Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings
Abstract
:1. Introduction
2. Materials and Methods
- ms—the mass of the sample in a saturated state;
- md—the mass of the sample in the dry state.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wanga, X.C.; Klemeša, J.J.; Dongb, X.; Fanb, W.; Xub, Z.; Wangc, Y.; Varbanova, P.S. Air pollution terrain nexus: A review considering energy generation and consumption. Renew. Sustain. Energy Rev. 2019, 105, 71–85. [Google Scholar] [CrossRef]
- Wu, X.D.; Guo, J.L.; Ji, X.; Chen, G.Q. Energy use in world economy from household-consumption-based perspective. Energy Policy 2019, 127, 287–298. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Asadi, I.; Shafigh, P.; Hassan, Z. Thermal conductivity of concrete—A review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Aydin, E.; Brounen, D. The impact of policy on residential energy consumption. Energy 2019, 196, 115–129. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, Y.; Wang, K.; Zhang, J. A review on properties of fresh and hardened geopolymer mortar. Compos. Part B Eng. 2018, 152, 79–95. [Google Scholar] [CrossRef]
- Dhasindrakrishna, K.; Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Progress, current thinking and challenges in geopolymer foam concrete technology. Cem. Concr. Compos. 2021, 116, 103886. [Google Scholar] [CrossRef]
- Ercoli, R.; Laskowska, D.; Nguyen, V.V.; Le, V.S.; Louda, P.; Łoś, P.; Ciemnicka, J.; Prałat, K.; Renzulli, A.; Paris, E.; et al. Mechanical and Thermal Properties of Geopolymer Foams (GFs) Doped with By-Products of the Secondary Aluminum Industry. Polymers 2022, 14, 703. [Google Scholar] [CrossRef]
- Singh, N.B. Foamed geopolymers concrete. Mater. Today: Proc. 2018, 5, 15243–15252. [Google Scholar] [CrossRef]
- Kränzlein, E.; Pöllmann, H.; Krcmar, W. Metal powders as foaming agents in fly ash based geopolymer synthesis and their impact on the structure depending on the Na/Al ratio. Cem. Concr. Compos. 2018, 90, 161–168. [Google Scholar] [CrossRef]
- Kioupis, D. Development of porous geopolymers foamed by aluminum and zinc powders. Ceram. Int. 2021, 46, 26280–26292. [Google Scholar] [CrossRef]
- Łach, M.; Korniejenko, K.; Mikuła, J. Thermal insulation and thermally resistant materials made of geopolymers foam. Procedia Eng. 2016, 151, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Awang, H.; Mydin, A.O.; Roslan, A. Effect of additives on mechanical and thermal properties of lightweight foamed concrete. Adv. App. Sci. Res. 2012, 3, 3326–3338. [Google Scholar]
- Yakovlev, G.; Keriene, J.; Gailus, A.; Girniene, I. Cement based foam concrete reinforced by carbon nanotubes. ISSN Mater. Sci. 2006, 12, 147–151. [Google Scholar]
- Saleh, A.N.; Attar, A.A.; Ahmed, O.K.; Mustafa, S.S. Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2. Results Eng. 2021, 12, 100303. [Google Scholar] [CrossRef]
- Prałat, K.; Jaskulski, R.; Ciemnicka, J.; Makomaski, G. Analysis of the thermal properties and structure of gypsum modified with cellulose based polymer and aerogels. Arch. Civ. Eng. 2020, 66, 153–168. [Google Scholar]
- Rashad, A.M. A synopsis about perlite as building material—A best practice guide for Civil Engineer. Constr. Build. Mater. 2016, 121, 338–353. [Google Scholar] [CrossRef]
