Prediction of the Degree of Polymerization in Transformer Cellulose Insulation Using the Feedforward Backpropagation Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Furan Formation and Correlation between 2-FAL and DP
- 2-Furaldehyde (2FAL).
- 5-Methyl-2-Furaldehyde (5M2F).
- 5-Hydroxymethyl-2-Furaldehyde (5H2F).
- 2-Acetyl Furan (2ACF).
- 2-Furfuryl Alcohol (2FOL).
2.2. Artificial Neural Network
2.3. Proposed Artificial Neural Network Model
2.3.1. ANN Training
2.3.2. ANN Testing
3. Results
3.1. Degree of Polymerization
3.2. Consumed Lifetime
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freitag, S.C.; Sperandio, M. Determining the Reliability of Power Transformers Considering a Five States Markov Model. IEEE Lat. Am. Trans. 2021, 19, 335–341. [Google Scholar] [CrossRef]
- Mossad, M.I.; Azab, M.; Abu-Siada, A. Transformer Parameters Estimation From Nameplate Data Using Evolutionary Programming Techniques. IEEE Trans. Power Deliv. 2014, 29, 2118–2123. [Google Scholar] [CrossRef]
- McBee, K.D.; Rudraraju, P.; Chong, J. Transformer Rating Due to High Penetrations of PV, EV Charging, and Energy Storage. In Proceedings of the 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–21 February 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Okabe, S.; Ueta, G.; Tsuboi, T. Investigation of aging degradation status of insulating elements in oil-immersed transformer and its diagnostic method based on field measurement data. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 346–355. [Google Scholar] [CrossRef]
- Martin, D.; Cui, Y.; Ekanayake, C.; Ma, H.; Saha, T. An Updated Model to Determine the Life Remaining of Transformer Insulation. IEEE Trans. Power Deliv. 2015, 30, 395–402. [Google Scholar] [CrossRef]
- Ansari, M.A.; Martin, D.; Saha, T.K. Advanced Online Moisture Measurements in Transformer Insulation Using Optical Sensors. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1803–1810. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, H.; Saha, T.; Ekanayake, C. Understanding Moisture Dynamics and Its Effect on the Dielectric Response of Transformer Insulation. IEEE Trans. Power Deliv. 2015, 30, 2195–2204. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Tao, F.; Zhang, G.; Shao, J.; Zhang, X.; Wang, B. Validity Evaluation of Transformer DGA Online Monitoring Data in Grid Edge Systems. IEEE Access 2020, 8, 60759–60768. [Google Scholar] [CrossRef]
- Wang, L.; Littler, T.; Liu, X. Gaussian Process Multi-Class Classification for Transformer Fault Diagnosis Using Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1703–1712. [Google Scholar] [CrossRef]
- Shaban, K.B.; El-Hag, A.H.; Benhmed, K. Prediction of Transformer Furan Levels. IEEE Trans. Power Deliv. 2016, 31, 1778–1779. [Google Scholar] [CrossRef]
- Vasovic, V.; Lukic, J.; Mihajlovic, D.; Pejovic, B.; Radakovic, Z.; Radoman, U.; Orlovic, A. Aging of transformer insulation—Experimental transformers and laboratory models with different moisture contents: Part I—DP and furans aging profiles. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1840–1846. [Google Scholar] [CrossRef]
- Soni, R.; Chakrabarti, P.; Leonowicz, Z.; Jasiński, M.; Wieczorek, K.; Bolshev, V. Estimation of Life Cycle of Distribution Transformer in Context to Furan Content Formation, Pollution Index, and Dielectric Strength. IEEE Access 2021, 9, 37456–37465. [Google Scholar] [CrossRef]
- Ghunem, R.A.; Assaleh, K.; El-hag, A.H. Artificial neural networks with stepwise regression for predicting transformer oil furan content. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 414–420. [Google Scholar] [CrossRef]
- Ghanizadeh, A.J.; Gharehpetian, G.B. ANN and cross-correlation based features for discrimination between electrical and mechanical defects and their localization in transformer winding. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2374–2382. [Google Scholar] [CrossRef]
- Juarez-Balderas, E.A.; Medina-Marin, J.; Olivares-Galvan, J.C.; Hernandez-Romero, N.; Seck-Tuoh-Mora, J.C.; Rodriguez-Aguilar, A. Hot-Spot Temperature Forecasting of the Instrument Transformer Using an Artificial Neural Network. IEEE Access 2020, 8, 164392–164406. [Google Scholar] [CrossRef]
