Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review
Abstract
:1. Introduction
1.1. Current Reviews on FDD in Building Systems
1.2. Shortcomings
1.3. Contribution and Structure of the Review
- Glossary framework—a systematic and scientifically designed review of the existing terminology and definitions in the field of FD and FDD in building systems to provide a clear explanation of the applied terms, their context, and examples of use.
- Coherent classification framework—using the Energy System Terminology (EST) group developed by Andersen et al. [33]. Further, a novel classification of the existing body of literature on FDD frameworks in building systems is introduced.
- Applied data and FDD codes—a cornerstone in FDD is the availability of the data and the algorithms to treat it. Therefore, a comprehensive analysis aimed to provide awareness of the available data and codes and diversity across data and codes descriptions.
- The future directions are discussed to present potential future research outlooks.
2. Methodology
3. Results of the Review, Part I: Terminology and Categorization of FDD Methods
3.1. FDD Terminology
3.1.1. The Classical FDD Framework and Related Fields
3.1.2. A Suggestion for a Common FDD Framework
3.2. Method Categorizations for FDD
3.2.1. Data-Based Methods
3.2.2. Model-Based Methods
3.2.3. Hybrid Methods
4. Results of the Review, Part II: FDD in Building Systems
4.1. Overview of the Articles
4.2. Categorization of the Articles
4.3. Modeling Approach
4.4. Algorithm Distribution
Energy System Terminology Category | Fault Detection | Two-Step Fault Detection and Diagnosis (Fault Detection/Diagnosis) | One-Step Fault Detection and Diagnosis |
---|---|---|---|
Energy conversion | |||
CHS | (11 Articles) | (1 Article) | (8 articles) |
PCA (3) [81,82,83] | - | BN (2) [124,125] | |
CCS | (24 articles) | (26 articles) | (41 articles) |
PCA (6) [82,84,85,86,87,88] | Gray-box model/Expert ruleset (2) [111,112] | SVM (9) [56,57,94,95,96,100,101,104,105] | |
- | - | Residuals + fault-pattern analysis (2) [126,127] | |
TU/AC | (1 article) | (2 articles) | (9 articles) |
- | - | DT (2) [64,92] | |
Energy distribution | |||
AHU | (23 articles) | (18 articles) | (34 articles) |
CB (2) [121,128] | PCA + Q-statistics/Q-contribution plot (2) [89,90] | Ruleset (4) [49,113,114] | |
- | - | Fuzzy model + degree of belief (2) [129,130] | |
- | - | Hidden Markov model (HMM) (2) [131,132] | |
- | - | WNN (2) [133,134] | |
CCS | (1 article) | (0 articles) | (1 article) |
- | - | - | |
TU/AC | (2 articles) | (1 article) | (4 articles) |
Model + Residuals (2) [41,135] | - | Residuals (2) [42,43] | |
Energy use | |||
WB | (13 articles) | (7 articles) | (4 articles) |
Cart + (various) (4) [55,61,123,136] | - | - |
5. Results of the Review, Part III: The Importance of Driving Research Innovation
5.1. Datasets and Code
5.2. Do Available Datasets Drive the Research?
5.2.1. Dataset Analysis
5.2.2. Performance Evaluation Metrics
5.3. Current Dataset and Code Repositories
6. Discussion of Key Findings
6.1. A Uniform FDD Framework—A Utopia or within Reach?
6.2. What Are the Common Algorithms Used for FDD in Building Systems?
6.3. How to Drive the Research Innovation and Increase the Reproducibility of FDD in Building Systems
7. Conclusions and Suggestions for Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
General Abbreviations | |||
Name | Abbreviation | Name | Abbreviation |
Air conditioning system | AC | Feature engineering | FEng |
Automatic fault detection | AFD | Fault-relevant features | FF |
Automatic fault detection and diagnosis | AFDD | Fault identification | FId |
Automatic fault detection, diagnosis, and evaluation | AFDD&E | Fault impact analysis | FIA |
Active fault-tolerant control | AFTC | Fault isolation | FIs |
Air-handling unit | AHU | Fault-tolerant control | FTC |
Centralized cooling system | CCS | Heat pump | HP |
Centralized heating system | CHS | Heating, ventilation, and air conditioning | HVAC |
Control reconfiguration | ConRec | International Energy Agency | IEA |
Cumulative sum | CUSUM | International Energy Agency’s Energy in Buildings and Communities Programme | IEA-EBC |
Energy system terminology | EST | Indoor environmental quality | IEQ |
European Union | EU | Key performance indicator | KPI |
Fault detection | FD | Machine learning | ML |
Fault detection and diagnosis | FDD | Preferred Reporting Items for Systematic Reviews and Meta-Analyses | PRISMA |
Fault detection, diagnosis, and evaluation | FDD&E | Terminal unit | TU |
Fault evaluation | FE | Whole building | WB |
FDD evaluation metric abbreviations | |||
Name | Abbreviation | Name | Abbreviation |
Correct rate | CR | Matthews correlation coefficient | MCC |
F1-score | F1 | Missed detection rate | MDR |
Fake-alarm rate | FaAR | Macro-F1 | MF1 |
False-diagnosis rate | FaDR | Misclassification rate | MisCR |
False-alarm rate | FAR | Misdiagnosed normal rate | MisNR |
Fault-detection rate | FDR | Misdiagnosed alarm rate | MisR |
False-negative rate | FNR | Precision | PREC |
False-positive rate | FPR | Recall | REC |
FDD algorithm abbreviations | |||
Name | Abbreviation | Name | Abbreviation |
Auto-associative neural network | AANN | Gordon-Ng model | GN |
Adaptive synthetic sampling approach | ADASYN | Gaussian process | GP |
Auto encoder | AE | Gradient penalty | GPEN |
Adaptive forgetting through multiple models | AFMM | Hidden Markov model | HMM |
Adaptive genetic algorithm | AGA | Hidden semi-Markov model | HSMM |
Adaptive Gaussian mixture model | AGMM | Isolated forest | IF |
Adaptive neuro-fuzzy inference system | ANFIS | Joint angle analysis | JAA |
Artificial neural network | ANN | Kernelized discriminant analysis | KDA |
Self-adapting principal component analysis | APCA | Kernel entropy component analysis | KECA |
Auto-regressive integrated moving average | ARIMA | Kalman filter | KF |
Association rule mining | ARM | K-means | K-means |
Autoregressive moving average with exogenous input | ARMAX | K-nearest neighbor | KNN |
Analytical redundancy relations | ARR | Kriging | KRG |
Autoregressive with exogenous input | ARX | Linear discriminant analysis | LDA |
Adaptive symbolic aggregate approximation | aSAX | Linear regression | LIR |
Unscented Kalman filter | AUK | Logistic regression | LR |
Basic ensemble method | BEM | Least squares | LS |
Bayesian interference | BI | Long short-term memory | LSTM |
Bayesian network | BN | Multiconvolutional neural network | MCNN |
Back-propagation neural network | BPNN | Multilayer perceptron | MLP |
Borderline synthetic minority oversampling technology | BSM | Multiple linear regression | MLR |
Class association rules | CAR | Multiclass neural network | MNN |
Classification and regression tree | CART | Mixture of probabilistic principal component analysis | MPPCA |
Classification based on association | CBA | Multiregion XGBoost | MR-XGBoost |
Complete ensemble empirical mode decomposition | CEEMD | Multiscale interval-valued principal component analysis | MSIPCA |
Cascade forest | CF | Multiscale interval principal component analysis | MSIPCA |
Complex fuzzy principal component analysis | CFPCA | Nonlinear autoregressive with exogenous input | NARX |
Convolutional neural network | CNN | Naïve Bayes | NB |
Change point detection | CPD | Naïve Bayes classifier | NBC |
Cuckoo search | CS | Neural network | NN |
Conditional Wasserstein | CW | Partitioning around medoids | PAM |
Conditional Wasserstein generative adversarial network | CWGAN | Principal component analysis | PCA |
Data-temporal attention network | DAN | Partial least squares | PLS |
Decoupling-based | DB | Probabilistic neural network | PNN |
Diagnostic Bayesian network | DBN | Pattern-recognition-enhanced sensor fault detection and diagnosis | Pre-SFDD |
Deep belief network | DBNN | Quantitative association rule mining | QARM |
Density-based spatial clustering of applications with noise | DBSCAN | Residual subspace (from PCA) | R |
Distributed clustering | DC | Recursive autoregressive with exogenous input | RARX |
Differential evolution | DE | Radial basis function | RBF |
Discrete events system | DES | Resistor–capacitor | RC |
Deep neural network | DNN | Reconstruction based | RCB |
D-S evidence theory | DSET | Recurrent cerebellar model articulation controller | RCMAC |
Decision tree | DT | Recursive deterministic perceptron | RDP |
Dynamic Bayesian network | DYBN | Random forest | RF |
Evolutionary double attention | EDA | Random forest classifier | RFC |
Encoder–decoder network | EDN | Recursive feature elimination and cross-validation | RFECV |
Ensemble empirical mode decomposition | EEMD | Recursive one-class support vector machine | ROSVM |
Extended Kalman filter | EKF | Rough sets | RS |
Expert knowledge-based unseen fault identification | EK-UFI | Simulated annealing | SA |
Extreme learning machine | ELM | Supervised auto encoder | SAE |
Ensemble diagnostic model | EMD | Stochastic gradient descent with momentum | SGDM |
Elman neural network | ENN | Simple linear regression | SLR |
Extra trees | ET | Synthetic minority oversampling technology | SMOTE |
Entropy weighting k-means | EWKM | Shallow neural network | SNN |
Exponentially weighted moving average | EWMA | Self-production | SP |
Fractal correlation dimension | FCD | Statistical process control | SPC |
Fault detection | FD | Principal component analysis with statistical data cleaning | SPCA |
Fisher discriminant analysis | FDA | Square prediction error | SPE |
Fault detection and diagnosis | FDD | Semisupervised kernelized discriminant analysis | SSKDA |
Failure mode and effect analysis | FEMA | Semisupervised linear discriminant analysis | SSLDA |
Feed-forward neural network | FFNN | Steady-state qualitative zones | SSQZ |
Feature importance | FI | Support vector data description | SVDD |
Fuzzy inference system | FIS | Sensor validity index | SVI |
Fisher linear discriminant analysis | FLDA | Support vector machine | SVM |
Fuzzy principal component analysis | FPCA | Support vector regression | SVR |
Fuzzy reasoning | FR | Threshold denoising | TD |
Genetic algorithm | GA | Tree-structured fault-dependence kernel | TFDK |
Generative adversarial network | GAN | Univariate feature selection | UFS |
General diagnostics engine | GDE | Variational autoencoder | VAE |
Generalized extreme studentized deviate | GESD | Wavelet analysis | WA |
Generalized likelihood ratio test | GLRT | Wavelet neural network | WNN |
Gaussian mixture model | GMM | Extreme gradient boost | XGBoost |
Gaussian mixture regression | GMR |
Appendix A. FDD Algorithm and Building System Encyclopedia
Ref ID/Ref. | Year Published | Component | Fault Detection | Fault Diagnosis |
---|---|---|---|---|
General CHS articles | FD | |||
536 [115] | 2020 | Electrical heating | ARX + residuals; RF + residuals | |
702 [81] | 2018 | Heating reactor; industrial component | PCA + Fisher score + Threshold | |
713 [109] | 2018 | ANN + residuals | ||
437 [201] | 2013 | Solar collector | Feature generation + change detection + residuals | |
1426 [202] | 2008 | Residuals | ||
General CHS articles | One-step FDD | |||
93 [106] | 2020 | MSIPCA+KNN; MSIPCA+SVM | ||
967 [103] | 2019 | Solar heater | SVM + DSET | |