- Erdoğan, S.T. Use of perlite to produce geopolymers, 31st cement and concrete science conference novel developments and innovation in cementitious materials. In Proceedings of the 31st Cement and Concrete Science Conference Paper Number XX Novel Developments and Innovation in Cementitious Materials, London, UK, 12–13 September 2011. [Google Scholar]
- Papa, E.; Medri, V.; Murri, A.N.; Laghi, L.; De Aloysio, D.; Bandini, S.; Landi, E. Characterization of alkali bonded expanded perlite. Constr. Build. Mater. 2018, 191, 1139–1147. [Google Scholar] [CrossRef]
- Vance, E.R.; Perera, D.S.; Imperia, P.; Cassidy, D.J.; Davis, J.; Gourley, J.T. Perlite waste as a precursor for geopolymer formation. J. Aust. Ceram. Soc. 2009, 45, 44–49. [Google Scholar]
- Durmuş, G.; Uluer, O.; Aktaş, M.; Karaağaç, I.; Khanlari, A.; Ağbulut, U.; Çelik, D.N. A Study on Some Factors Affecting on CO2 Curing of Expanded Perlite Based Thermal Insulation Panel. In Lecture Notes in Civil Engineering, Proceedings of the 3rd International Sustainable Buildings Symposium, held in Dubai, United Arab Emirates, 15–17 March 2017; Fırat, S., Kinuthia, J., Abu-Tair, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Mohabbi, M. Investigation of sulfates effects in perlite-based geopolymer. Struct Concr. 2019, 20, 1402–1410. [Google Scholar] [CrossRef]
- Çelikten, S.; Işıkdağ, B. Properties of geopolymer mortars derived from ground calcined perlite and NaOH solution. Eur. J. Environ. Civil Eng. 2021, 26, 1879939. [Google Scholar] [CrossRef]
- Çelikten, S.; Işıkdağ, B. Strength development of ground perlite-based geopolymer mortars. Adv. Concr. Constr. 2020, 9, 227–234. [Google Scholar] [CrossRef]
- Tsaousi, M.; Douni, I.; Panias, D. Characterization of the properties of perlite geopolymer pastes. Mater. Constr. 2016, 66, e102. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, S.T. Properties of Ground Perlite Geopolymer Mortars. J. Mater. Civil Eng. 2015, 27. [Google Scholar] [CrossRef]
- Baran, P.; Nazarko, M.; Włosińska, E.; Kanciruk, A.; Zarębska, K. Synthesis of geopolymers derived from fly ash with an addition of perlite. J. Clean. Prod. 2021, 293, 126112. [Google Scholar] [CrossRef]
- Aziz, A.; Benzaouak, A.; Bellil, A.; Alomayri, T.; Ni el Hassani, I.-E.E.; Achab, M.; Azhari, H.E.; Et-Tayea, Y.; Shaikh, F.U.A. Effect of acidic volcanic perlite rock on physio-mechanical properties and microstructure of natural pozzolan based geopolymers. Case Stud. Constr. Mater. 2021, 15, e00712. [Google Scholar] [CrossRef]
- Voottipruex, P.; Teerawattanasuk, C.; Sramoon, W.; Meepon, I. Stabilization of Soft Clay Using Perlite Geopolymer Activated by Sodium Hydroxide. Int. J. Geosynth. Ground Eng. 2022, 8, 5. [Google Scholar] [CrossRef]
- Szabó, R.; Dolgos, F.; Debreczeni, A.; Mucsi, G. Characterization of mechanically activated fly ash-based lightweight geopolymer composite prepared with ultrahigh expanded perlite content. Ceram. Int. 2022, 48, 4261–4269. [Google Scholar] [CrossRef]
- Saufi, H.; Alouani, M.E.; Alehyen, S.; Achouri, M.E.; Aride, J.; Taibi, M. Photocatalytic Degradation of Methylene Blue from Aqueous Medium onto Perlite-Based Geopolymer. Int. J. Chem. Eng. 2020, 2020, 9498349. [Google Scholar] [CrossRef] [Green Version]