- Abdullah, A. Ultrafast Transmission Line Fault Detection Using a DWT-Based ANN. IEEE Trans. Ind. Appl. 2018, 54, 1182–1193. [Google Scholar] [CrossRef]
- Leibfried, T.; Jaya, M.; Majer, N.; Schafer, M.; Stach, M.; Voss, S. Postmortem Investigation of Power Transformers—Profile of Degree of Polymerization and Correlation With Furan Concentration in the Oil. IEEE Trans. Power Deliv. 2013, 28, 886–893. [Google Scholar] [CrossRef]
- Abu-Siada, A.; Lai, S.P.; Islam, S.M. A Novel Fuzzy-Logic Approach for Furan Estimation in Transformer Oil. IEEE Trans. Power Deliv. 2012, 27, 469–474. [Google Scholar] [CrossRef]
- Lelekakis, N.; Martin, D.; Guo, W.; Wijaya, J.; Lee, M. A field study of two online dry-out methods for power transformers. IEEE Electr. Insul. Mag. 2012, 28, 32–39. [Google Scholar] [CrossRef]
- Abd El-Aal, R.A.; Helal, K.A.; Hassan, M.M.; Dessouky, S.S. Prediction of Transformers Conditions and Lifetime Using Furan Compounds Analysis. IEEE Access 2019, 7, 102264–102273. [Google Scholar] [CrossRef]
- Hohlein, I.; Kachler, A.J. Aging of cellulose at transformer service temperatures. Part 2. Influence of moisture and temperature on degree of polymerization and formation of furanic compounds in free-breathing systems. IEEE Electr. Insul. Mag. 2005, 21, 20–24. [Google Scholar] [CrossRef]
- Lelekakis, N.; Guo, W.; Martin, D.; Wijaya, J.; Susa, D. A field study of aging in paper-oil insulation systems. IEEE Electr. Insul. Mag. 2012, 28, 12–19. [Google Scholar] [CrossRef]
- Stebbins, R.D.; Myers, D.S.; Shkolnik, A.B. Furanic compounds in dielectric liquid samples: Review and update of diagnostic interpretation and estimation of insulation ageing. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417), Nagoya, Japan, 1–5 June 2003; Volume 3, pp. 921–926. [Google Scholar] [CrossRef]
- Zhang, E.; Zheng, H.; Zhang, Y.; Liu, J.; Shi, Z.; Shi, K.; Zhang, C.; Shao, G.; Zhang, C.; Schwarz, H. Lifespan Model of the Relationships between Ethanol Indicator and Degree of Polymerization of Transformer Paper Insulation. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1859–1866. [Google Scholar] [CrossRef]
- Chendong, X. Monitoring paper insulation ageing by measuring furfural contents in oil. In Proceedings of the Seventh International Symposium on High Voltage Engineering, Dresden, Germany, 26–30 August 1991. [Google Scholar]
- Suksawat, D.; Atthaphotpong, K.; Takboontam, K.; Satirapattanakiat, K.; Raphephat, C.; Pattanadech, N. Furan Analysis of Oil Impregnated Paper Aged by Chemical Stress. In Proceedings of the 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD), Phuket, Thailand, 25–28 October 2020; pp. 422–425. [Google Scholar] [CrossRef]
- De Pablo, A.; Phalavanpour, B. Furanic compounds analysis: A tool for predictive maintenance of oil-filled electrical equipment. Electra 2007, 175, 9–32. [Google Scholar]
- Pradhan, M.K.; Ramu, T.S. On the estimation of elapsed life of oil-immersed power transformers. IEEE Trans. Power Deliv. 2005, 20, 1962–1969. [Google Scholar] [CrossRef] [Green Version]
- Shadab, S.; Hozefa, J.; Sonam, K.; Wagh, S.; Singh, N.M. Gaussian process surrogate model for an effective life assessment of transformer considering model and measurement uncertainties. Int. J. Electr. Power Energy Syst. 2022, 134, 107401. [Google Scholar] [CrossRef]
- Lekshmi, R.; Chandran, G.S.; Babu, A.; Manjula, G.; Nair, K. A review on status monitoring techniques of transformer and a case study on loss of life calculation of distribution transformers. Mater. Today Proc. 2021, 46 Pt 10, 4659–4666. [Google Scholar] [CrossRef]
- Patekar, K.D.; Chaudhry, B. DGA analysis of transformer using Artificial neutral network to improve reliability in Power Transformers. In Proceedings of the 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Chennai, India, 21–23 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- MathWorks. Neural Networks. Available online: https://www.mathworks.com/discovery/neural-network.html#:~:text=A%20neural%20network%20(also%20called,data%2C%20and%20forecast%20future%20events (accessed on 20 April 2022).
