Machine Learning for Energy Systems Optimization
1. Introduction
2. Contributions of the Papers Published in This Special Issue
3. Trends in Machine Learning Optimization for Energy Systems
- (1)
- Objective functions that define their goals (e.g., economic costs, annual profits, or fine-tuned cost functions);
- (2)
- A model that represents the behaviors and responses of the objective functions, which are evaluated in the optimization or training processes;
- (3)
- Repeated optimization and training procedures that enhance the efficiency and performance of the ML objective are attained by minimizing or maximizing each objective function value and their combination.
- (1)
- Bidirectional power flow caused by the variable and intermittent outputs produced by DG resources, which should not violate thermal, voltage, and stability limits;
- (2)
- Increase in the complexity of conventional power grids caused by DG resources. For example, the optimal selection of DG resources is determined by economic, environmental, operational, or political issues;
- (3)
- New environments in the power market. For example, the power market can differ from a conventional vertically integrated monopolies to a fully competitive power market;
- (4)
- Various constraints that must be considered. The grid operational constraints (e.g., energy balance, power flow, peak load reduction, voltage drop, loss, overloading, harmonic distortion, power factor constraints, and frequency), reliability (e.g., failure rate and duration), stability, and protective (e.g., preventive, emergency, or restorative actions) coordination constraints (e.g., short-circuit current) should always be considered;
- (5)
- Reliability, robustness, and adaptability optimization of controllers and devices in ESs.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AI | Artificial intelligence |
CHP | Combined heat and power |
DG | Distributed generation |
DL | Deep leaning |
DR | Demand response |
NILM | Non-intrusive load monitoring |
ML | Machine learning |
OF | Optimal power flow |
PSO | Particle swarm optimization |
PV | Photovoltaic |
References
- Lopes, J.A.P.; Hatziargyriou, N.; Mutale, J.; Djapic, P.; Jenkins, N. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electr. Power Syst. Res. 2007, 77, 1189–1203. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Willis, H.L. Distributed Power Generation: Planning and Evaluation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hadjsaid, N.; Canard, J.-F.; Dumas, F. Dispersed generation impact on distribution networks. IEEE Comput. Appl. Power 1999, 12, 22–28. [Google Scholar] [CrossRef]
- Kim, I. Impact of Stochastic Renewable Distributed Generation on Urban Distribution Networks. Ph.D. Thesis, Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2014. [Google Scholar]
- International Energy Agency. Distributed Generation in Liberalised Electricity Markets; IEA: Paris, France, 2002. [Google Scholar]
- Cossent, R.; Gómez, T.; Frías, P. Towards a future with large penetration of distributed generation: Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective. Energy Policy 2009, 37, 1145–1155. [Google Scholar] [CrossRef]
- Atia, R.; Yamada, N. Distributed renewable generation and storage system sizing based on smart dispatch of microgrids. Energies 2016, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Arghandeh, R.; Woyak, J.; Onen, A.; Jung, J.; Broadwater, R.P. Economic optimal operation of Community Energy Storage systems in competitive energy markets. Appl. Energy 2014, 135, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Lotfi, H. Multi-objective energy management approach in distribution grid integrated with energy storage units considering the demand response program. Int. J. Energy Res. 2020, 44, 10662–10681. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, W.; Huang, Y.; Li, P.; Dong, L. Simultaneous optimization of renewable energy and energy storage capacity with the hierarchical control. CSEE J. Power Energy Syst. 2022, 8, 95–104. [Google Scholar] [CrossRef]