- Szechyńska-Hebda, M.; Czarnocka, W.; Hebda, M.; Karpiński, S. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Rep. 2016, 35, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Liu, J.; Lv, C. Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review. Molecules 2022, 27, 796. [Google Scholar] [CrossRef] [PubMed]
- Szechyńska-Hebda, M.; Marczyk, J.; Ziejewska, C.; Hordyńska, N.; Mikuła, J.; Hebda, M. Optimal Design of pH-neutral Geopolymer Foams for Their Use in Ecological Plant Cultivation Systems. Materials 2019, 12, 2999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szechyńska-Hebda, M.; Marczyk, J.; Ziejewska, C.; Hordyńska, N.; Mikuła, J.; Hebda, M. Neutral geopolymer foams reinforced with cellulose studied with the FT-raman spectroscopy. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 706, p. 012017. [Google Scholar]
- Szechyńska-Hebda, M.; Hebda, M.; Mirek, M.; Miernik, K. Cold-induced changes in cell wall stability determine the resistance of winter triticale to fungal pathogen Microdochium nivale. J. Anal. Calorim. 2016, 126, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Szechyńska-Hebda, M.; Hebda, M.; Mierzwiński, D.; van ammeren, A.; Karpiński, S. Effect of cold-induced changes in physical and chemical leaf properties on the resistance of winter triticale (×Triticosecale) to the fungal pathogen Microdochium nivale. Plant Pathol. 2013, 62, 867–878. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Wasek, I.; Gołebiowska, G.; Żur, I.; Wedzony, M. Photosynthesis ependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.). J. Plant Physiol. 2015, 177, 30–43. [Google Scholar] [CrossRef]
- Ślesak, I.; Szechyńska-Hebda, M.; Fedak, H.; Sidoruk, N.; Dąbrowska–Bronk, J.; Witoń, D.; Rusaczek, A.; Antczak, A.; Drożdżek, M.; Karpińska, B.; et al. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides). Plant Cell Environ. 2015, 38, 1275–1284. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A.; Mischinenko, V.; Kruglikov, A. Fabrication and characterization of metakaolin-based geopolymer composites reinforced with cellulose nanofibrils. Mater. Lett. 2022, 308, 131146. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, Y.; Yu, Z.; Mu, J. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer. Constr. Build. Mater. 2018, 173, 10–16. [Google Scholar] [CrossRef]
- Rahmawati, C.; Aprilia, S.; Saidi, T.; Aulia, T.B. Current development of geopolymer cement with nanosilica and cellulose nanocrystals. J. Phys. Conf. Ser. 2021, 1783, 012056. [Google Scholar] [CrossRef]
- Youmoue, M.; Tene Fongang, R.T.; Gharzouni, A.; Kaze, R.C.; Kamseu, E.; Sglavo, V.M.; Kenfack, I.T.; Nait-Ali, B.; Rossignol, S. Effect of silica and lignocellulosic additives on the formation and the distribution of meso and macropores in foam metakaolin-based geopolymer filters for dyes and wastewater filtration. SN Appl. Sci. 2020, 2, 642. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.V.; Le, V.S.; Louda, P.; Szczypiński, M.M.; Ercoli, R.; Růžek, V.; Łoś, P.; Prałat, K.; Plaskota, P.; Pacyniak, T.; et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers 2022, 14, 304. [Google Scholar] [CrossRef] [PubMed]