Sample | 2FAL |
---|---|
Data division | Random |
Training | Levenberg–Marquardt |
Performance | Mean Square Error |
Calculations | MEX |
Sample | 2FAL | Measured | ANN | Chendong | Vaurchex | De Pablo |
---|---|---|---|---|---|---|
1 | 1.778 | 389.2 | 388.581 | 360.021 | 479.606 | 453.654 |
2 | 2.377 | 352.2 | 353.234 | 323.992 | 453.872 | 395.553 |
3 | 3 | 321.8 | 325.068 | 295.108 | 433.241 | 349.057 |
4 | 1.601 | 403.5 | 401.054 | 373.031 | 488.810 | 474.237 |
5 | 0.676 | 514.8 | 505.379 | 480.015 | 565.317 | 621.641 |
6 | 0.231 | 640.8 | 635.306 | 613.254 | 660.487 | 730.936 |
7 | 0.143 | 693.5 | 676.561 | 672.761 | 702.992 | 757.266 |
8 | 1.513 | 411.6 | 407.895 | 380.046 | 493.910 | 485.182 |
9 | 1.563 | 410.6 | 403.961 | 376.012 | 491.029 | 478.902 |
Sample | ANN | Chendong | Vaurchex | De Pablo |
---|---|---|---|---|
1 | 0.16% | 7.50% | 23.23% | 16.56% |
2 | 0.29% | 8.01% | 28.87% | 12.31% |
3 | 1.02% | 8.29% | 34.63% | 8.47% |
4 | 0.61% | 7.55% | 21.14% | 17.53% |
5 | 1.83% | 6.76% | 9.81% | 20.75% |
6 | 0.86% | 4.30% | 3.07% | 14.07% |
7 | 2.44% | 2.99% | 1.37% | 9.19% |
8 | 0.90% | 7.67% | 20.00% | 17.88% |
9 | 1.62% | 8.42% | 19.59% | 16.63% |
Sample | Actual | ANN | Chendong | Vaurchex | De Pablo |
---|---|---|---|---|---|
1 | 21.299 | 21.332 | 22.897 | 17.017 | 18.157 |
2 | 23.347 | 23.287 | 25.058 | 18.148 | 20.967 |
3 | 25.197 | 24.990 | 26.972 | 19.101 | 23.531 |
4 | 20.559 | 20.684 | 22.169 | 16.627 | 17.248 |
5 | 15.565 | 15.944 | 17.000 | 13.646 | 11.699 |
6 | 11.077 | 11.254 | 11.978 | 10.457 | 8.379 |
7 | 9.457 | 9.964 | 10.079 | 9.178 | 7.654 |
8 | 20.152 | 20.337 | 21.787 | 16.415 | 16.780 |
9 | 20.202 | 20.536 | 22.006 | 16.535 | 17.047 |
Sample | ANN | Chendong | Vaurchex | De Pablo |
---|---|---|---|---|
1 | 0.15% | 7.50% | 20.10% | 14.75% |
2 | 0.26% | 7.33% | 22.27% | 10.19% |
3 | 0.82% | 7.04% | 24.19% | 6.61% |
4 | 0.61% | 7.83% | 19.12% | 16.11% |
5 | 2.43% | 9.21% | 12.33% | 24.84% |
6 | 1.59% | 8.13% | 5.60% | 24.36% |
7 | 5.36% | 6.58% | 2.95% | 19.07% |
8 | 0.92% | 8.11% | 18.55% | 16.73% |
9 | 1.65% | 8.93% | 18.15% | 15.61% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thango, B.A.; Bokoro, P.N. Prediction of the Degree of Polymerization in Transformer Cellulose Insulation Using the Feedforward Backpropagation Artificial Neural Network. Energies 2022, 15, 4209. https://doi.org/10.3390/en15124209
Thango BA, Bokoro PN. Prediction of the Degree of Polymerization in Transformer Cellulose Insulation Using the Feedforward Backpropagation Artificial Neural Network. Energies. 2022; 15(12):4209. https://doi.org/10.3390/en15124209
Chicago/Turabian StyleThango, Bonginkosi A., and Pitshou N. Bokoro. 2022. "Prediction of the Degree of Polymerization in Transformer Cellulose Insulation Using the Feedforward Backpropagation Artificial Neural Network" Energies 15, no. 12: 4209. https://doi.org/10.3390/en15124209
APA StyleThango, B. A., & Bokoro, P. N. (2022). Prediction of the Degree of Polymerization in Transformer Cellulose Insulation Using the Feedforward Backpropagation Artificial Neural Network. Energies, 15(12), 4209. https://doi.org/10.3390/en15124209