- Howlader, H.O.R.; Matayoshi, H.; Senjyu, T. Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid. Renew. Energy 2016, 99, 107–117. [Google Scholar] [CrossRef]
- Shan, J.; Lu, R. Multi-objective economic optimization scheduling of CCHP micro-grid based on improved bee colony algorithm considering the selection of hybrid energy storage system. Energy Rep. 2021, 7, 326–341. [Google Scholar] [CrossRef]
- Harsha, P.; Dahleh, M. Optimal Management and Sizing of Energy Storage Under Dynamic Pricing for the Efficient Integration of Renewable Energy. IEEE Trans. Power Syst. 2015, 30, 1164–1181. [Google Scholar] [CrossRef]
- Dini, A.; Hassankashi, A.; Pirouzi, S.; Lehtonen, M.; Arandian, B.; Baziar, A.A. A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response. Energy 2022, 239, 121923. [Google Scholar] [CrossRef]
- Pandey, S.; Han, J.; Gurung, N.; Chen, H.; Paaso, E.A.; Li, Z.; Khodaei, A. Multi-Criteria Decision-Making and Robust Optimization Methodology for Generator Sizing of a Microgrid. IEEE Access 2021, 9, 142264–142275. [Google Scholar] [CrossRef]
- Yun-Feng, D. Optimal allocation of energy storage system in distribution systems. Procedia Eng. 2011, 15, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Khasanov, M.; Kamel, S.; Rahmann, C.; Hasanien, H.M.; Al-Durra, A. Optimal distributed generation and battery energy storage units integration in distribution systems considering power generation uncertainty. IET Gener. Transm. Distrib. 2021, 15, 3400–3422. [Google Scholar] [CrossRef]
- Rajamand, S. Loss cost reduction and power quality improvement with applying robust optimization algorithm for optimum energy storage system placement and capacitor bank allocation. Int. J. Energy Res. 2020, 44, 11973–11984. [Google Scholar] [CrossRef]
- Wen, X.; Yu, Y.; Xu, Z.; Zhao, J.; Li, J. Optimal distributed energy storage investment scheme for distribution network accommodating high renewable penetration. Int. Trans. Electr. Energy Syst. 2019, 29, e12002. [Google Scholar] [CrossRef]
- Kim, I. Optimal capacity of storage systems and photovoltaic systems able to control reactive power using the sensitivity analysis method. Energy 2018, 150, 642–652. [Google Scholar] [CrossRef]
- Rahbar, K.; Xu, J.; Zhang, R. Real-Time Energy Storage Management for Renewable Integration in Microgrid: An Off-Line Optimization Approach. IEEE Trans. Smart Grid 2015, 6, 124–134. [Google Scholar] [CrossRef]
- Wang, T.; O’Neill, D.; Kamath, H. Dynamic Control and Optimization of Distributed Energy Resources in a Microgrid. IEEE Trans. Smart Grid 2015, 6, 2884–2894. [Google Scholar] [CrossRef] [Green Version]
- Atzeni, I.; Ordóñez, L.G.; Scutari, G.; Palomar, D.P.; Fonollosa, J. Demand-Side Management via Distributed Energy Generation and Storage Optimization. IEEE Trans. Smart Grid 2013, 4, 866–876. [Google Scholar] [CrossRef]
- Taha, H.A.; Alham, M.H.; Youssef, H.K.M. Multi-Objective Optimization for Optimal Allocation and Coordination of Wind and Solar DGs, BESSs and Capacitors in Presence of Demand Response. IEEE Access 2022, 10, 16225–16241. [Google Scholar] [CrossRef]
- Keane, A.; O’Malley, M. Optimal Utilization of Distribution Networks for Energy Harvesting. IEEE Trans. Power Syst. 2007, 22, 467–475. [Google Scholar] [CrossRef]
- Liu, W.; Niu, S.; Xu, H. Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system. J. Mod. Power Syst. Clean Energy 2017, 5, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Hu, W.; Liu, M.; Yang, F.; Kong, X. Energy storage optimization method for microgrid considering multi-energy coupling demand response. J. Energy Storage 2022, 45, 103521. [Google Scholar] [CrossRef]
