Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers
Abstract
:1. Introduction
1.1. Meat and Dairy Wastewater Sludge
1.2. Biomass Waste after Enzymatic Hydrolysis
1.3. Fats, Oils and Grease Anaerobic Digestion
1.4. Surfactant Influence on the AD Process
2. Materials and Methods
2.1. Substrate and Inoculum Analyses
2.2. Biomethane Potential Determination
2.3. Statistical Analyses
3. Results and Discussion
3.1. Selected Substrate BMP and Organic Loading
3.2. Surface Active Substance Influence on Selected Substrate BMP
3.3. BHW and FOG-Containing Primary Sludge Co-Digestion with SAS Addition
3.4. BMP Outcome from Substrate Digestion and Co-Digestion and the Influence on Biomethane Release
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. European Green Deal. Available online: https://ec.europa.eu/clima/eu-action/european-green-deal_en (accessed on 9 May 2022).
- European Commission. Directive (EU). 2018/2001 on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, 5, 82–209. [Google Scholar]
- European Commission. Delegated Regulation Amending Delegated Regulation (EU) 2021/2139 as Regards Economic Activities in Certain Energy Sectors and Delegated Regulation (EU) 2021/2178 as Regards Specific Public Disclosures for Those Economic Activities, C/2022/0631 Final; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Nghiem, L.D.; Koch, K.; Bolzonella, D.; Drewes, J.E. Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities. Renew. Sustain. Energy Rev. 2017, 72, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Kamperidou, V.; Terzopoulou, P. Anaerobic Digestion of Lignocellulosic Waste Materials. Sustainability 2021, 13, 12810. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste–Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Ridoutt, B.; Williams, S.; Baud, S.; Fraval, S.; Marks, N. The water footprint of dairy products: Case study involving skim milk powder. J. Dairy Sci. 2010, 93, 5114–5117. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.K. Encyclopedia of Food Microbiology, 2nd ed.; Bat, K., Patel, P., Eds.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ziara, R. Water and Energy Use and Wastewater Production in a Beef Packing Plant. Master’s Thesis, University of Nebraska–Lincoln, Lincoln, NE, USA, 2021. [Google Scholar]
- Asgharnejad, H.; Nazloo, E.K.; Larijani, M.M.; Hajinajaf, N.; Rashidi, H. Comprehensive review of water management and wastewater treatment in food processing industries in the framework of water-food-environment nexus. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4779–4815. [Google Scholar] [CrossRef]
- Kolev, S.A. Dairy Wastewaters—General Characteristics and Treatment Possibilities—A Review. Food Technol. Biotechnol. 2017, 55, 14–28. [Google Scholar]
- Rosenwinkel, K.H.; Haun, U.A.; Köster, S.; Beier, M. Taschenbuch der Industrieabwasserreinigung, 2nd ed.; Vulkan Verlag GmbH: Essen, Germany, 2020. [Google Scholar]
- Couto, H.J.B.; Melo, M.V.; Massarani, G. Treatment of milk industry effluent by dissolved air flotation. Brazilian J. Chem. Eng. 2004, 21, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Okoro, O.V.; Sun, Z.; Birch, J. Meat processing dissolved air flotation sludge as a potential biodiesel feedstock in New Zealand: A predictive analysis of the biodiesel product properties. J. Clean. Prod. 2014, 168, 1436–1447. [Google Scholar] [CrossRef]
