in-bosnia-and-herzegovina/1877240/ (accessed on 29 April 2022).
Variables | Variable Definition | Source |
---|---|---|
CO2 per capita | CO2 emissions (metric tons per capita) | World Development Indicators, World Bank |
CO2 from liquid fuel | CO2 emissions from liquid fuel consumption (% of total) | World Development Indicators, World Bank |
Mobile phones | Mobile phone subscriptions (per 100 people) | World Development Indicators, World Bank |
Internet | Internet penetration (per 100 people) | World Development Indicators, World Bank |
Trade Openness | Imports plus Exports of goods and services (% of GDP) | World Development Indicators, World Bank |
GDP growth | Gross Domestic Product (GDP) growth (annual %) | World Development Indicators, World Bank |
Population growth rate (annual) | Population growth rate (annual %) | World Development Indicators, World Bank |
Educational quality | Pupil–teacher ratio in Primary Education | World Development Indicators, World Bank |
Regulation Quality | “Regulation quality (estimate): measured as the ability of the government to formulate and implement sound policies and regulations that permit and promote private sector development” | World Development Indicators, World Bank |
CO2 per Capita | CO2 from Liquid Fuel | Regulation Quality | GDP Growth | Trade Openness | Internet | Mobile Phones | Population Growth Rate (Annual %) | Educational Quality | |
---|---|---|---|---|---|---|---|---|---|
Mean | 4.097385 | 5934.475 | 0.004189 | 2.893829 | 79.97982 | 44.58817 | 93.72531 | −0.627125 | 17.90748 |
Median | 5.326604 | 4052.035 | 0.017169 | 2.718979 | 77.09144 | 48.76066 | 102.9265 | −0.485945 | 17.22528 |
Maximum | 8.101939 | 13,608.24 | 0.268441 | 8.290070 | 101.8600 | 67.05684 | 126.9370 | −0.159880 | 22.56784 |
Minimum | 0.978175 | 2845.592 | −0.447581 | −2.731752 | 63.45424 | 0.114097 | 0.952019 | −1.745167 | 14.51830 |
Std. Dev. | 2.490359 | 3106.623 | 0.208599 | 2.663266 | 9.821380 | 19.57723 | 31.61658 | 0.457031 | 2.210039 |
Skewness | −0.035115 | 0.785670 | −0.499062 | 0.136732 | 0.366672 | −1.166567 | −1.870096 | −1.374177 | 0.416461 |
Kurtosis | 1.226343 | 2.340214 | 2.156290 | 2.857040 | 2.509551 | 3.575309 | 5.543908 | 3.851634 | 2.209825 |
Jarque–Bera | 3.413359 | 3.146462 | 1.850441 | 0.103155 | 0.843195 | 6.255699 | 22.16555 | 8.968619 | 1.427980 |
Probability | 0.181467 | 0.207374 | 0.396444 | 0.949730 | 0.655998 | 0.043812 | 0.000015 | 0.011285 | 0.489686 |
Sum | 106.5320 | 154,296.4 | 0.108908 | 75.23954 | 2079.475 | 1159.292 | 2436.858 | −16.30526 | 465.5945 |
Sum Sq. Dev. | 155.0472 | 2.41 × 108 | 1.087837 | 177.3247 | 2411.488 | 9581.703 | 24,990.21 | 5.221931 | 122.1068 |
Observations | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 |
CO2 per Capita | Regulation Quality | GDP Growth | Trade Openness | Internet | Mobile Phones | Population Growth Rate (Annual %) | Educational Quality | |
---|---|---|---|---|---|---|---|---|
CO2 per capita | 1 | |||||||
Regulation Quality | −0.3014 | 1 | ||||||
GDP growth | −0.3177 | −0.4012 | 1 | |||||
Trade Openness | 0.5682 | 0.1401 | −0.3128 | 1 | ||||
Internet | 0.2922 | 0.6369 | −0.6292 | 0.6613 | 1 | |||
Mobile phones | 0.3889 | 0.5974 | −0.6980 | 0.4426 | 0.8789 | 1 | ||
Population growth rate (annual %) | −0.3097 | 0.4600 | −0.1043 | −0.3579 | 0.0759 | 0.18174 | 1 | |
Educational quality | −0.8660 | −0.1121 | 0.5541 | −0.7212 | −0.6279 | −0.6537 | 0.1167 | 1 |
Dependent Variables: CO2 Emissions | |||||
---|---|---|---|---|---|
CO2 Emissions (Metric Tons Per Capita) | |||||
Mobile | |||||
Variable | Coef. | p Value | Variable | Coef. | p Value |
CO2 (−1) | 0.91 *** | 0.0000 | CO2 (−1) | 0.917 *** | 0.0000 |
GDP | 2.015 *** | 0.0076 | GDP | 0.014 *** | 0.0003 |
Trade | −0.402 *** | 0.0003 | Trade | −0.154 *** | 0.0057 |
MOBILE | 0.312 ** | 0.0290 | MOBILE | 0.023 | 0.8728 |
POP | −0.167 | 0.2594 | MOBILE * MOBILE | −0.076 * | 0.0517 |