General CHS articles | Two-step FDD | |||
1654 [203] | 2003 | Open window; radiator valve | Characteristic parameter + residuals + threshold | Adaptive model + residuals |
Heat pump articles | FD | |||
71 [65] | 2020 | Heat pump | LR; KNN; CART; RFC; NBC; SVM; MLP | |
111 [60] | 2019 | Air-source heat pump | CNN | |
724 [82] | 2017 | Reversible heat pump; sensor | PCA; FPCA; CFPCA | |
785 [204] | 2016 | Heat pump; geothermal heat exchanger | MLP; DT; FLDA | |
1218 [74] | 2010 | Heating energy use; heat pump; underfloor heating | Statistical analysis + threshold; ruleset; residuals | |
1397 [83] | 2008 | Air-source reversible heat pump | PCA + SPE + threshold | |
Heat pump articles | One-step FDD | |||
265 [205] | 2017 | Sensor; actuator; heat pump | “Agents” + residuals + threshold | |
Both boiler and heat pump articles | One-step FDD | |||
49 [118] | 2020 | Gas boiler; heat pump; aquifer thermal energy storage | DBN | |
114 [124] | 2019 | BN | ||
Boiler articles | One-step FDD | |||
525 [98] | 2020 | Boiler | KNN; DT; RF; SVM | |
278 [125] | 2017 | Boiler; pump; radiator | BN | |
286 [45] | 2017 | Condensing boiler | Residuals |
Ref. ID/Ref. | Year Published | Component | Fault Detection | Fault Diagnosis |
---|---|---|---|---|
CCS articles | FD | |||
553 [206] | 2020 | Energy; ground source chiller | CEEMD-LSTM | |
157 [176] | 2019 | Sensor; chiller | EEMD + PCA | |
174 [177] | 2018 | Sensor; chiller | EMD + TD + PCA | |
193 [84] | 2018 | Chillers | PCA + BN | |
713 [109] | 2018 | ANN + residuals | ||
724 [82] | 2017 | Reversible heat pump; sensor | PCA; FPCA; CFPCA | |
344 [52] | 2016 | Heat-exchanger system | Residuals + threshold (t-statistics) | |
315 [85] | 2016 | Sensor; chiller | PCA | |
337 [164] | 2016 | Chillers | PCA + R + SVDD | |
339 [86] | 2016 | Sensor; chiller; sensitivity analysis | PCA | |
349 [178] | 2016 | Sensor; chiller | SPCA | |
402 [76] | 2014 | Chiller; cooling tower | SPC limits | |
449 [171] | 2013 | Chillers | SVDD | |
1029 [207] | 2013 | Cooling tower system; chillers; heat-exchanger system | Performance index + SVR + EWMA control charts | |
463 [180] | 2012 | Sensor; chiller | APCA + Q-residuals + threshold | |
1366 [208] | 2010 | Condenser cooling water systems | Performance index + residuals + threshold | |
1382 [88] | 2008 | Cooling tower systems; chillers; sensor; heat exchangers; pumps | PCA | |
1397 [83] | 2008 | Air-source reversible heat pump | PCA + SPE + threshold | |
1432 [209] | 2008 | Sensor; chiller | Wavelet analysis | |
1468 [210] | 2006 | Chillers | Kalman filter + residuals + threshold | |
1485 [211] | 2005 | Chillers | ANFIS | |
1663 [212] | 2002 | Chillers | ARIMA + threshold | |
1886 [213] | 1996 | Sensor; heat exchanger; pump control | DES | |
CCS articles | One-step FDD | |||
15 [166] | 2021 | Chillers | Semi-GAN | |
18 [161] | 2021 | Chillers | SP-CNN | |
20 [152] | 2021 | Chillers | SVR+BN | |
21 [153] | 2021 | Chillers | KECA | |
27 [154] | 2021 | Chillers | Bayesian network | |
28 [155] | 2021 | Chillers | SA-DNN | |
495 [214] | 2021 | Chillers | XGBoost + CART + mean shift clustering + Euclidean distance | |
37 [184] | 2020 | Chillers | Pre-SFDD | |
41 [185] | 2020 | Sensor; chiller plant | Bayesian | |
42 [156] | 2020 | Chillers | EMD | |
49 [118] | 2020 | Heat pump; aquifer thermal energy storage | DBN | |
63 [59] | 2020 | Chillers | CBA | |
92 [56] | 2020 | Chillers | SVM | |
101 [94] | 2020 | Chillers | RF; SVM; DT; NBC; MLP; KNN; LR | |
556 [100] | 2020 | Chillers; unbalanced dataset | ADASYN-SVM; BSM-SVM; SMOTE-SVM | |
572 [101] | 2020 | Chillers | CWGAN-SVM | |
122 [215] | 2019 | Sensor; chiller | DAN + threshold | |
126 [95] | 2019 | Chillers | SVM | |
139 [96] | 2019 | Chillers | LS-SVM | |
149 [188] | 2019 | Chiller | XGBoost + threshold | |
176 [181] | 2018 | Sensor | Penalty function + residuals | |
205 [160] | 2018 | Chillers | ARM + CAR | |
207 [75] | 2018 | Chillers | GMR-AUK | |
711 [150] | 2018 | Chiller | BPNN; PNN | |
279 [216] | 2017 | Chillers | MPPCA | |
755 [70] | 2017 | Chillers | ROSVM-EKF | |
304 [165] | 2016 | Chillers | MLR-EWMA; KRG-EWMA; RBF-EWMA | |
306 [169] | 2016 | Chillers | DE-LSSVR-EWMA | |
319 [158] | 2016 | Chillers | LDA | |
321 [163] | 2016 | Chillers | TFDK | |
353 [190] | 2015 | Chillers | RBF-EWMA | |
837 [217] | 2015 | Vapor compression refrigerant system | FIS; ANN | |
396 [218] | 2014 | Chillers | UKF | |
399 [57] | 2014 | Chillers | SVM-ARX; SVM; SVM-MLR; MLP-ARX | |
1407 [162] | 2011 | Centrifugal chillers | Performance index + FR + ANN | |
1517 [173] | 2011 | Chillers | Lumped physical GN + parameter tracking | |
1361 [104] | 2010 | Chillers | Multiclass SVM | |
1362 [105] | 2010 | Chillers | Multiclass SVM | |
1436 [48] | 2008 | Chiller | Ruleset + performance index + residuals + threshold | |
1318 [219] | 2002 | Chillers | NN classifier | |
1679 [126] | 2001 | Chillers | Residuals + fault-pattern analysis | |
1683 [127] | 2000 | Chillers | Residuals + fault-pattern analysis | |
1970 [186] | 1999 | Sensor; chiller plant | Bias estimator + confidence interval | |
CCS articles | Two-step FDD | |||
6 [53] | 2021 | Chilled water pump system; condenser water pump system; cooling tower system; chiller system | Association rules | Expert knowledge |
7 [220] | 2021 | Chillers | MNN | LR (logistic regression) |
189 [175] | 2018 | Sensor; chiller | DBSCAN + PCA + threshold | Contribution analysis |
994 [221] | 2017 | Chillers | Standard deviation of virtual sensor | Virtual sensor + residuals |
305 [179] | 2016 | Sensor; chiller | SVDD-D statistic | SVDD-DV contribution |
350 [222] | 2016 | Chiller; dehumidifier | NARX+LS-SVM+AGA | Expert knowledge + contribution analysis |
789 [87] | 2016 | Chillers | PCA | RCB |
364 [151] | 2015 | Chillers | MLR residuals; SLR residuals; DB residuals | MLR residual relation; SLR residual relation; DB residual relation |
1123 [112] | 2015 | Chillers | Gray-box model + eigenvalues | Expert ruleset |
407 [168] | 2014 | Chillers | One class SVDD | Multiclass SVDD |
448 [159] | 2013 | Chillers | SVR-EWMA | Fault rule table |
932 [223] | 2012 | Chiller; cooling tower | Residuals + threshold; performance index + residuals + threshold | FD on sublevel + ruleset |
1030 [111] | 2012 | Chillers | Gray-box model + performance index + threshold | Expert ruleset |
1353 [224] | 2011 | Chillers | Gray-box model parameters + threshold (mean and standard deviation averaged over 24 h) | The physical meaning of each parameter |
1560 [170] | 2011 | Chillers | Performance index + residuals + threshold | Ruleset |
1605 [157] | 2011 | Chillers | Performance index + PCA + Q-statistics + threshold + residuals | Contribution analysis |
1448 [225] | 2007 | Sensor; chiller | GLRT | SVM + PCA + PLS |
1621 [167] | 2005 | Chillers | Performance index + residuals + threshold | Fault pattern |
1490 [110] | 2004 | Chillers | ANN + residuals | Expert ruleset |
1495 [91] | 2004 | Chillers | PCA + Q-statistics + threshold | Q-contribution plot |
1504 [226] | 2003 | Chillers | PCA + SPE + threshold | SPE + SVI |
1656 [227] | 2003 | Chillers | Residuals + threshold | Expert ruleset; recursive parameter estimation |
1336 [228] | 2002 | Chillers | GA estimator | Residuals |
1664 [229] | 2002 | Chillers | Residuals + KNN + prototypes and membership functions | Residuals + ruleset |
1341 [230] | 2001 | Chillers | Residuals + threshold | Characteristic quality + threshold |
1867 [231] | 1998 | Chiller; rooftop air conditioner | Probability distribution of residuals + threshold | Fault pattern |
Ref | Year Published | Component | Fault Detection | Fault Diagnosis |
---|---|---|---|---|
TU/AC articles | FD | |||
884 [232] | 2014 | Sensor | FCD + residuals + SVR | |
TU/AC articles | One-step FDD | |||
501 [233] | 2021 | Variable refrigerant flow | BPNN-DT | |
39 [234] | 2020 | Variable refrigerant flow | CF (consists of RF + ET) + IT | |
48 [92] | 2020 | Variable refrigerant flow | DT; SVM (best for single faults); CL; SNN; DNN (best for multiple faults) | |
50 [235] | 2020 | Variable refrigerant flow | GMM-PCA | |
51 [236] | 2020 | Variable refrigerant flow | 1-D CNN; ensemble 1-D CNN | |
96 [64] | 2020 | Fan coil | DT | |
550 [99] | 2020 | Fan coil | K-means + multiclass SVM | |
140 [237] | 2019 | Variable refrigerant flow | CBA + ARM | |
187 [238] | 2018 | Variable refrigerant flow | DBNN | |
285 [239] | 2017 | Variable refrigerant flow | BPNN | |
TU/AC articles | Two-step FDD | |||
962 [240] | 2019 | Sensor; water-source heat pump | PCA + Q statistic + T2 statistic + threshold | Subtractive clustering + K-means clustering + Q statistic + T2 statistic + threshold |
Ref | Year Published | Component | Fault Detection | Fault Diagnosis |
---|---|---|---|---|
AHU articles | FD | |||
119 [241] | 2019 | VAV | Ruleset | |
149 [188] | 2019 | VAV; fan | XGBoost + threshold | |
156 [128] | 2019 | Chernoff bound | ||
637 [121] | 2019 | Electricity use | Chernoff bound | |
975 [242] | 2019 | VAV; heating coil; cooling coil; sensor | NB; RF; DT | |
256 [71] | 2017 | All air system; gas furnace; vapor-compression air conditioner | Deviation in ARX model parameter identified; deviation in ARMAX Model parameter identified | |
260 [243] | 2017 | SVR + GP with residuals | ||
344 [52] | 2016 | Residuals + threshold (t-statistics) | ||
1014 [244] | 2015 | PCA; LDA; KDA; SSLDA; SSKDA | ||
401 [141] | 2014 | Wavelet + PCA + Q-residuals + threshold | ||
408 [58] | 2014 | Pattern matching + PCA + Q-residuals + threshold | ||
476 [245] | 2012 | BN | ||
1569 [147] | 2011 | DYBN + HMM + graphical model + agglomerative clustering algorithm | ||
1219 [246] | 2010 | Sensor | FCD | |
1671 [247] | 2002 | SSQZ; performance index + ruleset; residual analysis + threshold | ||
1543 [248] | 2001 | VAV | RARX + frequency analysis | |
1545 [249] | 2001 | Dual-duct system; sensor; control; heating coil; cooling coil | Feedforward controller from static model + PI controller + residuals + threshold | |
1662 [108] | 2001 | DCV | ANN | |
1854 [116] | 1998 | VAV | ARX; AFMM | |
1985 [250] | 1996 | VAV | GDE | |
1896 [251] | 1996 | Cooling coil | RBF network + residuals + threshold | |
1841 [252] | 1995 | Dampers; heating coil; cooling coil | Constraint suspension | |
1905 [253] | 1994 | Control; sensor | Performance index + threshold (mean and standard deviation) | |
AHU articles | One-step FDD | |||
2 [8] | 2021 | Economizer control; outside air damper; chilled-water and hot-water valve; supply fan | Trend analysis (manual) | |
3 [254] | 2021 | Fan | CS-ELM | |
5 [255] | 2021 | MCNN | ||
13 [143] | 2021 | SAE | ||
45 [49] | 2020 | Ruleset | ||
57 [256] | 2020 | Sensor | AE-BI | |
82 [93] | 2020 | RF; SVM; MLP; KNN; DT | ||
94 [257] | 2020 | Sensor | AANN | |
540 [258] | 2020 | Sensor; calibration | BI | |
562 [120] | 2020 | DCV; IAQ | DBN | |
134 [145] | 2019 | EK-UFI | ||
636 [259] | 2019 | Sensor | DNN | |
971 [260] | 2019 | GMR | ||
176 [181] | 2018 | Sensor | Penalty function + residuals | |
217 [131] | 2018 | HMM | ||
1031 [132] | 2018 | HMM + K-means clustering | ||
235 [73] | 2017 | Semantic model mean vote | ||
274 [146] | 2017 | Dynamic HMM | ||
278 [125] | 2017 | BN | ||
316 [72] | 2016 | APAR | ||
812 [261] | 2016 | Cooling coil; sensor | Fuzzy logic model with residuals | |