- Sakaveli, F.; Petala, M.; Tsiridis, V.; Darakas, E. Enhanced Mesophilic Anaerobic Digestion of Primary Sewage Sludge. Water 2021, 13, 348. [Google Scholar] [CrossRef]
- Long, J.H.; Aziz, T.N.; Reyes, F.L.; Ducoste, J.J. Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations. Process Saf. Environ. Prot. 2012, 90, 231–245. [Google Scholar] [CrossRef]
- Shi, W.; Healy, M.G.; Ashekuzzaman, S.M.; Daly, K.; Leahy, J.J.; Fenton, O. Dairy processing sludge and co-products: A review of present and future re-use pathways in agriculture. J. Clean. Prod. 2021, 314, 128035. [Google Scholar] [CrossRef]
- Basile, A.; Dalena, F. Second and Third Generation of Feedstocks: The Evolution of Biofuels, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–619. [Google Scholar]
- Xu, F. Structure, Ultrastructure, and Chemical Composition. In Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels; Elsevier: Amsterdam, The Netherlands, 2010; pp. 9–47. [Google Scholar]
- McCarthy, A.J.; MacDonald, M.J.; Paterson, A.; Broda, P. Degradation of [14C] Lignin-labelled Wheat Lignocellulose by White-rot Fungi. Microbiology 1984, 130, 1023–1030. [Google Scholar] [CrossRef] [Green Version]
- Mechichi, T.; Patel, B.K.; Sayadi, S. Anaerobic degradation of methoxylated aromatic compounds by Clostridium methoxybenzovorans and a nitrate-reducing bacterium Thauera sp. strain Cin3,4. Int. Biodeterior. Biodegrad. 2005, 56, 224–230. [Google Scholar] [CrossRef]
- Wu, Y.R.; He, J. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Bioresour. Technol. 2013, 139, 5–12. [Google Scholar] [CrossRef]
- Duan, J.; Huo, X.; Du, W.J.; Liang, J.D.; Wang, D.Q.; Yang, S.C. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2. Lett. Appl. Microbiol. 2016, 62, 55–62. [Google Scholar] [CrossRef]
- Ahmad, M.; Roberts, J.N.; Hardiman, E.M.; Singh, R.; Eltis, L.D.; Bugg, T.D. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 2011, 50, 5096–5107. [Google Scholar] [CrossRef]
- Woo, H.L.; Ballor, N.R.; Hazen, T.C.; Fortney, J.L.; Simmons, B.; Davenport, K.; DeAngelis, K.M. Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2. Stand. Genom. Sci. 2014, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Mezule, L.; Civzele, A. Bioprospecting White-Rot Basidiomycete Irpex lacteus for Improved Extraction of Lignocellulose-Degrading Enzymes and Their Further Application. J. Fungi 2020, 6, 256. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Reyes, F.L.; He, X. Fat, oil, and grease (FOG) deposits yield higher methane than FOG in anaerobic co-digestion with waste activated sludge. J. Environ. Manag. 2020, 268, 110708. [Google Scholar] [CrossRef] [PubMed]
- Razaviarani, V.; Buchanan, I.D.; Malik, S.; Katalambula, H. Pilot-scale anaerobic co-digestion of municipal wastewater sludge with restaurant grease trap waste. J. Environ. Manag. 2013, 123, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Klaucans, E.; Sams, K. Problems with Fat, Oil, and Grease (FOG) in Food Industry Wastewaters and Recovered FOG Recycling Methods Using Anaerobic Co-Digestion: A Short Review. Key Eng. Mater. 2018, 762, 61–68. [Google Scholar] [CrossRef]