EDUC | −0.049 ** | 0.0366 | POP | −0.165 | 0.2741 |
RQ | −0.545 ** | 0.0215 | EDUC | −0.049 ** | 0.0414 |
C | 1.445 *** | 0.0022 | RQ | −0.215 *** | 0.0021 |
C | 1.448 | 0.5381 | |||
Net Effects | NA | ||||
R-squared | 0.9725 | R-squared | 0.9616 | ||
Adjusted R-squared | 0.9612 | Adjusted R-squared | 0.9530 | ||
AR(1) | 0.801 | AR(1) | 0.079 * | ||
Hansen | 0.431 | Hansen | 0.786 | ||
Internet | |||||
Variable | Coef. | p Value | Variable | Coef. | p Value |
CO2 (−1) | 0.812 *** | 0.0000 | CO2 (−1) | 0.820 *** | 0.0000 |
GDP | 0.977 *** | 0.0005 | GDP | 0.760 *** | 0.0088 |
Trade | 0.709 *** | 0.0008 | Trade | 0.599 ** | 0.0767 |
POP | −0.174 | 0.5265 | POP | −0.182 | 0.5235 |
EDUC | −0.189 * | 0.0515 | EDUC | −0.185 * | 0.0792 |
INTERNET | 0.746 * | 0.0999 | INTERNET | 0.888 | 0.8597 |
RQ | −0.078 ** | 0.0388 | INTERNET * INTRNET | −0.017 ** | 0.0411 |
C | 3.223 *** | 0.0000 | RQ | −0.045 ** | 0.0644 |
C | 3.235 *** | 0.0080 | |||
Net Effect | NA | ||||
R-squared | 0.9724 | R-squared | 0.9725 | ||
Adjusted R-squared | 0.9633 | Adjusted R-squared | 0.9612 | ||
AR(1) | 0.019 ** | AR(1) | 0.011 ** | ||
Hansen | 0.706 | Hansen | 0.483 |
Dependent Variables: CO2 Emissions | |||||
---|---|---|---|---|---|
CO2 Emissions from Liquid Fuel Consumption (% of Total) | |||||
Mobile | |||||
Variable | Coef. | p Value | Variable | Coef. | p Value |
CO2 (−1) | 0.836 *** | 0.0000 | CO2 (−1) | 0.833 *** | 0.0000 |
GDP | 8.614 *** | 0.0017 | GDP | 6.550 *** | 0.0003 |
Trade | −7.733 ** | 0.0338 | Trade | −9.637 *** | 0.0002 |
POP | 0.618 | 0.1409 | POP | 0.446 | 0.1750 |
EDUC | 4.968 | 0.2701 | EDUC | 0.006 | 0.2785 |
MOBILE | 0.042 | 0.3329 | MOBILE | 0.081 | 0.7416 |
RQ | −0.215 ** | 0.0214 | RQ | −0.165 * | 0.0547 |
C | 2.516 *** | 0.0028 | MOBILE * MOBILE | −0.072 * | 0.5302 |
C | 6.108 ** | 0.0384 | |||
Net Effect | NA | ||||
R-squared | 0.9750 | R-squared | 0.9753 | ||
Adjusted R-squared | 0.9703 | Adjusted R-squared | 0.9698 | ||
AR(1) | 0.0125 ** | AR(1) | 0.0000 *** | ||
Hansen | 0.7858 | Hansen | 0.6084 | ||
Internet | |||||
Variable | Coef. | p Value | Variable | Coef. | p Value |
CO2 (−1) | 0.709 *** | 0.0000 | CO2 (−1) | 0.745 *** | 0.0000 |
GDP | 2.935 *** | 0.0018 | GDP | 3.191 *** | 0.0007 |
Trade | 0.969 *** | 0.0066 | Trade | 6.980 *** | 0.0011 |
POP | 0.520 | 0.1754 | POP | 0.107 | 0.4402 |
EDUC | 1.326 | 0.1295 | EDUC | 0.199 | 0.2213 |
INTERNET | 0.263 * | 0.0508 | INTERNET | 0.942 * | 0.0949 |
RQ | −0.051 ** | 0.0359 | INTRNET * INTERNET | −0.313 *** | 0.0084 |
C | 4.391 *** | 0.0007 | RQ | −0.025 ** | 0.0248 |
C | 6.318 *** | 0.0086 | |||
Net Effect | −13.6931 | ||||
R-squared | 0.9759 | R-squared | 0.9769 | ||
Adjusted R-squared | 0.9679 | Adjusted R-squared | 0.9674 | ||
AR(1) | 0.0000 *** | AR(1) | 0.031 ** | ||
Hansen | 0.8782 | Hansen | 0.2765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dedaj, B.; Ogruk-Maz, G.; Carabregu-Vokshi, M.; Aliu-Mulaj, L.; Kisswani, K.M. Improving ICTs (Mobile Phone and Internet) for Environmental Sustainability in the Western Balkan Countries. Energies 2022, 15, 4111. https://doi.org/10.3390/en15114111
Dedaj B, Ogruk-Maz G, Carabregu-Vokshi M, Aliu-Mulaj L, Kisswani KM. Improving ICTs (Mobile Phone and Internet) for Environmental Sustainability in the Western Balkan Countries. Energies. 2022; 15(11):4111. https://doi.org/10.3390/en15114111
Chicago/Turabian StyleDedaj, But, Gokcen Ogruk-Maz, Mjellma Carabregu-Vokshi, Luljeta Aliu-Mulaj, and Khalid M. Kisswani. 2022. "Improving ICTs (Mobile Phone and Internet) for Environmental Sustainability in the Western Balkan Countries" Energies 15, no. 11: 4111. https://doi.org/10.3390/en15114111
APA StyleDedaj, B., Ogruk-Maz, G., Carabregu-Vokshi, M., Aliu-Mulaj, L., & Kisswani, K. M. (2022). Improving ICTs (Mobile Phone and Internet) for Environmental Sustainability in the Western Balkan Countries. Energies, 15(11), 4111. https://doi.org/10.3390/en15114111