- Asian Development Bank. Decoding Article 6 of the Paris Agreement-Version II; Asian Development Bank: Mandaluyong, Philippines, 2020. [Google Scholar]
- Nick, M.; Hohmann, M.; Cherkaoui, R.; Paolone, M. On the optimal placement of distributed storage systems for voltage control in active distribution networks. In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe, Berlin, Germany, 14–17 October 2012; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Borowy, B.S.; Salameh, Z.M. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans. Energy Convers. 1996, 11, 367–375. [Google Scholar] [CrossRef]
- Carpinelli, G.; Celli, G.; Mocci, S.; Pilo, F.; Russo, A. Optimisation of embedded generation sizing and siting by using a double trade-off method. IEE Proc.-Gener. Transm. Distrib. 2005, 152, 503–513. [Google Scholar] [CrossRef]
- Kim, I. The Optimization of the Location and Capacity of Reactive Power Generation Units, Using a Hybrid Genetic Algorithm Incorporated by the Bus Impedance Power-Flow Calculation Method. Appl. Sci. 2020, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Kim, I. Optimal distributed generation allocation for reactive power control. IET Gener. Transm. Distrib. 2017, 11, 1549–1556. [Google Scholar] [CrossRef]
- Kim, I.; Xu, S. Bus voltage control and optimization strategies for power flow analyses using Petri net approach. Int. J. Electr. Power Energy Syst. 2019, 112, 353–361. [Google Scholar] [CrossRef]
- Guo, H.; Ding, Q.; Song, Y.; Tang, H.; Wang, L.; Zhao, J. Predicting Temperature of Permanent Magnet Synchronous Motor Based on Deep Neural Network. Energies 2020, 13, 4782. [Google Scholar] [CrossRef]
- Melnikova, O.; Nazarychev, A.; Suslov, K. Enhancement of the Technique for Calculation and Assessment of the Condition of Major Insulation of Power Transformers. Energies 2022, 15, 1572. [Google Scholar] [CrossRef]
- Jo, H.; Park, J.; Kim, I. Environmentally Constrained Optimal Dispatch Method for Combined Cooling, Heating, and Power Systems Using Two-Stage Optimization. Energies 2021, 14, 4135. [Google Scholar] [CrossRef]
- Park, J.; Jo, H.; Kim, I. The Selection of the Most Cost-Efficient Distributed Generation Type for a Combined Cooling Heat and Power System Used for Metropolitan Residential Customers. Energies 2021, 14, 5606. [Google Scholar] [CrossRef]
- Lee, D.; Son, S.; Kim, I. Optimal Allocation of Large-Capacity Distributed Generation with the Volt/Var Control Capability Using Particle Swarm Optimization. Energies 2021, 14, 3112. [Google Scholar] [CrossRef]
- Kim, B.; Rusetskii, N.; Jo, H.; Kim, I. The Optimal Allocation of Distributed Generators Considering Fault Current and Levelized Cost of Energy Using the Particle Swarm Optimization Method. Energies 2021, 14, 418. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Li, Y.; Zeng, Z.; Yong, C.; Sidorov, D.; Lv, X. Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility. Energies 2020, 13, 5922. [Google Scholar] [CrossRef]
- Voropai, N. Electric Power System Transformations: A Review of Main Prospects and Challenges. Energies 2020, 13, 5639. [Google Scholar] [CrossRef]
- Shushpanov, I.; Suslov, K.; Ilyushin, P.; Sidorov, D.N. Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric. Energies 2021, 14, 6193. [Google Scholar] [CrossRef]
- Park, S.; Yoon, S.; Lee, B.; Ko, S.; Hwang, E. Probabilistic Forecasting Based Joint Detection and Imputation of Clustered Bad Data in Residential Electricity Loads. Energies 2020, 14, 165. [Google Scholar] [CrossRef]
- Ezemobi, E.; Tonoli, A.; Silvagni, M. Battery State of Health Estimation with Improved Generalization Using Parallel Layer Extreme Learning Machine. Energies 2021, 14, 2243. [Google Scholar] [CrossRef]
- Politi, B.; Foucaran, A.; Camara, N. Low-Cost Sensors for Indoor PV Energy Harvesting Estimation Based on Machine Learning. Energies 2022, 15, 1144. [Google Scholar] [CrossRef]