- Ziels, R.M.; Karlsson, A.; Beck, D.A.C.; Ejlertsson, J.; Yekta, S.S.; Bjorn, A.; Svensson, B.H. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Res. 2016, 103, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donoso-Bravo, A.; Fdz-Polanco, M. Anaerobic co-digestion of sewage sludge and grease trap: Assessment of enzyme addition. Process Biochem. 2013, 48, 936–940. [Google Scholar] [CrossRef]
- Jeganathan, J.; Nakhla, G.; Bassi, A. Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater. Environ. Sci. Technol. 2006, 40, 6466–6472. [Google Scholar] [CrossRef]
- Salama, E.S.; Saha, S.; Kurade, M.B.; Dev, S.; Chang, S.W.; Jeon, B.H. Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Prog. Energy Combust. Sci. 2019, 70, 22–42. [Google Scholar] [CrossRef]
- Kabouris, J.C.; Tezel, U.; Pavlostathis, S.G.; Engelman, M.; Todd, A.C.; Gillette, R.A. The Anaerobic Biodegradability of Municipal Sludge and Fat, Oil, and Grease at Mesophilic Conditions. Water Environ. Res. 2008, 80, 212–221. [Google Scholar] [CrossRef]
- Palatsi, J.; Laureni, M.; Andrés, M.; Flotats, X.; Nielsen, H.; Angelidaki, I. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour. Technol. 2009, 100, 4588–4596. [Google Scholar] [CrossRef]
- Kurade, M.B.; Saha, S.; Rae Kim, J.; Roh, H.S.; Jeon, B.H. Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease. Bioresour. Technol. 2019, 296, 122294. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Dong, B.; Jin, J.; Dai, X. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis. PLoS ONE 2014, 9, e102548. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Zhou, Q.; Fu, G.; Li, Y. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manag. 2011, 31, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.Z.; Smidt, H.; Alves, M.M.; Stams, A.J.M. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol. Ecol. 2009, 68, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Yalkowky, S.H.Y.; Jain, P. Handbook of Aqueous Solubility Data; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016; p. 820. [Google Scholar]
- Harris, P.W.; Schmidt, T.; McCabe, B.K. Bovine bile as a bio-surfactant pre-treatment option for anaerobic digestion of high-fat cattle slaughterhouse waste. J. Environ. Chem. Eng. 2018, 6, 444–450. [Google Scholar] [CrossRef]
- Garavand, F.; Jalai-Jivan, M.; Assadpour, E.; Jafari, S.M. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem 2021, 1, 130376. [Google Scholar] [CrossRef]
- He, Q.; Xu, P.; Zhang, C.; Zeng, G.; Liu, Z.; Wang, D.; Duan, A. Influence of surfactants on anaerobic digestion of waste activated sludge: Acid and methane production and pollution removal. Crit. Rev. Biotechnol. 2019, 39, 746–757. [Google Scholar] [CrossRef]
- Yuan, Q.; Sparling, R.; Oleszkiewicz, J.A. VFA generation from waste activated sludge: Effect of temperature and mixing. Chemosphere 2011, 82, 603–607. [Google Scholar] [CrossRef]
- Guan, R.; Yuan, X.; Wu, Z.; Wang, H.; Jiang, L.; Li, Y.; Zeng, G. Functionality of surfactants in waste-activated sludge treatment: A review. Sci. Total Environ. 2017, 609, 1433–1442. [Google Scholar] [CrossRef]
- Cadoret, A.; Conrad, A.; Block, J.C. Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzym. Microb. Technol. 2002, 31, 179–186. [Google Scholar] [CrossRef]