373 [97] | 2015 | SVM-ARX | ||
821 [142] | 2015 | NARX-TDNN | ||
823 [262] | 2015 | VAV; sensor | Probabilistic graphical model | |
1587 [134] | 2011 | WNN | ||
1676 [129] | 2011 | Chiller valve; cooling coil | Fuzzy model + degree of belief | |
1408 [133] | 2009 | VAV sensors | WNN | |
1436 [48] | 2008 | Room level; fan | Ruleset + performance index + residuals + threshold | |
1465 [263] | 2006 | Residuals + RS + ANN | ||
1469 [264] | 2006 | Sensor | PCA | |
1516 [265] | 2002 | Preheating process | In situ testing under specific conditions | |
1830 [130] | 1999 | Sensor; cooling coil | Fuzzy model + degree of belief | |
1850 [113] | 1999 | Outdoor air ventilation and economizer operation | Ruleset | |
1851 [266] | 1999 | VAV | ANN; K-nearest; nearest prototype; rule-based; Bayes classifier | |
1853 [114] | 1999 | VAV; cooling coil | Ruleset | |
AHU articles | Two-step FDD | |||
44 [144] | 2020 | aSAX + cSpade (in transient period); aSAX + CART (in nontransient period) | aSAX + CART (in nontransient period) | |
168 [267] | 2018 | Parity relation (residuals) | Profile estimation (residuals) | |
872 [268] | 2014 | Sensor | Combined BPNN + threshold | Subtractive clustering analysis |
1034 [51] | 2012 | Rooftop unit | Relation between variables | Correlation with reference |
1212 [269] | 2011 | VAV | PCA + correlation analysis + threshold | FD on sublevel |
1531 [270] | 2011 | VAV; cooling coil; fan | Analytical model + residuals + threshold; electrical power analysis | Expert knowledge; parameter estimation + threshold [144] |
1229 [271] | 2010 | BPNN | ENN + WA | |
1351 [272] | 2010 | VAV | PCA + residuals + threshold | FD on sublevel |
1412 [273] | 2009 | Residuals | Ruleset | |
1273 [274] | 2007 | VAV; sensor | PCA + Q-statistics + threshold | FDA + Mahalanobis distance |
1268 [275] | 2006 | VAV; sensor | PCA | Contribution plots and JAA (joint-angle analysis) |
1444 [276] | 2006 | Cooling coil; fan | Performance index + residual analysis | SVM |
1452 [277] | 2006 | VAV; chiller | PCA + SPE + threshold | Expert ruleset + joint-angle point |
1615 [90] | 2005 | Sensor | PCA + Q-statistics + threshold | PCA + Q-contribution plot + Ruleset + fault pattern + residuals |
1502 [278] | 2004 | Heating coil; cooling coil | RCMAC + residuals + ruleset | Ruleset |
1498 [89] | 2003 | Sensor | PCA + Q-statistics + threshold | Q-statistic + Q-contribution plot + expert ruleset |
1537 [279] | 2001 | Residuals + t-distribution | Magnitude of residuals + expert knowledge |
Ref | Year Published | Component | Fault Detection | Fault Diagnosis |
---|---|---|---|---|
TU/AC articles | FD | |||
8 [41] | 2021 | RC model + residuals | ||
1326 [135] | 2001 | Room level | Model + residuals +threshold | |
TU/AC articles | One-step FDD | |||
83 [42] | 2020 | VAV; damper | Residuals | |
224 [43] | 2018 | VAV; damper | Residuals | |
264 [280] | 2017 | Sensor; cooling coil | DC + residuals + threshold | |
864 [119] | 2014 | VAV | DBN | |
TU/AC articles | Two-step FDD | |||
328 [281] | 2016 | VAV; damper | Fuzzy logic | Fuzzy logic + ANN |
Ref | Year Published | Component | Fault Detection | Fault Diagnosis |
---|---|---|---|---|
WB articles | FD | |||
4 [282] | 2021 | Energy | EDA-LSTM | |
24 [55] | 2021 | Electricity | DBSCAN + K-means + CART | |
574 [47] | 2020 | Sensors; actuators; BMS; zone | Expert rules from inverse RC model | |
150 [283] | 2019 | Energy | CPD | |
647 [123] | 2019 | Energy use | Change-point model; CART; ANN | |
619 [284] | 2019 | HVAC; sensor; control | PCA; PCA-wavelet | |
190 [61] | 2018 | Energy | CART + aSAX | |
361 [136] | 2015 | Electricity; lighting; total active power | CART + GESD; K-means + GESD; DBSCAN; MLP-BEM | |
366 [117] | 2015 | Energy | Residuals | |
370 [285] | 2015 | Energy | K-means + QARM; PAM + QARM; hierarchical clustering + QARM; EWKM + QARM; fuzzy c-means clustering + QARM | |
1459 [286] | 2006 | Energy | Outlier detection | |
1852 [287] | 1999 | Belief network (collection of NNs) | ||
1922 [107] | 1992 | Electricity | ANN | |
WB articles | One-step FDD | |||
69 [288] | 2020 | Sensor; HVAC | ARR | |
222 [289] | 2018 | HVAC | FEMA | |
811 [102] | 2016 | Meters; electricity | WASVM | |
440 [290] | 2013 | Energy; total; refrigeration; lighting; HVAC; boiler | ANN + residuals | |
441 [291] | 2013 | Energy | RDP | |
909 [50] | 2013 | Energy | Graphical network mode + anomaly score | |
WB articles | Two-step FDD | |||
19 [54] | 2021 | Energy | ANN + CART + “Follow the leader” clustering + residuals | ANN + profile + threshold |
517 [292] | 2020 | Energy | SVM with threshold | SVM |
987 [44] | 2018 | Room level; heating system; AHU | RC model + residuals + threshold | Ruleset |
870 [293] | 2014 | Energy | EnergyPlus model + PCA + Q-residuals | Contribution from variables (covariance) |
1380 [294] | 2009 | Sensor; heating/cooling system billing | PCA + SPE + threshold | SVI + threshold |
References
- IEA; UNEP; GlobalABC. Global Status Report for Buildings and Construction. 2019. Available online: https://www.worldgbc.org/sites/default/files/2019%20Global%20Status%20Report%20for%20Buildings%20and%20Construction.pdf (accessed on 7 June 2022).
- Agora Energiwende European Energy Transition 2030: The Big Picture. 2019. Available online: https://static.agora-energiewende.de/fileadmin/Projekte/2019/EU_Big_Picture/153_EU-Big-Pic_WEB.pdf (accessed on 7 June 2022).
- Menezes, A.C.; Cripps, A.; Bouchlaghem, D.; Buswell, R. Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Appl. Energy 2012, 97, 355–364. [Google Scholar] [CrossRef]
- Mahdavi, A.; Berger, C.; Amin, H.; Ampatzi, E.; Andersen, R.K.; Azar, E.; Barthelmes, V.M.; Favero, M.; Hahn, J.; Khovalyg, D.; et al. The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality? Sustainability 2021, 13, 3146. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Andersen, K.H.; Holøs, S.B.; Yang, A.; Thunshelle, K.; Fjellheim, Ø.; Lund Jensen, R. Impact of Typical Faults Occurring in Demand-controlled Ventilation on Energy and Indoor Environment in a Nordic Climate. E3S Web Conf. 2020, 172, 09006. [Google Scholar] [CrossRef]
- Roth, K.W.; Llana, P.; Feng, M.; Westphalen, D. The Energy Impact of Faults in U.S. Commercial Buildings. Int. Refrig. Air Cond. Conf. Purdue 2004. Available online: https://docs.lib.purdue.edu/iracc/665/ (accessed on 7 June 2022).
- Isazadeh, A.; Kamal, R.; Yagua, C.; Eluvathingal, S.; Claridge, D.E. Detecting deficiencies using building performance data in healthcare facilities: Improving operational efficiency with Continuous Commissioning®. Energy Build. 2021, 241, 110953. [Google Scholar] [CrossRef]
- McKellar, M.G. Failure Diagnosis for a Household Refrigerator. Ph.D. Thesis, Purdue University, West Lafayette, Indiana, 1987. [Google Scholar]
- Katipamula, S.; Brambley, M.R. Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I. HVACR Res. 2005, 11, 3–25. [Google Scholar] [CrossRef]
- Katipamula, S.; Brambley, M.R. Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part II. HVACR Res. 2005, 11, 169–187. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Yuce, B.; Rezqui, Y. Computational intelligence techniques for HVAC systems: A review. Build. Simul. 2016, 9, 359–398. [Google Scholar] [CrossRef]
- Mirnaghi, M.S.; Haghighat, F. Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review. Energy Build. 2020, 229, 110492. [Google Scholar] [CrossRef]
- Kim, W.; Katipamula, S. A review of fault detection and diagnostics methods for building systems. Sci. Technol. Built Environ. 2018, 24, 3–21. [Google Scholar] [CrossRef]
- IEA ANNEX 25 Real Time Simulation of HVAC Systems for Building Optimisation, Fault Detection and Diagnosis Building Optimization and Fault Diagnosis Source Book; Technical Research Centre of Finland, VTT Building Technology: Espoo, Finland, 1996.
- IEA ECBCS Annex 25: Real Time Simulation of HVAC Systems for Building Optimisation, Fault Detection and Diagnostics; ESSU: Coventry, UK, 1999.
- IEA Annex 34 Computer Aided Evaluation of HVAC System Performance Energy Conservation in Buildings and Community Systems; FaberMaunseel Ltd.: Hertfordshire, UK, 2006.
- IEA ECBCS Annex 34: Demonstrating Automated Fault Detection and Diagnosis Methods in Real Buildings; Technical Research Centre of Finland (VTT): Espoo, Finland, 2001.
- IEA EBC ANNEX Subtask C: Applications and Services. Available online: https://annex81.iea-ebc.org/subtasks (accessed on 9 May 2022).
- Hosseini Gourabpasi, A.; Nik-Bakht, M. Knowledge Discovery by Analyzing the State of the Art of Data-Driven Fault Detection and Diagnostics of Building HVAC. CivilEng 2021, 2, 986–1008. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Zhang, X.; Zhang, C. Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renew. Sustain. Energy Rev. 2019, 109, 85–101. [Google Scholar] [CrossRef]
- Li, G.; Hu, Y.; Liu, J.; Fang, X.; Kang, J. Review on Fault Detection and Diagnosis Feature Engineering in Building Heating, Ventilation, Air Conditioning and Refrigeration Systems. IEEE Access 2021, 9, 2153–2187. [Google Scholar] [CrossRef]
- Yu, Y.; Woradechjumroen, D.; Yu, D. A review of fault detection and diagnosis methodologies on air-handling units. Energy Build. 2014, 82, 550–562. [Google Scholar] [CrossRef]
- Rogers, A.P.; Guo, F.; Rasmussen, B.P. A review of fault detection and diagnosis methods for residential air conditioning systems. Build. Environ. 2019, 161, 106236. [Google Scholar] [CrossRef]
- Bellanco, I.; Fuentes, E.; Vallès, M.; Salom, J. A review of the fault behavior of heat pumps and measurements, detection and diagnosis methods including virtual sensors. J. Build. Eng. 2021, 39, 102254. [Google Scholar] [CrossRef]
- Shi, Z.; O’Brien, W. Development and implementation of automated fault detection and diagnostics for building systems: A review. Autom. Constr. 2019, 104, 215–229. [Google Scholar] [CrossRef]
- Behravan, A. Diagnostic Classifiers Based on Fuzzy Bayesian Belief Networks and Deep Neural Networks for Demand-Controlled Ventilation and Heating Systems. Ph.D. Thesis, University of Siegen, Siegen, Germany, 2021. Available online: https://dspace.ub.uni-siegen.de/handle/ubsi/2154 (accessed on 7 June 2022).
- Shi, Z. A Probabilistic Distributed Fault Detection, Diagnostics and Evaluation Framework for Building Systems. Doctoral Thesis, Carleton University, Ottawa, ON, Canada, 2018. [Google Scholar] [CrossRef]
- Massieh, N. Fault Detection and Diagnosis in Building HVAC Systems. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2010. Available online: https://escholarship.org/uc/item/6w02z2hm (accessed on 7 June 2022).
- Theodoridis, S. Machine Learning: A Bayesian and Optimization Perspective; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-818803-3. Available online: https://www.elsevier.com/books/machine-learning/theodoridis/978-0-12-818803-3 (accessed on 7 June 2022).
- Carbonell, J. Machine Learning: Paradigms and Methods; The MIT Press: Cambridge, MA, USA, 1990; p. 404. ISBN 9780262530880. Available online: https://mitpress.mit.edu/books/machine-learning-2 (accessed on 7 June 2022).
- Alpaydin, E. Introduction to Machine Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-01243-0. Available online: https://www.cmpe.boun.edu.tr/~ethem/i2ml2e/index.html (accessed on 7 June 2022).