- Łach, M. Geopolymer Foams—Will They Ever Become a Viable Alternative to Popular Insulation Materials?—A Critical Opinion. Materials 2021, 14, 3568. [Google Scholar] [CrossRef]
- Vaou, V.; Panias, D. Thermal insulating foamy geopolymers from perlite. Miner. Eng. 2010, 23, 1146–1151. [Google Scholar] [CrossRef]
- Mierzwiński, D.; Łach, M.; Hebda, M.; Walter, J.; Szechyńska-Hebda, M.; Mikuła, J. Thermal phenomena of alkali-activated metakaolin studied with a negative temperature coefficient system. J. Therm. Anal. Calorim. 2019, 138, 4167–4175. [Google Scholar] [CrossRef] [Green Version]
- Marczyk, J.; Ziejewska, C.; Gądek, S.; Korniejenko, K.; Łach, M.; Góra, M.; Kurek, I.; Doğan-Sağlamtimur, N.; Hebda, M.; Szechyńska-Hebda, M. Hybrid Materials Based on Fly Ash, Metakaolin, and Cement for 3D Printing. Materials 2021, 14, 6874. [Google Scholar] [CrossRef]
- Caballeroa, L.R.; das Dores Macedo Paivaa, M.; de Moraes Rego Fairbairna, E.; Dias Toledo Filhoa, R. Thermal, Mechanical and Microstructural Analysis of Metakaolin Based Geopolymers. Mater. Res. 2019, 22, e20180716. [Google Scholar] [CrossRef] [Green Version]
- Osholana, T.S.; Dludlu, M.K.; Oboirien, B.; Sadiku, R. Enhanced reactivity of geopolymers produced from fluidized bed combustion bottom ash. S. Afr. J. Chem. Eng. 2020, 34, 72–77. [Google Scholar] [CrossRef]
- Ziejewska, C.; Marczyk, J.; Korniejenko, K.; Bednarz, S.; Sroczyk, P.; Łach, M.; Mikuła, J.; Figiela, B.; Szechyńska-Hebda, M.; Hebda, M. 3D Printing of Concrete-Geopolymer Hybrids. Materials 2022, 15, 2819. [Google Scholar] [CrossRef] [PubMed]
- Łach, M.; Gado, R.A.; Marczyk, J.; Ziejewska, C.; Dogan-Saglamtimur, N.; Mikuła, J.; Szechyńska-Hebda, M.; Hebda, M. Process design for a production of sustainable materials from post-production clay. Materials 2021, 14, 953. [Google Scholar] [CrossRef] [PubMed]
- Zenabou, N.N.M.; Benoit-Ali, N.; Zekeng, S.; Rossignol, S.; Melo, U.C.; Tchamba, A.B.; Kamseu, E.; Leonelli, C. Improving insulation in metakaolin based geopolymer: Effects of metabauxite and metatalc. J. Build. Eng. 2019, 23, 403–413. [Google Scholar] [CrossRef]
- Kocak, Y. Effects of metakaolin on the hydration development of Portland–composite cement. J. Build. Eng. 2020, 31, 101419. [Google Scholar] [CrossRef]
- Prasanphan, S.; Wannagon, A.; Kobayashi, T.; Jiemsirilers, S. Reaction mechanisms of calcined kaolin processing waste-based geopolymers in the presence of low alkali activator solution. Constr. Build. Mater. 2019, 221, 409–420. [Google Scholar] [CrossRef]
- Xu, H.; van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Jamei, M.; Guiras, H.; Chtourou, Y.; Kallel, A.; Romero, E.; Georgopoulos, I. Water retention properties of perlite as a material with crushable soft particles. Eng. Geol. 2011, 122, 261–271. [Google Scholar] [CrossRef]
- Chen, J.; Wangb, H.; Xie, P.; Najm, H. Analysis of thermal conductivity of porous concrete using laboratory measurements and microstructure models. Constr. Build. Mater. 2019, 218, 90–98. [Google Scholar] [CrossRef]
- Alengaram, U.J.; Muhit, B.A.A.; bin Jumaat, M.Z.; Liu, M.; Jing, Y. A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mater. Des. 2013, 51, 522–529. [Google Scholar] [CrossRef]