- Andole, O.H.; Lei, Z.; Zhang, Z.; Raude, J.; Kanali, K. Optimization of Biogas Production in Dry Anaerobic Digestion of Swine Manure by the Use of Alkalinity Index to Monitor a Prototype Cylindrical Digester. Sustain. Energy 2017, 5, 32–37. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency Office of Water (4303T). Method 1664, Revision B: n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-Polar Material) by Extraction and Gravimetry; U.S. Environmental Protection Agency Office of Water: Washington, DC, USA, 2010.
- Gurd, C.; Jefferson, B.; Villa, R.; Rodriguez, C.C. Determination of fats, oils and greases in food service establishment wastewater using a modification of the Gerber method. Water Environ. J. 2018, 34, 5–13. [Google Scholar] [CrossRef]
- Weerasuriya Arachchige, A.R.P.P.; Mezule, L.; Juhna, T. Separation of reducing sugars from lignocellulosic hydrolysate: Membrane experiments & systemdynamic modelling. Agron. Res. 2020, 18, 1099–1106. [Google Scholar]
- Jingura, R.M.; Kamusoko, R. Methods for determination of biomethane potential of feedstocks: A review. Biofuel Res. J. 2017, 14, 573–586. [Google Scholar] [CrossRef]
- Lili, M.; Biró, G.; Sulyok, E.; Peti, M.; Borbély, J.; Tamás, J. Novel approach on the bassis of FOS/TAC method. In Proceedings of the International Symposium ”Risk Factors for Environment and Food Safety “&” Natural Resources and Sustainable Development “&” 50 Years of Agriculture Research in Oradea”, Oradea, Romania, 4–5 November 2011; pp. 802–807. [Google Scholar]
- Skripsts, E.; Mezule, L.; Klaucans, E.; Romanovska, E. Enhancing enzymatically treated hay substrate biomethane potential using biodegradable surfactants. Eng. Rural. Dev. 2021, 20, 863–871. [Google Scholar]
- Kim, S.H.; Han, S.K.; Shin, H.S. Kinetics of LCFA Inhibition on Acetoclastic Methanogenesis, Propionate Degradation and β-Oxidation. J. Environ. Sci. Health Part A 2004, 39, 1025–1037. [Google Scholar] [CrossRef]
- Sosa, O.; Schauer, P. Effect of Fat, Oil and Grease (FOG) on digested sludge dewaterability. In Proceedings of the 93rd Water Environment Federation Technical Exhibition and Conference 2020, WEFTEC, New Orleans, LA, USA, 3–7 October 2020; pp. 1500–1513. [Google Scholar]
- Zhu, K.; Zhang, L.; Mu, L.; Ma, J.; Li, C.; Li, A. Anaerobic digestion of surfactant and lipid co-existing organic waste: Focusing on the antagonistic enhancement. Chem. Eng. J. 2019, 371, 96–106. [Google Scholar] [CrossRef]
Parameter | Meat Production Wastewater | Dairy Wastewater | ||
---|---|---|---|---|
Beef | Poultry | Pork | ||
COD, mg/L | 4220 | 950 | 4310 | 2131 |
BOD, mg/L | 1209 | 400 | - | 1536 |
TN, mg/L | 427 | 80 | 275 | 273 |
TP | - | - | - | 60 |
TSS, mg/L | 1164 | 240 | 1240 | - |
FOG, g/L | 0.120 | 0.125 | 0.2–2.88 [13] |
Parameter | DWW DAF Primary Sludge | MPWW DAF Primary Sludge | ||
---|---|---|---|---|
Literature Value [19] | This Study * | Literature Value [16] | This Study * | |
Dry mater (DM)% of Wt. | 25.9 | 11.96 | 91.37 | 53.67 ± 0.81 |
OM (% of DM) | 46.9 | 9.52 | 69 | 53.63 ± 0.93 |
pH | 7.2 | 7.4 | 8.23 | 7.2 ± 0.1 |
TN (g/kg) | 19.5 | x | n/a | x |
TP (g/kg) | 65.9 | x | n/a | x |
TC (total carbon) (g/kg) | 24.3 | x | 45.58 (dry basis) | x |
Lipid content (wt% dry sludge) | x | x | 12.98 | x |
n-Hexane extractable substances (wt% of DM) | x | 14.21 | x | 82.32 ± 3.76 |