- Andersen, K.H.; Melgaard, S.P.; Marszal-Pomianowska, A.; Jensen, R.L.; Fehr, T.; Heiselberg, P.K. Technical Report: SATO KPI TOOL; Institut for Byggeri, By og Miljø (BUILD), Aalborg Universitet: København, Denmark, 2022. [Google Scholar]
- PRISMA Home Page. Available online: http://www.prisma-statement.org/ (accessed on 29 March 2022).
- Ex Libris RefWorks. Available online: https://refworks.proquest.com/ (accessed on 9 May 2022).
- Heimar, K.A.; Melgaard, S.P. aauphd2024. Available online: https://github.com/aauphd2024/FDD_review_buildingsystems (accessed on 7 June 2022).
- Isermann, R. Fault-Diagnosis Applications; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-12766-3. [Google Scholar]
- Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 2008, 32, 229–252. [Google Scholar] [CrossRef]
- Li, Y.; O’Neil, Z. A critical review of fault modeling of HVAC systems in buildings. Build. Simul. 2018, 11, 953–975. [Google Scholar] [CrossRef]
- Ginestet, S.; Marchio, D.; Morisot, O. Evaluation of faults impacts on energy consumption and indoor air quality on an air handling unit. Energy Build. 2008, 40, 51–57. [Google Scholar] [CrossRef]
- Chintala, R.; Winkler, J.; Jin, X. Automated fault detection of residential air-conditioning systems using thermostat drive cycles. Energy Build. 2021, 236, 110691. [Google Scholar] [CrossRef]
- Subramaniam, M.; Jain, T.; Yame, J.J. Bilinear model-based diagnosis of lock-in-place failures of variable-air-volume HVAC systems of multizone buildings. J. Build. Eng. 2020, 28, 101023. [Google Scholar] [CrossRef]
- Subramaniam, A.M.; Jain, T. Nonlinear Observer-based Fault Diagnosis for a Multi-Zone Building. IFAC-Pap. 2018, 51, 544–549. [Google Scholar] [CrossRef]
- Berquist, J.; O’Brien, W. A Quantitative Model-Based Fault Detection and Diagnostics (FDD) System for Zone-Level Inefficiencies. ASHRAE Trans. 2018, 124, 133–152. [Google Scholar]
- Baldi, S.; Quang, T.L.; Holub, O.; Endel, P. Real-time monitoring energy efficiency and performance degradation of condensing boilers. Energy Convers. Manag. 2017, 136, 329–339. [Google Scholar] [CrossRef]
- Behravan, A.; Obermaisser, R.; Abboush, M. Fault injection framework for demand-controlled ventilation and heating systems based on wireless sensor and actuator networks. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 525–531. [Google Scholar] [CrossRef]
- Gunay, H.B.; Shi, Z.; Newsham, G.; Moromisato, R. Detection of zone sensor and actuator faults through inverse greybox modelling. Build. Environ. 2020, 171, 106659. [Google Scholar] [CrossRef]
- Song, Y.; Akashi, Y.; Yee, J. A development of easy-to-use tool for fault detection and diagnosis in building air-conditioning systems. Energy Build. 2008, 40, 71–82. [Google Scholar] [CrossRef]
- Mattera, C.G.; Jradi, M.; Skydt, M.R.; Engelsgaard, S.S.; Shaker, H.R. Fault detection in ventilation units using dynamic energy performance models. J. Build. Eng. 2020, 32, 101635. [Google Scholar] [CrossRef]
- O’Neill, Z.; Bailey, T.; Dong, B.; Shashanka, M.; Luo, D. Advanced building energy management system demonstration for Department of Defense buildings. Implic. A Data Driven-Built Environ. 2013, 1295, 44–53. [Google Scholar] [CrossRef]
- Najafi, M.; Auslander, D.M.; Haves, P.; Sohn, M.D. A statistical pattern analysis framework for rooftop unit diagnostics. HVAC R Res. 2012, 18, 406. [Google Scholar]
- Gao, D.C.; Wang, S.; Shan, K.; Yan, C. A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems. Appl. Energy 2016, 164, 1028–1038. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, C.; Shi, J.; Lu, Z.; Niu, X.; Jiang, Y.; Zhu, F. An anomaly detection and dynamic energy performance evaluation method for HVAC systems based on data mining. Sustain. Energy Technol. Assess. 2021, 44, 101092. [Google Scholar] [CrossRef]
- Piscitelli, M.S.; Brandi, S.; Capozzoli, A.; Xiao, F. A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings. Build. Simul. 2021, 14, 131–147. [Google Scholar] [CrossRef]
- Liu, X.; Ding, Y.; Tang, H.; Xiao, F. A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data. Energy Build. 2021, 231, 110601. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, X.; Han, H.; Lu, H. Feasibility and improvement of fault detection and diagnosis based on factory-installed sensors for chillers. Appl. Therm. Eng. 2020, 164, 114506. [Google Scholar] [CrossRef]
- Yan, K.; Shen, W.; Mulumba, T.; Afshari, A. ARX model based fault detection and diagnosis for chillers using support vector machines. Energy Build. 2014, 81, 287–295. [Google Scholar] [CrossRef]
- Li, S.; Wen, J. Application of pattern matching method for detecting faults in air handling unit system. Autom. Constr. 2014, 43, 49–58. [Google Scholar] [CrossRef]
- Liu, J.; Shi, D.; Li, G.; Xie, Y.; Li, K.; Liu, B.; Ru, Z. Data-driven and association rule mining-based fault diagnosis and action mechanism analysis for building chillers. Energy Build. 2020, 216, 109957. [Google Scholar] [CrossRef]
- Eom, Y.H.; Yoo, J.W.; Hong, S.B.; Kim, M.S. Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving. Energy 2019, 187, 115877. [Google Scholar] [CrossRef]
- Capozzoli, A.; Piscitelli, M.S.; Brandi, S.; Grassi, D.; Chicco, G. Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy 2018, 157, 336–352. [Google Scholar] [CrossRef]
- Brastein, O.M.; Ghaderi, A.; Pfeiffer, C.F.; Skeie, N.O. Analysing uncertainty in parameter estimation and prediction for grey-box building thermal behaviour models. Energy Build. 2020, 224, 110236. [Google Scholar] [CrossRef]
- Navarro-Esbri, J.; Berbegall, V.; Verdu, G.; Cabello, R.; Llopis, R. A low data requirement model of a variable-speed vapour compression refrigeration system based on neural networks. Int. J. Refrig. Rev. Int. Froid 2007, 30, 1452–1459. [Google Scholar] [CrossRef]
- Ranade, A.; Provan, G.; El-Din Mady, A.; O’Sullivan, D. A computationally efficient method for fault diagnosis of fan-coil unit terminals in building Heating Ventilation and Air Conditioning systems. J. Build. Eng. 2020, 27, 100955. [Google Scholar] [CrossRef]
- Bode, G.; Thul, S.; Baranski, M.; Müller, D. Real-world application of machine-learning-based fault detection trained with experimental data. Energy 2020, 198, 117323. [Google Scholar] [CrossRef]
- Kim, M.; Payne, W.V.; Domanski, P.A.; Yoon, S.H.; Hermes, C.J.L. Performance of a residential heat pump operating in the cooling mode with single faults imposed. Appl. Therm. Eng. 2009, 29, 770–778. [Google Scholar] [CrossRef]
- Bode, G.; Fütterer, J.; Müller, D. Mode and storage load based control of a complex building system with a geothermal field. Energy Build. 2018, 158, 1337–1345. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)—Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Nassif, N.; Moujaes, S.; Zaheeruddin, M. Self-tuning dynamic models of HVAC system components. Energy Build. 2008, 40, 1709–1720. [Google Scholar] [CrossRef]
- Yan, K.; Ji, Z.; Shen, W. Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM. Neurocomputing 2017, 228, 205–212. [Google Scholar] [CrossRef]
- Turner, W.J.N.; Staino, A.; Basu, B. Residential HVAC fault detection using a system identification approach. Energy Build. 2017, 151, 1–17. [Google Scholar] [CrossRef]
- Dey, D.; Dong, B. A probabilistic approach to diagnose faults of air handling units in buildings. Energy Build. 2016, 130, 177–187. [Google Scholar] [CrossRef]
- Ploennigs, J.; Maghella, M.; Schumann, A.; Chen, B. Semantic Diagnosis Approach for Buildings. IEEE Trans. Ind. Inform. 2017, 13, 3399–3410. [Google Scholar] [CrossRef]
- Torrens, J.I.; Keane, M.; Costa, A.; O’Donnell, J. Multi-Criteria optimisation using past, real time and predictive performance benchmarks. Simul. Model. Pract. Theory 2011, 19, 1258–1265. [Google Scholar] [CrossRef]
- Karami, M.; Wang, L. Fault detection and diagnosis for nonlinear systems: A new adaptive Gaussian mixture modeling approach. Energy Build. 2018, 166, 477–488. [Google Scholar] [CrossRef]
- Sun, B.; Luh, P.B.; Jia, Q.S.; O’Neill, Z.; Song, F. Building energy doctors: An SPC and Kalman Filter-based method for system-level fault detection in HVAC systems. IEEE Trans. Autom. Sci. Eng. 2014, 11, 215–229. [Google Scholar] [CrossRef]
- Andersen, K.H.; Melgaard, S.P.; Marszal-Pomianowska, A.; Jensen, R.L.; Fehr, T.; Heiselberg, P. Development and description of the SATO KPI Tool. Aalb. Univ. 2022, 302. Available online: https://vbn.aau.dk/da/publications/development-and-description-of-the-sato-kpi-tool (accessed on 7 June 2022).
- Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N. A review of process fault detection and diagnosis Part III: Process history based methods. Comput. Chem. Eng. 2003, 27, 327–346. [Google Scholar] [CrossRef]
- Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N. A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Comput. Chem. Eng. 2003, 27, 293–311. [Google Scholar] [CrossRef]
- Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N. A review of process fault detection and diagnosis Part II: Qualitative models and search strategies. Comput. Chem. Eng. 2003, 27, 313–326. [Google Scholar] [CrossRef]
- Hsieh, T. A micro-view-based data mining approach to diagnose the aging status of heating coils. Knowl. Based Syst. 2018, 143, 10–18. [Google Scholar] [CrossRef]
- Visek, E.; Mazzarella, L.; Motta, M. Temperature sensor signal reconstruction for failure detection of vapor compression system. Appl. Soft Comput. 2017, 60, 679–688. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, L. A fault detection technique for air-source heat pump water chiller/heaters. Energy Build. 2009, 41, 881–887. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Liang, K.; Tan, Y. Enhanced chiller fault detection using Bayesian network and principal component analysis. Appl. Therm. Eng. 2018, 141, 898–905. [Google Scholar] [CrossRef]
- Cotrufo, N.; Zmeureanu, R. PCA-based method of soft fault detection and identification for the ongoing commissioning of chillers. Energy Build. 2016, 130, 443–452. [Google Scholar] [CrossRef]
- Hu, Y.; Li, G.; Chen, H.; Li, H.; Liu, J. Sensitivity analysis for PCA-based chiller sensor fault detection. Int. J. Refrig. 2016, 63, 133–143. [Google Scholar] [CrossRef]
- Beghi, A.; Brignoli, R.; Cecchinato, L.; Menegazzo, G.; Rampazzo, M.; Simmini, F. Data-driven Fault Detection and Diagnosis for HVAC water chillers. Control Eng. Pract. 2016, 53, 79–91. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Xiao, F. A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults. Energy Build. 2010, 42, 477–490. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, F. Detection and diagnosis of AHU sensor faults using principal component analysis method. Energy Convers. Manag. 2004, 45, 2667–2686. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, F. Sensor Fault Detection and Diagnosis of Air-Handling Units Using a Condition-Based Adaptive Statistical Method. HVAC R Res. 2006, 12, 127–150. [Google Scholar] [CrossRef]
- Wang, S.; Cui, J. Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method. Appl. Energy 2005, 82, 197–213. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, G.; Wang, J.; Chen, H.; Zhong, H.; Cao, Z. A comparison study of basic data-driven fault diagnosis methods for variable refrigerant flow system. Energy Build. 2020, 224, 110232. [Google Scholar] [CrossRef]
- Yan, K.; Huang, J.; Shen, W.; Ji, Z. Unsupervised learning for fault detection and diagnosis of air handling units. Energy Build. 2020, 210, 109689. [Google Scholar] [CrossRef]
- Yan, K.; Su, J.; Huang, J.; Mo, Y. Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks. IEEE Trans. Autom. Sci. Eng. 2020, 19, 387–395. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, X.; Han, H.; Lu, H. Chiller fault diagnosis with field sensors using the technology of imbalanced data. Appl. Therm. Eng. 2019, 159, 113933. [Google Scholar] [CrossRef]
- Han, H.; Cui, X.; Fan, Y.; Qing, H. Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features. Appl. Therm. Eng. 2019, 154, 540–547. [Google Scholar] [CrossRef]
- Mulumba, T.; Afshari, A.; Yan, K.; Shen, W.; Norford, L.K. Robust model-based fault diagnosis for air handling units. Energy Build. 2015, 86, 698–707. [Google Scholar] [CrossRef]
- Shohet, R.; Kandil, M.S.; Wang, Y.; McArthur, J.J. Fault detection for non-condensing boilers using simulated building automation system sensor data. Adv. Eng. Inform. 2020, 46, 101176. [Google Scholar] [CrossRef]
- Dey, M.; Rana, S.P.; Dudley, S. Smart building creation in large scale HVAC environments through automated fault detection and diagnosis. Future Gener. Comput. Syst. Int. J. Escience 2020, 108, 950–966. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, X.; Han, H.; Lu, H. Chiller fault detection and diagnosis by knowledge transfer based on adaptive imbalanced processing. Sci. Technol. Built Environ. 2020, 26, 1082–1099. [Google Scholar] [CrossRef]
- Yan, K.; Chong, A.; Mo, Y. Generative adversarial network for fault detection diagnosis of chillers. Build. Environ. 2020, 172, 106698. [Google Scholar] [CrossRef]
- Fu, Y.; Li, Z.; Feng, F.; Xu, P. Data-quality detection and recovery for building energy management and control systems: Case study on submetering. Sci. Technol. Built Environ. 2016, 22, 798–809. [Google Scholar] [CrossRef]
- Jiang, S.; Minjie, L.; Caiwu, L.; Shunling, R.; Wang, Z.; Chen, B. SVM-DS fusion based soft fault detection and diagnosis in solar water heaters. Energy Explor. Exploit. 2019, 37, 1125–1146. [Google Scholar] [CrossRef]
- Han, H.; Gu, B.; Wang, T.; Li, Z.R. Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning. Int. J. Refrig. 2011, 34, 586–599. [Google Scholar] [CrossRef]
- Han, H.; Gu, B.; Kang, J.; Li, Z.R. Study on a hybrid SVM model for chiller FDD applications. Appl. Therm. Eng. 2011, 31, 582–592. [Google Scholar] [CrossRef]
- Gharsellaoui, S.; Mansouri, M.; Trabelsi, M.; Harkat, M.F.; Refaat, S.S.; Messaoud, H. Interval-valued features based machine learning technique for fault detection and diagnosis of uncertain HVAC systems. IEEE Access 2020, 8, 171892–171902. [Google Scholar] [CrossRef]
- Kreider, J.F.; Wang, X.A.; Anderson, D.; Dow, J. Expert systems, neural networks and artificial intelligence applications in commercial building HVAC operations. Autom. Constr. 1992, 1, 225–238. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y. Fault-tolerant control for outdoor ventilation air flow rate in buildings based on neural network. Build. Environ. 2002, 37, 691–704. [Google Scholar] [CrossRef]
- Gunay, H.B.; Shen, W.; Yang, C. Blackbox modeling of central heating and cooling plant equipment performance. Sci. Technol. Built Environ. 2018, 24, 396–409. [Google Scholar] [CrossRef]
- Rueda, E.; Tassou, S.A.; Grace, I.N. Fault detection and diagnosis in liquid chillers. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2005, 219, 117–125. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Xiao, F.; Ma, Z. A simplified physical model-based fault detection and diagnosis strategy and its customized tool for centrifugal chillers. HVAC R Res. 2013, 19, 283. [Google Scholar]
- He, Z.; Li, Z. A Fault Diagnosis Warning System of Refrigeration Systems Based on Fault Direction Space Method for Data Center. ASHRAE Trans. 2015, 121, AT-15-C031. [Google Scholar]
- Katipamula, S.; Pratt, R.G.; Chassin, D.P.; Taylor, Z.T.; Gowri, K.; Brambley, M.R. Automated fault detection and diagnostics for outdoor-air ventilation systems and economizers: Methodology and results from field testing. ASHRAE Trans. 1999, 105 Pt 1, CH-99-5-2. [Google Scholar]
- Han, C.Y.; Xiao, Y.; Ruther, C.J. Fault detection and diagnosis of HVAC systems. ASHRAE Trans. 1999, 105 Pt 1, 1. [Google Scholar]
- Parzinger, M.; Hanfstaengl, L.; Sigg, F.; Spindler, U.; Wellisch, U.; Wirnsberger, M. Residual Analysis of Predictive Modelling Data for Automated Fault Detection in Building’s Heating, Ventilation and Air Conditioning Systems. Sustainability 2020, 12, 6758. [Google Scholar] [CrossRef]
- Yoshida, H.; Kumar, S. ARX and AFMM model-based on-line real-time data base diagnosis of sudden fault in AHU of VAV system. Energy Convers. Manag. 1999, 40, 1191–1206. [Google Scholar] [CrossRef]
- Lin, G.; Claridge, D.E. A temperature-based approach to detect abnormal building energy consumption. Energy Build. 2015, 93, 110–118. [Google Scholar] [CrossRef]
- Taal, A.; Itard, L. P&ID-based automated fault identification for energy performance diagnosis in HVAC systems: 4S3F method, development of DBN models and application to an ATES system. Energy Build. 2020, 224, 110289. [Google Scholar] [CrossRef]
- Xiao, F.; Zhao, Y.; Wen, J.; Wang, S. Bayesian network based FDD strategy for variable air volume terminals. Autom. Constr. 2014, 41, 106–118. [Google Scholar] [CrossRef]
- Taal, A.; Itard, L. Fault detection and diagnosis for indoor air quality in DCV systems: Application of 4S3F method and effects of DBN probabilities. Build. Environ. 2020, 174, 106632. [Google Scholar] [CrossRef]
- Alexandersen, E.K.; Skydt, M.R.; Engelsgaard, S.S.; Bang, M.; Jradi, M.; Shaker, H.R. A stair-step probabilistic approach for automatic anomaly detection in building ventilation system operation. Build. Environ. 2019, 157, 165–171. [Google Scholar] [CrossRef]
- Cheung, B.; Kumar, G.; Rao, S.A. Statistical algorithms in fault detection and prediction: Toward a healthier network. Bell Labs Tech. J. 2005, 9, 171–185. [Google Scholar] [CrossRef]
- Gunay, H.B.; Shen, W.; Newsham, G.; Ashouri, A. Detection and interpretation of anomalies in building energy use through inverse modeling. Sci. Technol. Built Environ. 2019, 25, 488–503. [Google Scholar] [CrossRef]
- Parhizkar, T.; Aramoun, F.; Esbati, S.; Saboohi, Y. Efficient performance monitoring of building central heating system using Bayesian Network method. J. Build. Eng. 2019, 26, 100835. [Google Scholar] [CrossRef]
- Verbert, K.; Babuška, R.; De Schutter, B. Combining knowledge and historical data for system-level fault diagnosis of HVAC systems. Eng. Appl. Artif. Intell. 2017, 59, 260–273. [Google Scholar] [CrossRef]
- Byung-Cheon, A.; Mitchell, J.W.; McIntosh, I.B.D. Model-based fault detection and diagnosis for cooling towers/Discussion. ASHRAE Trans. 2001, 107, 839. [Google Scholar]
- McIntosh, I.B.D.; Mitchell, J.W.; Beckman, W.A. Fault detection and diagnosis in chillers—Part I: Model development and application/Discussion. ASHRAE Trans. 2000, 106, 268. [Google Scholar]
- Bang, M.; Engelsgaard, S.S.; Alexandersen, E.K.; Riber Skydt, M.; Shaker, H.R.; Jradi, M. Novel real-time model-based fault detection method for automatic identification of abnormal energy performance in building ventilation units. Energy Build. 2019, 183, 238–251. [Google Scholar] [CrossRef]
- Dexter, A.L.; Ngo, D. Fault diagnosis in air-conditioning systems: A multi-step fuzzy model-based approach. HVAC R Res. 2001, 7, 83. [Google Scholar] [CrossRef]
- Ngo, D.; Dexter, A.L. A robust model-based approach to diagnosing faults in air-handling units. ASHRAE Trans. 1999, 105, 1078. [Google Scholar]
- Yan, Y.; Luh, P.B.; Pattipati, K.R. Fault Diagnosis of Components and Sensors in HVAC Air Handling Systems with New Types of Faults. IEEE Access 2018, 6, 21682–21696. [Google Scholar] [CrossRef]
- Guo, Y.; Wall, J.; Li, J.; West, S. Intelligent Model Based Fault Detection and Diagnosis for HVAC System Using Statistical Machine Learning Methods. ASHRAE Trans. 2013, 119, DA-13-C018. [Google Scholar]
- Du, Z.; Jin, X.; Yang, Y. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network. Appl. Energy 2009, 86, 1624–1631. [Google Scholar] [CrossRef]
- Du, Z.; Jin, X.; Yang, Y. Wavelet Neural Network-Based Fault Diagnosis in Air-Handling Units. HVAC R Res. 2008, 14, 959–973. [Google Scholar] [CrossRef]
- Yu, B.; Van Paassen, D.; Riahy, S. General modeling for model-based FDD on building HVAC system. Simul. Pract. Theory 2002, 9, 387–397. [Google Scholar] [CrossRef]
- Capozzoli, A.; Lauro, F.; Khan, I. Fault detection analysis using data mining techniques for a cluster of smart office buildings. Expert Syst. Appl. 2015, 42, 4324–4338. [Google Scholar] [CrossRef]
- Alston, J.M.; Rick, J.A. A Beginner’s Guide to Conducting Reproducible Research. Bull. Ecol. Soc. Am. 2021, 102, e01801. [Google Scholar] [CrossRef]
- What Are Machine Learning Pipelines?—Azure Machine Learning. Available online: https://docs.microsoft.com/en-us/azure/machine-learning/concept-ml-pipelines (accessed on 29 March 2022).
- Granderson, J.; Lin, G.; Harding, A.; Im, P.; Chen, Y. Building fault detection data to aid diagnostic algorithm creation and performance testing. Sci. Data 2020, 7, 65. [Google Scholar] [CrossRef]
- ASHRAE Dataset for Building Fault Detection and Diagnostics Algorithm Creation and Performance Testing. Available online: https://figshare.com/articles/dataset/LBNLDataSynthesisInventory_pdf/11752740/3 (accessed on 9 May 2022).
- Li, S.; Wen, J. A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform. Energy Build. 2014, 68, 63–71. [Google Scholar] [CrossRef]
- Yuwono, M.; Guo, Y.; Wall, J.; Li, J.; West, S.; Platt, G.; Su, S.W. Unsupervised feature selection using swarm intelligence and consensus clustering for automatic fault detection and diagnosis in Heating Ventilation and Air Conditioning systems. Appl. Soft Comput. 2015, 34, 402–425. [Google Scholar] [CrossRef]
- Yun, W.S.; Hong, W.H.; Seo, H. A data-driven fault detection and diagnosis scheme for air handling units in building HVAC systems considering undefined states. J. Build. Eng. 2021, 35, 102111. [Google Scholar] [CrossRef]
- Piscitelli, M.S.; Mazzarelli, D.M.; Capozzoli, A. Enhancing operational performance of AHUs through an advanced fault detection and diagnosis process based on temporal association and decision rules. Energy Build. 2020, 226, 110369. [Google Scholar] [CrossRef]
- Li, D.; Zhou, Y.; Hu, G.; Spanos, C.J. Identifying Unseen Faults for Smart Buildings by Incorporating Expert Knowledge With Data. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1412–1425. [Google Scholar] [CrossRef]
- Yan, Y.; Luh, P.B.; Pattipati, K.R. Fault Diagnosis of HVAC Air-Handling Systems Considering Fault Propagation Impacts among Components. IEEE Trans. Autom. Sci. Eng. 2017, 14, 705–717. [Google Scholar] [CrossRef]
- Wall, J.; Guo, Y.; Li, J.; West, S. A Dynamic Machine Learning-based Technique for Automated Fault Detection in HVAC Systems. ASHRAE Trans. 2011, 117, 449–456. [Google Scholar]
- Wen, J.; Li, S. RP-1312—Tools for Evaluating Fault Detection and Diagnostic Methods for Air-Handling Units. Available online: https://www.techstreet.com/standards/rp-1312-tools-for-evaluating-fault-detection-and-diagnostic-methods-for-air-handling-units?product_id=1833299 (accessed on 9 May 2022).
- ASHRAE RP-1020—Demonstration of Fault Detection and Diagnostic Methods in a Real Building. Available online: https://www.techstreet.com/standards/rp-1020-demonstration-of-fault-detection-and-diagnostic-methods-in-a-real-building?product_id=1719101 (accessed on 9 May 2022).