- Chica, L.; Alzate, A. Cellular concrete review: New trends for application in construction. Constr. Build. Mater. 2019, 200, 637–647. [Google Scholar] [CrossRef]
Oxides | Content (%) | |
---|---|---|
Metakaolin KM 60 | Sand | |
SiO2 | 50–55 | 90.0–90.3 |
Al2O3 | min. 40 | 0.4–0.7 |
Fe2O3 | max. 1.45 | max. 0.2 |
CaO | 0.05–0.5 | 0.17 |
MgO | 0.20–0.45 | 0.01 |
K2O + Na2 | max. 1.5 | - |
TiO2 | - | 0.08–0.1 |
Sample | Sample Description | Raw Materials | Activator | Foaming Agents | Additives | |||
---|---|---|---|---|---|---|---|---|
KM 60 (% *) | Na₂SiO₃/NaOH (% *) | Sand (% *) | Al (% *) | H2O2 (% *) | (% *) | (% **) | ||
G | foamed geopolymer | 52.5 | 39.3 | 5.8 | 0.6 | 1.8 | - | - |
GP30 | foamed geopolymer with 30% of expanded perlite | 38.4 | 53.1 | 4.3 | 0.5 | 1.4 | 2.3 | 30 |
GP50 | foamed geopolymer with 50% of expanded perlite | 36.9 | 53.1 | 4.1 | 0.5 | 1.4 | 4.0 | 50 |
GC30 | foamed geopolymer with 30% of cellulose fibers | 37.9 | 53.1 | 4.2 | 0.5 | 1.4 | 2.9 | 30 |
GC50 | foamed geopolymer with 50% of cellulose fibers | 35.9 | 53.1 | 4.0 | 0.5 | 1.4 | 5.1 | 50 |
Sample | Geometric Density (g cm−1) | Skeletal Density (g cm−3) | Total Macroporosity |
---|---|---|---|
G | 0.69 ± 0.08 | 2.33 ± 0.0004 | 0.70 ± 3 |
GP30 | 0.51 ± 0.07 | 2.19 ± 0.0005 | 0.77 ± 3 |
GP50 | 0.53 ± 0.06 | 2.16 ± 0.0002 | 0.75 ± 2 |
GC30 | 0.79 ± 0.07 | 2.23 ± 0.0005 | 0.65 ± 4 |
GC50 | 0.73 ± 0.09 | 2.23 ± 0.0006 | 0.67 ± 4 |
G | GP50 | GC50 | ||
---|---|---|---|---|
Phase (%) | Quartz | 12.1 | 6.9 | 12.1 |
Mullite | 2.9 | 2.7 | 3.2 | |
Kaolinite-1A | 17.6 | 19.0 | 10.7 | |
Orthoclase | 67.3 | 71.4 | 74.0 |
Sample | Average Compressive Strength (MPa) | Standard Deviation |
---|---|---|
G | 2.32 | 0.26 |
GP30 | 1.87 | 0.52 |
GP50 | 1.82 | 0.30 |
GC30 | 5.47 | 1.2 |
GC50 | 4.27 | 0.7 |
Material | Density (kg m−3) | Compressive Strength (MPa) | Thermal Conductivity (W m−1 K−1) | Reference |
---|---|---|---|---|
Porous concrete | – | 8.0–14.7 | 0.47–0.87 | [60] |
Oil palm shell foamed concrete | 1100 | 3.5–5.3 | 0.4 | [61] |
Cellular concrete | 600 | 1.0–1.5 | 0.11–0.17 | [62] |
Cellular concrete | 500 | 1.0 | 0.08–0.13 | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurek, I.; Florek, E.; Gozdur, W.; Ziejewska, C.; Marczyk, J.; Łach, M.; Korniejenko, K.; Duży, P.; Choińska, M.; Szechyńska-Hebda, M.; et al. Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings. Energies 2022, 15, 4297. https://doi.org/10.3390/en15124297
Kurek I, Florek E, Gozdur W, Ziejewska C, Marczyk J, Łach M, Korniejenko K, Duży P, Choińska M, Szechyńska-Hebda M, et al. Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings. Energies. 2022; 15(12):4297. https://doi.org/10.3390/en15124297
Chicago/Turabian StyleKurek, Izabela, Emilia Florek, Weronika Gozdur, Celina Ziejewska, Joanna Marczyk, Michał Łach, Kinga Korniejenko, Patrycja Duży, Marta Choińska, Magdalena Szechyńska-Hebda, and et al. 2022. "Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings" Energies 15, no. 12: 4297. https://doi.org/10.3390/en15124297
APA StyleKurek, I., Florek, E., Gozdur, W., Ziejewska, C., Marczyk, J., Łach, M., Korniejenko, K., Duży, P., Choińska, M., Szechyńska-Hebda, M., & Hebda, M. (2022). Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings. Energies, 15(12), 4297. https://doi.org/10.3390/en15124297