Sample ID | VS Total Loaded, (g/kg) | Inoculum VS, (gVS/kg) | GEHL, (gVS/kg) | DWW DAF Sludge, (gVS/kg) | MPWW DAF Sludge, (gVS/kg) | SAS, ppm | Substrate BMP, mLCH4/gVS |
---|---|---|---|---|---|---|---|
BHW 2.5% | 34.9 | 34 | 0.9 | X | X | X | 39.8 |
BHW 5% | 35.7 | 34 | 1.7 | X | X | X | 39.8 |
BHW 7% | 34.6 | 32.3 | 2.3 | X | X | X | 106.1 |
BHW 13% | 36.5 | 32.3 | 4.2 | X | X | X | 106.1 |
DWW DAF 10% | 34.0 | 32.4 | X | 1.6 | X | X | 94.8 |
DWW DAF 20% | 35.6 | 32.4 | X | 3.2 | X | X | 94.8 |
DWW DAF 30% | 37.3 | 32.4 | X | 4.9 | X | X | 94.8 |
DWW DAF 40% | 37.9 | 32.4 | X | 5.5 | X | X | 94.8 |
MPWW DAF 10% | 30.3 | 27.5 | X | X | 2.75 | X | 52.4 |
MPWW DAF 20% | 33.0 | 27.5 | X | X | 5.5 | X | 52.4 |
MPWW DAF 30% | 35.8 | 27.5 | X | X | 8.3 | X | 52.4 |
DWW DAF 10%/0.1% SAS | 33.4 | 30.3 | X | 3.03 | X | 100 | 80.5 |
DWW DAF 10%/0.2% SAS | 33.5 | 30.3 | X | 3.03 | X | 200 | 80.5 |
DWW DAF 10% | 33.3 | 30.3 | X | 3.03 | X | X | 80.5 |
MPWW DAF 10%/0.2% SAS | 44.8 | 40.6 | X | 4.1 | X | 100 | 61.5 |
MPWW DAF 10%/0.4% SAS | 44.9 | 40.6 | X | 4.1 | X | 200 | 61.5 |
MPWW DAF 10% | 44.7 | 40.6 | X | 4.1 | X | X | 61.5 |
DWW DAF 10%/BHW 2.5%/SAS 0.2% | 33.1 | 29.3 | 0.7 | 2.9 | X | 200 | 106.3 |
DWW DAF 10%/BHW 5%/SAS 0.2% | 33.9 | 29.3 | 1.5 | 2.9 | X | 200 | 106.3 |
MPWW DAF 10%/BHW 2.5%/SAS 0.2% | 38.5 | 34.0 | 0.9 | X | 3.4 | 200 | 39.8 |
MPWW DAF 10%/BHW 5.0%/SAS 0.2% | 39.3 | 34.0 | 1.7 | X | 3.4 | 200 | 39.8 |
Sample ID | Inoculum BMP, mLCH4/gVS | Sample BMP, mLCH4/gVS | 75% BMP Output, Days |
---|---|---|---|
BHW 13% | 39.8 ± 1.8 | 473.2 ± 5.8 | 15 |
BHW 7% | 39.8 ± 1.8 | 210.2 ± 25.1 | 10 |
BHW 5% | 106.1 ± 5.3 | 549.7 ± 25.1 | 8 |
BHW 2.5% | 106.1 ± 2.3 | 549 ± 42.7 | 4 |
DWW DAF 40% | 94.8 ± 4.8 | 510.0 ± 30.2 | 19 |
DWW DAF 30% | 94.8 ± 4.8 | 593.1 ± 48.5 | 18 |
DWW DAF 20% | 94.8 ± 4.8 | 597.4 ± 19.2 | 15 |
DWW DAF 10% | 94.8 ± 4.8 | 690.7 ± 54.8 | 14 |
MPWW DAF 30% | 52.4 ± 5.3 | 834.7 ± 25.8 | 28 |
MPWW DAF 20% | 52.4 ± 5.3 | 1077.1 ± 45.0 | 18 |
MPWW DAF 10% | 52.4 ± 5.3 | 979.9 ± 37.3 | 10 |
DWW DAF 10% VS 0.1% SAS | 80.5 ± 3.4 | 607.2 ± 12.4 | 21 |
DWW DAF 10% VS 0.2% SAS | 80.5 ± 3.4 | 629.4 ± 10.2 | 21 |
DWW DAF 10% | 80.5 ± 3.4 | 440.8 ± 61.7 | 19 |
MPWW DAF 10% VS + SAS 0.1% | 61.5 ± 2.1 | 1531.1 ± 50.2 | 12 |
MPWW DAF 10% VS + SAS 0.2% | 61.5 ± 2.1 | 1764.9 ± 55.4 | 14 |
MPWW DAF 10% | 61.5 ± 2.1 | 1374.5 ± 47.6 | 15 |
DWW DAF 10%/BHW 2.5%/SAS 0.2% | 106.3 ± 4.2 | 534.3 ± 25.8 | 15 |
DWW DAF 10%/BHW 5.0%/SAS 0.2% | 106.3 ± 4.2 | 470.7 ± 6.2 | 16 |
MPWW DAF 10%/BHW 2.5%/SAS 0.2% | 39.8 ± 1.8 | 739.5 ± 22.8 | 10 |
MPWW DAF 10%/BHW 5.0%/SAS 0.2% | 39.8 ± 1.8 | 574.3 ± 50.2 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skripsts, E.; Mezule, L.; Klaucans, E. Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers. Energies 2022, 15, 4333. https://doi.org/10.3390/en15124333
Skripsts E, Mezule L, Klaucans E. Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers. Energies. 2022; 15(12):4333. https://doi.org/10.3390/en15124333
Chicago/Turabian StyleSkripsts, Eriks, Linda Mezule, and Elvis Klaucans. 2022. "Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers" Energies 15, no. 12: 4333. https://doi.org/10.3390/en15124333
APA StyleSkripsts, E., Mezule, L., & Klaucans, E. (2022). Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers. Energies, 15(12), 4333. https://doi.org/10.3390/en15124333