- Liang, Q.; Han, H.; Cui, X.; Qing, H.; Fan, Y. Comparative study of probabilistic neural network and back propagation network for fault diagnosis of refrigeration systems. Sci. Technol. Built Environ. 2018, 24, 448–457. [Google Scholar] [CrossRef]
- Zhao, X. Lab test of three fault detection and diagnostic methods’ capability of diagnosing multiple simultaneous faults in chillers. Energy Build. 2015, 94, 43–51. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Tan, Y.; Yuan, J.; Li, X. Fault diagnosis using fused reference model and Bayesian network for building energy systems. J. Build. Eng. 2021, 34, 101957. [Google Scholar] [CrossRef]
- Xia, Y.; Ding, Q.; Li, Z.; Jiang, A. Fault detection for centrifugal chillers using a Kernel Entropy Component Analysis (KECA) method. Build. Simul. 2021, 14, 53–61. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Tan, Y.; Yuan, J. Fault detection based on Bayesian network and missing data imputation for building energy systems. Appl. Therm. Eng. 2021, 182, 116051. [Google Scholar] [CrossRef]
- Han, H.; Xu, L.; Cui, X.; Fan, Y. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA). Int. J. Refrig. 2021, 121, 269–278. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Z.; Cui, X.; Meng, Q. Ensemble learning with member optimization for fault diagnosis of a building energy system. Energy Build. 2020, 226, 110351. [Google Scholar] [CrossRef]
- Wang, S.; Cui, J. A Robust Fault Detection and Diagnosis Strategy for Centrifugal Chillers. HVAC R Res. 2006, 12, 407–428. [Google Scholar] [CrossRef]
- Li, D.; Hu, G.; Spanos, C.J. A data-driven strategy for detection and diagnosis of building chiller faults using linear discriminant analysis. Energy Build. 2016, 128, 519–529. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Xiao, F. A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-weighted moving average control charts and support vector regression. Appl. Therm. Eng. 2013, 51, 560–572. [Google Scholar] [CrossRef]
- Huang, R.; Liu, J.; Chen, H.; Li, Z.; Liu, J.; Li, G.; Guo, Y.; Wang, J. An effective fault diagnosis method for centrifugal chillers using associative classification. Appl. Therm. Eng. 2018, 136, 633–642. [Google Scholar] [CrossRef]
- Gao, J.; Han, H.; Ren, Z.; Fan, Y. Fault diagnosis for building chillers based on data self-production and deep convolutional neural network. J. Build. Eng. 2021, 34, 102043. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; Xiao, F. A novel strategy for the fault detection and diagnosis of centrifugal chiller systems. HVAC R Res. 2009, 15, 57–75. [Google Scholar] [CrossRef]
- Li, D.; Zhou, Y.; Hu, G.; Spanos, C.J. Fault detection and diagnosis for building cooling system with a tree-structured learning method. Energy Build. 2016, 127, 540–551. [Google Scholar] [CrossRef]
- Li, G.; Hu, Y.; Chen, H.; Shen, L.; Li, H.; Hu, M.; Liu, J.; Sun, K. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm. Energy Build. 2016, 116, 104–113. [Google Scholar] [CrossRef]
- Tran, D.A.T.; Chen, Y.; Jiang, C. Comparative investigations on reference models for fault detection and diagnosis in centrifugal chiller systems. Energy Build. 2016, 133, 246–256. [Google Scholar] [CrossRef]
- Li, B.; Cheng, F.; Zhang, X.; Cui, C.; Cai, W. A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data. Appl. Energy 2021, 285, 116459. [Google Scholar] [CrossRef]
- Cui, J.; Wang, S. A model-based online fault detection and diagnosis strategy for centrifugal chiller systems. Int. J. Therm. Sci. 2005, 44, 986–999. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, F.; Wen, J.; Lu, Y.; Wang, S. A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers. HVAC R Res. 2014, 20, 798–809. [Google Scholar] [CrossRef]
- Tran, D.A.T.; Chen, Y.; Ao, H.L.; Cam, H.N.T. An enhanced chiller FDD strategy based on the combination of the LSSVR-DE model and EWMA control charts. Int. J. Refrig. 2016, 72, 81–96. [Google Scholar] [CrossRef]
- Xiao, F.; Zheng, C.; Wang, S. A fault detection and diagnosis strategy with enhanced sensitivity for centrifugal chillers. Appl. Therm. Eng. 2011, 31, 3963–3970. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Xiao, F. Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD). Appl. Energy 2013, 112, 1041–1048. [Google Scholar] [CrossRef]
- ASHRAE RP-1043—Fault Detection and Diagnostic (FDD) Requirements and Evaluation Tools for Chillers. Available online: https://www.techstreet.com/standards/rp-1043-fault-detection-and-diagnostic-fdd-requirements-and-evaluation-tools-for-chillers?product_id=1716217 (accessed on 9 May 2022).
- Reddy, T.A.; Niebur, D.; Andersen, K.K.; Pericolo, P.P.; Cabrera, G. Evaluation of the suitability of different chiller performance models for on-line training applied to automated fault detection and diagnosis (RP-1139). HVAC R Res. 2003, 9, 385–414. [Google Scholar] [CrossRef]
- ASHRAE RP-1139—Development and Comparison of On-Line Model Training Techniques for Model-Based FDD Methods Applied to Vapor Compression Equipment. Available online: https://www.techstreet.com/standards/rp-1139-development-and-comparison-of-on-line-model-training-techniques-for-model-based-fdd-methods-applied-to-vapor-compression-equipment?product_id=1711767 (accessed on 9 May 2022).
- Li, G.; Hu, Y. Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis. Energy Build. 2018, 173, 502–515. [Google Scholar] [CrossRef]
- Li, G.; Hu, Y. An enhanced PCA-based chiller sensor fault detection method using ensemble empirical mode decomposition based denoising. Energy Build. 2019, 183, 311–324. [Google Scholar] [CrossRef]
- Mao, Q.; Fang, X.; Hu, Y.; Li, G. Chiller sensor fault detection based on empirical mode decomposition threshold denoising and principal component analysis. Appl. Therm. Eng. 2018, 144, 21–30. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, H.; Li, G.; Li, H.; Xu, R.; Li, J. A statistical training data cleaning strategy for the PCA-based chiller sensor fault detection, diagnosis and data reconstruction method. Energy Build. 2016, 112, 270–278. [Google Scholar] [CrossRef]
- Li, G.; Hu, Y.; Chen, H.; Li, H.; Hu, M.; Guo, Y.; Shi, S.; Hu, W. A sensor fault detection and diagnosis strategy for screw chiller system using support vector data description-based D-statistic and DV-contribution plots. Energy Build. 2016, 133, 230–245. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, H.; Xie, J.; Yang, X.; Zhou, C. Chiller sensor fault detection using a self-Adaptive Principal Component Analysis method. Energy Build. 2012, 54, 252–258. [Google Scholar] [CrossRef]
- Wang, S.; Xing, J.; Jiang, Z.; Li, J. A decentralized sensor fault detection and self-repair method for HVAC systems. Build. Serv. Eng. Res. Technol. 2018, 39, 667–678. [Google Scholar] [CrossRef]
- Yang, C.; Gunay, B.; Shi, Z.; Shen, W. Machine Learning-Based Prognostics for Central Heating and Cooling Plant Equipment Health Monitoring. TASE 2021, 18, 346–355. [Google Scholar] [CrossRef]
- Yang, C.; Shen, W.; Chen, Q.; Gunay, B. Toward failure mode and effect analysis for heating, ventilation and air-conditioning. In Proceedings of the 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), Wellington, New Zealand, 26–28 April 2017; pp. 408–413. [Google Scholar] [CrossRef]
- Luo, X.J.; Fong, K.F. Novel pattern recognition-enhanced sensor fault detection and diagnosis for chiller plant. Energy Build. 2020, 228, 110443. [Google Scholar] [CrossRef]
- Ng, K.H.; Yik, F.W.H.; Lee, P.; Lee, K.K.Y.; Chan, D.C.H. Bayesian method for HVAC plant sensor fault detection and diagnosis. Energy Build. 2020, 228, 110476. [Google Scholar] [CrossRef]
- Wang, S.W.; Wang, J.B. Law-based sensor fault diagnosis and validation for building air-conditioning systems. HVACR Res. 1999, 5, 353–380. [Google Scholar] [CrossRef]
- Chiller Fault Diagnosis Based on VAE Enabled Generative Adversarial Networks. Available online: https://github.com/BlingBlingss/VAE-CWGAN-GP (accessed on 9 May 2022).
- Chakraborty, D.; Elzarka, H. Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold. Energy Build. 2019, 185, 326–344. [Google Scholar] [CrossRef]
- Taylor, W.A. Change-Point Analysis: A Powerful New Tool For Detecting Changes. Available online: https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf (accessed on 7 June 2022).
- Tran, D.A.T.; Chen, Y.; Chau, M.Q.; Ning, B. A robust online fault detection and diagnosis strategy of centrifugal chiller systems for building energy efficiency. Energy Build. 2015, 108, 441–453. [Google Scholar] [CrossRef]
- Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Bellanco, I.; Belío, F.; Salom, J. Validation of the self-diagnosis efficiency system. IREC 2021. Available online: https://www.tri-hp.eu/fileadmin/downloads/Deliverables/D6.3_-_Validation_of_the_self-diagnosis_efficiency.pdf (accessed on 7 June 2022).
- Oak Ridge National Laboratory ORNL Air Handling Fault Test Data FRP#2. Available online: https://data.openei.org/submissions/392 (accessed on 9 May 2022).
- Pacific Northwest National Laboratory Automated Diagnostic Algorithms for Chillers, Boilers, Cooling Towers, and Chilled Water Distribution. Available online: https://buildingsystems.pnnl.gov/fdd/automated/auto.stm (accessed on 9 May 2022).
- Metadata Record for: Building Fault Detection Data to Aid Diagnostic Algorithm Creation and Performance Testing. Available online: https://springernature.figshare.com/articles/dataset/Metadata_record_for_Building_fault_detection_data_to_aid_diagnostic_algorithm_creation_and_performance_testing/11743074/2 (accessed on 1 April 2022).
- Purdue University Open Studio Fault Models. Available online: https://github.com/NREL/OpenStudio-fault-measure-gem (accessed on 9 May 2022).
- Fault Detection and Diagnosis in Air Handling Unit with Using Dymola Data. Available online: https://github.com/Kyu2/Fault-Detection-and-Diagnosis (accessed on 9 May 2022).
- Fault Detection Diagnosis Project: A.I. Methods to Analyze Data. Available online: https://github.com/Kunind/Fault_Detection_Diagnosis_Project (accessed on 9 May 2022).
- NIST FDD for Residential Air Conditioners and Heat Pumps. Available online: https://github.com/FDeeDee/NIST-FDD-for-Residential-Air-Conditioners-and-Heat-Pumps (accessed on 9 May 2022).