- Lazzaretti, A.E.; Renaux, D.P.B.; Lima, C.R.E.; Mulinari, B.M.; Ancelmo, H.C.; Oroski, E.; Pöttker, F.; Linhares, R.R.; Nolasco, L.D.S.; Lima, L.T.; et al. A Multi-Agent NILM Architecture for Event Detection and Load Classification. Energies 2020, 13, 4396. [Google Scholar] [CrossRef]
- Ebeed, M.; Kamel, S.; Jurado, F. Optimal Power Flow Using Recent Optimization Techniques. In Classical and Recent Aspects of Power System Optimization; Zobaa, A.F., Abdel Aleem, S.H.E., Abdelaziz, A.Y., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 157–183. [Google Scholar]
- Dell’Angela, L.; Nicolosi, G.L. Artificial intelligence applied to cardiovascular imaging, a critical focus on echocardiography: The point-of-view from “the other side of the coin”. J. Clin. Ultrasound 2022. (In English) [Google Scholar] [CrossRef]
- Carpentier, J. Optimal power flows. Int. J. Electr. Power Energy Syst. 1979, 1, 3–15. [Google Scholar] [CrossRef]
- Duchesne, L.; Karangelos, E.; Wehenkel, L. Recent Developments in Machine Learning for Energy Systems Reliability Management. Proc. IEEE 2020, 108, 1656–1676. [Google Scholar] [CrossRef]
- Fioretto, F.; Mak, T.W.; Van Hentenryck, P. Predicting ac optimal power flows: Combining deep learning and lagran-gian dual methods. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 630–637. [Google Scholar]
- Misra, S.; Roald, L.; Ng, Y. Learning for Constrained Optimization: Identifying Optimal Active Constraint Sets. INFORMS J. Comput. 2022, 34, 463–480. [Google Scholar] [CrossRef]
- Chertkov, M.; Andersson, G. Multienergy Systems. Proc. IEEE 2020, 108, 1387–1391. [Google Scholar] [CrossRef]
- Lopez-Garcia, T.B.; Coronado-Mendoza, A.; Domínguez-Navarro, J.A. Artificial neural networks in microgrids: A review. Eng. Appl. Artif. Intell. 2020, 95, 103894. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy Rev. 2020, 130, 109899. [Google Scholar] [CrossRef]
- Dobbe, R.; Sondermeijer, O.; Fridovich-Keil, D.; Arnold, D.; Callaway, D.; Tomlin, C. Toward Distributed Energy Services: Decentralizing Optimal Power Flow with Machine Learning. IEEE Trans. Smart Grid 2020, 11, 1296–1306. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Qiu, R.C. Deep reinforcement learning for power system applications: An overview. CSEE J. Power Energy Syst. 2020, 6, 213–225. [Google Scholar] [CrossRef]
- Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 2018, 221, 386–405. [Google Scholar] [CrossRef]
- Ostrometzky, J.; Berestizshevsky, K.; Bernstein, A.; Zussman, G. Physics-informed deep neural network method for limited observability state estimation. arXiv 2019, arXiv:1910.06401. [Google Scholar]
- Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Leerbeck, K.; Bacher, P.; Junker, R.G.; Goranović, G.; Corradi, O.; Ebrahimy, R.; Tveit, A.; Madsen, H. Short-term forecasting of CO2 emission intensity in power grids by machine learning. Appl. Energy 2020, 277, 115527. [Google Scholar] [CrossRef]
- Kim, K.; Kim, Y.; Kim, B.; Kim, I. A Study on Optimizing Underground Cable Maintenance and Replacement Cycles. J. Electr. Eng. Technol. 2022, 1–9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.; Kim, B.; Sidorov, D. Machine Learning for Energy Systems Optimization. Energies 2022, 15, 4116. https://doi.org/10.3390/en15114116
Kim I, Kim B, Sidorov D. Machine Learning for Energy Systems Optimization. Energies. 2022; 15(11):4116. https://doi.org/10.3390/en15114116
Chicago/Turabian StyleKim, Insu, Beopsoo Kim, and Denis Sidorov. 2022. "Machine Learning for Energy Systems Optimization" Energies 15, no. 11: 4116. https://doi.org/10.3390/en15114116
APA StyleKim, I., Kim, B., & Sidorov, D. (2022). Machine Learning for Energy Systems Optimization. Energies, 15(11), 4116. https://doi.org/10.3390/en15114116