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; Silva Santos, L.B.D.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship: Comment. Sci. Data 2016, 3, 1–9. [Google Scholar] [CrossRef]
- De Keizer, C.; Kuethe, S.; Jordan, U.; Vajen, K. Simulation-based long-term fault detection for solar thermal systems. Sol. Energy 2013, 93, 109–120. [Google Scholar] [CrossRef]
- Djuric, N.; Novakovic, V.; Frydenlund, F. Heating system performance estimation using optimization tool and BEMS data. Energy Build. 2008, 40, 1367–1376. [Google Scholar] [CrossRef]
- Yu, B.; van Paassen, A.H.C.; Riahy, S. Open window and defective radiator valve detection. Build. Serv. Eng. Res. Technol. 2003, 24, 117–124. [Google Scholar] [CrossRef]
- Luis Casteleiro-Roca, J.; Quintian, H.; Luis Calvo-Rolle, J.; Corchado, E.; del Carmen Meizoso-Lopez, M.; Pinon-Pazos, A. An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger. J. Appl. Log. 2016, 17, 36–47. [Google Scholar] [CrossRef]
- Papadopoulos, P.M.; Reppa, V.; Polycarpou, M.M.; Panayiotou, C.G. Distributed Diagnosis of Actuator and Sensor Faults in HVAC Systems. IFAC-Pap. 2017, 50, 4209–4215. [Google Scholar] [CrossRef]
- Xu, C.; Chen, H. Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical modeling method. Int. J. Refrig. Rev. Int. Froid 2020, 114, 106–117. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Xiao, F. A system-level incipient fault-detection method for HVAC systems. HVAC R Res. 2013, 19, 593–601. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, S. Online fault detection and robust control of condenser cooling water systems in building central chiller plants. Energy Build. 2011, 43, 153–165. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, F.; Wang, S. Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods. Appl. Therm. Eng. 2008, 28, 226–237. [Google Scholar] [CrossRef]
- Navarro-Esbrí, J.; Torrella, E.; Cabello, R. A vapour compression chiller fault detection technique based on adaptative algorithms. Application to on-line refrigerant leakage detection. Int. J. Refrig. 2006, 29, 716–723. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, Y.; Moon, G.; Choi, S. In-situ diagnosis of vapor-compressed chiller performance for energy saving. J. Mech. Sci. Technol. 2005, 19, 1670–1681. [Google Scholar] [CrossRef]
- Riemer, P.L.; Mitchell, J.W.; Beckman, W.A. The use of time series analysis in fault detection and diagnosis methodologies. ASHRAE Trans. 2002, 108, 384–394. [Google Scholar]
- Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D.C. Failure diagnosis using discrete-event models. IEEE Trans. Control Syst. Technol. 1996, 4, 105–124. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, X.; Anduv, B.; Jin, X.; Du, Z. Fault detection and diagnosis for the screw chillers using multi-region XGBoost model. Sci. Technol. Built Environ. 2021, 27, 608–623. [Google Scholar] [CrossRef]
- Li, D.; Li, D.; Li, C.; Li, L.; Gao, L. A novel data-temporal attention network based strategy for fault diagnosis of chiller sensors. Energy Build. 2019, 198, 377–394. [Google Scholar] [CrossRef]
- Sharifi, R.; Langari, R. Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models. Mech. Syst. Signal Process. 2017, 85, 638–650. [Google Scholar] [CrossRef]
- Kocyigit, N. Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network. Int. J. Refrig. Rev. Int. Froid 2015, 50, 69–79. [Google Scholar] [CrossRef]
- Bonvini, M.; Sohn, M.D.; Granderson, J.; Wetter, M.; Piette, M.A. Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques. Appl. Energy 2014, 124, 156–166. [Google Scholar] [CrossRef]
- Bailey, M.B.; Kreider, J.F. Creating an automated chiller fault detection and diagnostics tool using a data fault library. ISA Trans. 2003, 42, 485–495. [Google Scholar] [CrossRef]
- Lee, D.; Lai, C.W.; Liao, K.K.; Chang, J.W. Artificial intelligence assisted false alarm detection and diagnosis system development for reducing maintenance cost of chillers at the data centre. J. Build. Eng. 2021, 36, 102110. [Google Scholar] [CrossRef]
- Janecke, A.; Terrill, T.J.; Rasmussen, B.P. A comparison of static and dynamic fault detection techniques for transcritical refrigeration. Int. J. Refrig. 2017, 80, 212. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Li, F.; Liu, Z. Fault detection and diagnosis method for cooling dehumidifier based on LS-SVM NARX model. Int. J. Refrig. 2016, 61, 69–81. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, S. Fault-tolerant supervisory control of building condenser cooling water systems for energy efficiency. HVACR Res. 2012, 18, 126–146. [Google Scholar] [CrossRef]
- Sun, B.; Luh, P.B.; O’Neill, Z. SPC and Kalman filter-based fault detection and diagnosis for an air-cooled chiller. Front. Electr. Electron. Eng. China 2011, 6, 412–423. [Google Scholar] [CrossRef]
- Namburu, S.M.; Azam, M.S.; Luo, J.; Choi, K.; Pattipati, K.R. Data-driven modeling, fault diagnosis and optimal sensor selection for HVAC chillers. IEEE Trans. Autom. Sci. Eng. 2007, 4, 469–473. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y. Sensor validation and reconstruction for building central chilling systems based on principal component analysis. Energy Convers. Manag. 2004, 45, 673–695. [Google Scholar] [CrossRef]
- Buswell, R.A.; Haves, P.; Wright, J.A. Model-based condition monitoring of a HVAC cooling coil sub-system in a real building. Build. Serv. Eng. Res. Technol. 2003, 24, 103–116. [Google Scholar] [CrossRef]
- Wang, S.W.; Wang, J.B. Robust sensor fault diagnosis and validation in HVAC systems. Trans. Inst. Meas. Control. 2002, 24, 231–262. [Google Scholar] [CrossRef]
- Castro, N.S. Performance evaluation of a reciprocating chiller using experimental data and model predictions for fault detection and diagnosis. ASHRAE Trans. 2002, 108, 889–903. [Google Scholar]
- Wang, S.W.; Wang, J.B.; Burnett, J. Validating BMS sensors for chiller condition monitoring. Trans. Inst. Meas. Control. 2001, 23, 201–225. [Google Scholar] [CrossRef]
- Breuker, M.S.; Braun, J.E. Evaluating the performance of a fault detection and diagnostic system for vapor compression equipment. HVAC R Res. 1998, 4, 401–425. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Du, Z.; Fan, B.; Zhu, Y. Optimum operating performance based online fault-tolerant control strategy for sensor faults in air conditioning systems. Autom. Constr. 2014, 37, 145–154. [Google Scholar] [CrossRef]
- Ding, X.; Guo, Y.; Liu, T.; Liu, Q.; Chen, H. New fault diagnostic strategies for refrigerant charge fault in a VRF system using hybrid machine learning method. J. Build. Eng. 2021, 33, 101577. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, H.; Xu, C.; Cheng, Y.; Gong, Q. A hybrid deep forest approach for outlier detection and fault diagnosis of variable refrigerant flow system. Int. J. Refrig. 2020, 120, 104–118. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, H. Fault diagnosis of VRF air-conditioning system based on improved Gaussian mixture model with PCA approach. Int. J. Refrig. 2020, 118, 1–11. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, H.; Li, Z.; Cheng, X. Ensemble 1-D CNN diagnosis model for VRF system refrigerant charge faults under heating condition. Energy Build. 2020, 224, 110256. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Liu, B.; Li, K.; Chen, H. Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A case study of the building variable refrigerant flow system. Energy 2019, 174, 873–885. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, Z.; Chen, H.; Li, G.; Wang, J.; Huang, R.; Liu, J.; Ahmad, T. Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving. Appl. Energy 2018, 225, 732–745. [Google Scholar] [CrossRef]
- Guo, Y.; Li, G.; Chen, H.; Wang, J.; Guo, M.; Sun, S.; Hu, W. Optimized neural network-based fault diagnosis strategy for VRF system in heating mode using data mining. Appl. Therm. Eng. 2017, 125, 1402–1413. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Guo, Y.; Wang, J.; Li, G.; Shen, L. Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering. Appl. Therm. Eng. 2019, 160, 114098. [Google Scholar] [CrossRef]
- Deshmukh, S.; Samouhos, S.; Glicksman, L.; Norford, L. Fault detection in commercial building VAV AHU: A case study of an academic building. Energy Build. 2019, 201, 163–173. [Google Scholar] [CrossRef]
- Yang, C.; Shen, W.; Gunay, B.; Shi, Z. Toward Machine Learning-based Prognostics for Heating Ventilation and Air-Conditioning Systems. ASHRAE Trans. 2019, 125, 106–115. [Google Scholar]
- Van Every, P.M.; Rodriguez, M.; Jones, C.B.; Mammoli, A.A.; Martínez-Ramón, M. Advanced detection of HVAC faults using unsupervised SVM novelty detection and Gaussian process models. Energy Build. 2017, 149, 216–224. [Google Scholar] [CrossRef]
- Shioya, M.; Masukawa, Y.; Yairi, T.; Yoshida, K. Energy Fault Detection in Office Building System by Machine Learning Methods. ASHRAE Trans. 2015, 121, 185–196. [Google Scholar]
- Najafi, M.; Auslander, D.M.; Bartlett, P.L.; Haves, P.; Sohn, M.D. Application of machine learning in the fault diagnostics of air handling units. Appl. Energy 2012, 96, 347–358. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Du, Z.; Zhu, Y. A novel model-based fault detection method for temperature sensor using fractal correlation dimension. Build. Environ. 2011, 46, 970–979. [Google Scholar] [CrossRef]
- Carling, P. Comparison of three fault detection methods based on field data of an air-handling unit. ASHRAE Trans. 2002, 108, 904–921. [Google Scholar]
- Yoshida, H.; Kumar, S.; Morita, Y. Online fault detection and diagnosis in VAV air handling unit by RARX modeling. Energy Build. 2001, 33, 391–401. [Google Scholar] [CrossRef]
- Salsbury, T.I.; Diamond, R.C. Fault detection in HVAC systems using model-based feedforward control. Energy Build. 2001, 33, 403–415. [Google Scholar] [CrossRef]
- Fornera, L.; Glass, A.S.; Gruber, P.; Todtli, J. Qualitative fault detection based on logical programming applied to a variable air volume air-handling unit. Control. Eng. Pract. 1996, 4, 105–116. [Google Scholar] [CrossRef]
- Haves, P.; Salsbury, T.I.; Wright, J.A. Condition monitoring in HVAC subsystems using first principles models. ASHRAE Trans. 1996, 102, 519–527. [Google Scholar]
- Howell, J.; Maddison, E.J. Fault detection in HVAC plants based on constraint suspension. Build. Serv. Eng. Res. Technol. 1995, 16, 207–213. [Google Scholar] [CrossRef]
- Fasolo, P.S.; Seborg, D.E. Monitoring and fault detection for an HVAC control system. HVAC R Res. 1995, 1, 177–193. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, N.; Shen, X.; Xu, L.; Pan, Z.; Pan, F. Proposal and experimental case study on building ventilating fan fault diagnosis based on cuckoo search algorithm optimized extreme learning machine. Sustain. Energy Technol. Assess. 2021, 45, 100975. [Google Scholar] [CrossRef]
- Cheng, F.; Cai, W.; Zhang, X.; Liao, H.; Cui, C. Fault detection and diagnosis for Air Handling Unit based on multiscale convolutional neural networks. Energy Build. 2021, 236, 110795. [Google Scholar] [CrossRef]
- Yoon, S. In-situ sensor calibration in an operational air-handling unit coupling autoencoder and Bayesian inference. Energy Build. 2020, 221, 110026. [Google Scholar] [CrossRef]
- Elnour, M.; Meskin, N.; Al-Naemi, M. Sensor data validation and fault diagnosis using Auto-Associative Neural Network for HVAC systems. J. Build. Eng. 2020, 27, 100935. [Google Scholar] [CrossRef]
- Choi, Y.; Yoon, S. Virtual sensor-assisted in situ sensor calibration in operational HVAC systems. Build. Environ. 2020, 181, 107079. [Google Scholar] [CrossRef]
- Lee, K.; Wu, B.; Peng, S. Deep-learning-based fault detection and diagnosis of air-handling units. Build. Environ. 2019, 157, 24–33. [Google Scholar] [CrossRef]
- Karami, M.; Wang, L. Automatic Fault Detection and Diagnosis of Air Handling Unit Using an Online Machine Learning Algorithm. ASHRAE Trans. 2019, 125, 56–59. [Google Scholar]
- Zhou, Y. Sensor selection in neuro-fuzzy modelling and fault diagnosis in HVAC system. J. Intell. Fuzzy Syst. 2016, 30, 2365–2381. [Google Scholar] [CrossRef]
- Bengea, S.C.; Li, P.; Sarkar, S.; Vichik, S.; Adetola, V.; Kang, K.; Lovett, T.; Leonardi, F.; Kelman, A.D. Fault-tolerant optimal control of a building HVAC system. Sci. Technol. Built Environ. 2015, 21, 734–751. [Google Scholar] [CrossRef]
- Glos, M.; Romberg, D.; Endres, S.; Fietze, I. Estimation of spontaneous baroreflex sensitivity using transfer function analysis: Effects of positive pressure ventilation. Biomed. Tech. 2007, 52, 66–72. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, S.; Zhang, J. A diagnostic tool for online sensor health monitoring in air-conditioning systems. Autom. Constr. 2006, 15, 489–503. [Google Scholar] [CrossRef]
- Pakanen, J.E.; Sundquist, T. Automation-assisted fault detection of an air-handling unit; Implementing the method in a real building. Energy Build. 2003, 35, 193–202. [Google Scholar] [CrossRef]
- House, J.M.; Lee, W.Y.; Shin, D.R. Classification techniques for fault detection and diagnosis of an air-handling unit. ASHRAE Trans. 1999, 105, 1087. [Google Scholar]
- Andriamamonjy, A.; Saelens, D.; Klein, R. An auto-deployed model-based fault detection and diagnosis approach for Air Handling Units using BIM and Modelica. Autom. Constr. 2018, 96, 508–526. [Google Scholar] [CrossRef]
- Du, Z.; Fan, B.; Jin, X.; Chi, J. Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis. Build. Environ. 2014, 73, 1–11. [Google Scholar] [CrossRef]
- Wu, S.; Sun, J. Cross-level fault detection and diagnosis of building HVAC systems. Build. Environ. 2011, 46, 1558–1566. [Google Scholar] [CrossRef]
- Norford, L.K.; Wright, J.A.; Buswell, R.A.; Luo, D.; Klaassen, C.J.; Suby, A. Demonstration of fault detection and diagnosis methods for air-handling units (ASHRAE 1020-RP). HVAC R Res. 2002, 8, 41–71. [Google Scholar] [CrossRef]
- Fan, B.; Du, Z.; Jin, X.; Yang, X.; Guo, Y. A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis. Build. Environ. 2010, 45, 2698–2708. [Google Scholar] [CrossRef]
- Wu, S.; Sun, J.Q. A top-down strategy with temporal and spatial partition for fault detection and diagnosis of building HVAC systems. Energy Build. 2011, 43, 2134–2139. [Google Scholar] [CrossRef]
- Seem, J.E.; House, J.M. Integrated control and fault detection of Air-Handling units. HVAC R Res. 2009, 15, 25–55. [Google Scholar] [CrossRef]
- Du, Z.; Jin, X.; Wu, L. PCA-FDA-based fault diagnosis for sensors in VAV systems. HVACR Res. 2007, 13, 349–367. [Google Scholar] [CrossRef]
- Du, Z.; Jin, X.; Wu, L. Fault detection and diagnosis based on improved PCA with JAA method in VAV systems. Build. Environ. 2007, 42, 3221–3232. [Google Scholar] [CrossRef]
- Liang, J.; Du, R. Model-based Fault Detection and Diagnosis of HVAC systems using Support Vector Machine method. Int. J. Refrig. 2007, 30, 1104–1114. [Google Scholar] [CrossRef]
- Du, Z.; Jin, X. Detection and diagnosis for sensor fault in HVAC systems. Energy Convers. Manag. 2007, 48, 693–702. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, Z. Valve fault detection and diagnosis based on CMAC neural networks. Energy Build. 2004, 36, 599–610. [Google Scholar] [CrossRef]
- Pakanen, J. Demonstrating a Fault Diagnostic Method in an Automated, Computer-Controlled HVAC Process. 2001. Available online: https://publications.vtt.fi/pdf/publications/2001/P443.pdf (accessed on 7 June 2022).
- Boem, F.; Reci, R.; Cenedese, A.; Parisini, T. Distributed Clustering-based Sensor Fault Diagnosis for HVAC Systems. IFAC-Pap. 2017, 50, 4197–4202. [Google Scholar] [CrossRef]
- Allen, W.H.; Rubaai, A.; Chawla, R. Fuzzy Neural Network-Based Health Monitoring for HVAC System Variable-Air-Volume Unit. IEEE Trans. Ind. Appl. 2016, 52, 2513–2524. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, W.; Hu, T.; Xu, X. Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building. Appl. Energy 2021, 288, 116660. [Google Scholar] [CrossRef]
- Touzani, S.; Ravache, B.; Crowe, E.; Granderson, J. Statistical change detection of building energy consumption: Applications to savings estimation. Energy Build. 2019, 185, 123–136. [Google Scholar] [CrossRef]
- Du, Z.; Jin, X.; Zhu, Y.; Wang, Y.; Zhang, W.; Chen, Z. Development and application of hardware-in-the-loop simulation for the HVAC systems. Sci. Technol. Built Environ. 2019, 25, 1482–1493. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Yan, C. A framework for knowledge discovery in massive building automation data and its application in building diagnostics. Autom. Constr. 2015, 50, 81–90. [Google Scholar] [CrossRef]
- Seem, J.E. Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy Build. 2007, 39, 52–58. [Google Scholar] [CrossRef]
- Dodier, R.H.; Kreider, J.F. Detecting whole building energy problems. ASHRAE Trans. 1999, 105, 579. [Google Scholar]
- Papadopoulos, P.M.; Reppa, V.; Polycarpou, M.M.; Panayiotou, C.G. Scalable distributed sensor fault diagnosis for smart buildings. IEEE/CAA J. Autom. Sin. 2020, 7, 638–655. [Google Scholar] [CrossRef]
- Yang, C.; Shen, W.; Chen, Q.; Gunay, B. A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance. J. Build. Eng. 2018, 15, 26–32. [Google Scholar] [CrossRef]
- Mavromatidis, G.; Acha, S.; Shah, N. Diagnostic tools of energy performance for supermarkets using Artificial Neural Network algorithms. Energy Build. 2013, 62, 304–314. [Google Scholar] [CrossRef]
- Magoulès, F.; Zhao, H.; Elizondo, D. Development of an RDP neural network for building energy consumption fault detection and diagnosis. Energy Build. 2013, 62, 133–138. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Zhang, L.; Wu, X.; Wang, X. Energy consumption prediction and diagnosis of public buildings based on support vector machine learning: A case study in China. J. Clean. Prod. 2020, 272, 122542. [Google Scholar] [CrossRef]
- O’Neill, Z.; Pang, X.; Shashanka, M.; Haves, P.; Bailey, T. Model-based real-time whole building energy performance monitoring and diagnostics. J. Build. Perform. Simul. 2014, 7, 83–99. [Google Scholar] [CrossRef]
- Chen, Y.; Lan, L. Fault detection, diagnosis and data recovery for a real building heating/cooling billing system. Energy Convers. Manag. 2010, 51, 1015–1024. [Google Scholar] [CrossRef]
Review Article | Keywords | Scope | Times Cited |
---|---|---|---|
Srinivas Katipamula and Michael R. Brambley “Review article: Methods for Fault detection, Diagnosis, and Prognostics for Building Systems—A Review, Part I”, 2005 [10] | Not found | One of the first reviews on FDD in building systems. It focuses on generic FDD and prognostics, providing a framework for categorizing methods, describing them, and identifying their primary strengths and weaknesses. | Total: 1061 Annual: 62 |
Woohyun Kim and Srinivas Katipamula “A review of fault detection and diagnostics methods for building systems”, 2018 [14] | Not found | Update on publications since reviews I and II. Categorizes automated fault detection and diagnosis methods into two main groups and discusses applicability for each building system. | Total: 229 Annual: 57 |
Yang Zhao, Tingting Li, Xuejun Zhang, and Chaobo Zhang “Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future”, 2018 [21] | Fault detection; fault diagnosis; building energy systems; artificial intelligence; big data | Reviews a large quantity of FDD articles and divides them into two classes: data-driven-based and knowledge-driven-based. Discusses the algorithms in detail and suggests research tasks for the future. | Total: 172 Annual: 43 |
Srinivas Katipamula and Michael R. Brambley “Review article: Methods for Fault detection, Diagnosis, and Prognostics for Building Systems—A Review, Part II”, 2005 [11] | Not found | Continuation of the first review. It focuses on research and applications specific to the fields of HVAC&R, provides a brief discussion on the current state of diagnostics in buildings, and discusses the future of automated diagnostics in buildings. | Total: 567 Annual: 33 |
Maryam Sadat Mirnaghi and Fariborz Haghighat “Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review”, 2020 [13] | Large-scale HVAC system; fault detection and diagnosis; data-driven model; supervised data-mining method; unsupervised data-mining method | Reviews the existing literature and identify research gaps in mainly data-driven FDD methods. | Total: 59 Annual: 29 |
Muhammad Waseem Ahmad, Monjur Mourshed, Baris Yuce, and Yacine Rezgui “Computational intelligence techniques for HVAC systems: A review”, 2016 [12] | Heating, ventilation and air conditioning (HVAC); optimization; computational intelligence; energy conservation; energy efficiency; buildings | Presents a comprehensive and critical review of the theory and applications of CI techniques for the prediction, optimization, control, and diagnosis of HVAC systems. Classifies and thoroughly discusses each method’s applicability for HVAC systems. | Total: 153 Annual: 25 |
Zixiao Shi and William O’Brien “Development and implementation of automated fault detection and diagnostics for building systems: A review” [26] | Not found | Reviews different methods for feature generation, fault detection, and fault diagnosis. Proposes ways to improve their current limitations from other research disciplines. Discusses potential research topics for further development and applicability. | Total: 49 Annual: 16 |
Guannan Li, Yunpeng Hu, Jiangyan Liu, Xi Fang, and Jing Kang “Review on Fault Detection and Diagnosis Feature Engineering in Building Heating, Ventilation, Air Conditioning and Refrigeration Systems”, 2021 [22] | Building energy system; data analytics; feature engineering (FE) *; fault detection and diagnosis (FDD); fault-related feature (FF); heating ventilation air conditioning and refrigeration (HVAC&R) | Introduces feature engineering and fault-relevant features in a step toward FDD methods. The main focus is on the feature of faults in a large volume of articles. | Total: 6 Annual: 6 |
Arash Hosseini Gourabpasi and Mazdak Nik-Bakht “Knowledge Discovery by Analyzing the State of the Art of Data-Driven Fault Detection and Diagnostics of Building HVAC”, 2021 [20] | Data mining; AFDD; HVAC; machine learning; association rule mining; FP-Growth | Uses the ASHRAE standard to classify data-driven methods. Focuses on knowledge discovery and discusses investigated faults and the applied algorithms. | Total: 0 Annual: 0 |
Abbreviation | Full Name | Synonym | Definition |
---|---|---|---|
AFDD | Automated fault detection and diagnosis | Automated fault detection and diagnostics/fault detection, diagnosis, and evaluation (FDD&E) | Consists of fault detection, fault isolation, fault identification, fault evaluation |
FDD | Fault detection and diagnosis | Fault detection and diagnostics | Consists of fault detection, fault isolation, and fault identification (with the last two commonly known collectively as fault diagnosis) |
FD | Fault detection | - | This step involves monitoring the physical system or device and detecting any abnormal conditions (problems) |
Abbreviation | Full Name | Synonym | Definition |
---|---|---|---|
FI | Fault isolation | Fault analysis | This process involves isolating the specific fault that occurred, including determining the type of fault, the location of the fault, and the time of detection |
FI | Fault identification | This process includes determining the size and time-variant behavior of a fault | |
FDI | Fault detection and isolation | - | Fault detection and fault isolation |
FDI | Fault detection and identification | - | Fault detection and fault identification |
FE | Fault evaluation | Fault impact analysis (FIA) | Fault evaluation assesses the size and significance of the impact on system performance (in terms of energy use, cost, availability, or effects on other performance indicators) |
Ref. | Categorizations of FDD Methodologies |
---|---|
Katipamula et al. [10] |
|
Zhao et al. [21] |
|
Mirnaghi et al. [13] |
|
Zhang et al. [38] |
|
Li et al. [22] |
|
Ahmad et al. [12] |
|
Energy System Terminology Groups | Building System |
---|---|
Energy conversion | Centralized heating system (CHS) |
Centralized cooling system (CCS) | |
Terminal unit/air conditioning system (TU/AC) | |
Energy distribution | Air-handling unit (AHU) |
Terminal unit/air-conditioning system | |
Energy use | Whole building (WB) |
Category | Fault Detection | Two-Step Fault Detection and Diagnosis (Fault Detection/Diagnosis) | One-Step Fault Detection and Diagnosis |
---|---|---|---|
(70 Articles) | (55 Articles) | (97 Articles) | |
The four most applied algorithms for all articles. Building system was not taken into account in this category. | PCA (8) [81,82,83,84,85,86,87,88] | PCA + Q-statistics/Q-contribution plot (3) [89,90,91] | SVM (18) [56,57,70,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106] |
ANN (4) [107,108,109,110] | Gray-box model/expert ruleset (2) [111,112] | Ruleset (4) [48,49,113,114] | |
ARX (3) [71,115,116] | - | Residuals (3) [42,43,117] | |
- | - | DBN (3) [118,119,120] |
Ref. | Dataset | Description | Can be Found Here |
---|---|---|---|
[139] | Dataset for building fault detection and diagnostics algorithm creation and performance testing | Open datasets (both numerical simulations and fault emulation in laboratory). | [140] |
[93,97,141,142,143,144,145,146,147] | ASHRAE RP-1312 | States which dataset they used. | [148] |
[58] | ASHRAE RP-1020 and ASHRAE RP-1312 | States which dataset they used. | [148,149] |
[56,57,59,70,84,94,95,96,101,105,111,132,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171] | ASHRAE RP-1043 | States which dataset they used. | [172] |
[173] | ASHRAE RP-1139 | States which dataset they used. | [174] |
[86,175,176,177,178,179] | Electric factory dataset | States which dataset they used. | [180] |
[45,99,142,143,181,182,183,184] | - | Provided pseudo code in article. | - |
[185,186] | - | Explicit equations in Appendix. | - |
[166] | - | Source code in MATLAB and Python under “supplementary material” online. | - |
[94] | - | Source code and user manual for method in the data repository. | [187] |
[188] | - | Python source code is in the appendix of the article. | - |
Negative (Nonfaulty) | (No alarm) | (False alarm) | |
Positive (Faulty) | (Missed alarm) | (Alarm) |
Negative (Non-Faulty) | Positive (Fault 1) | … | Positive (Fault n−1) | Positive (Fault n) | ||
---|---|---|---|---|---|---|
True class | Negative (Nonfaulty) | (No alarm) | (False alarm) | |||
Positive (Fault 1) | (Missed alarm) | (Alarm) | ||||
⋮ | (Alarm) | (Misdiagnosed alarm) | ||||
Positive (Fault n − 1) | (Misdiagnosed alarm) | (Alarm) | ||||
Positive (Fault n) | (Alarm) |
Specified Name of the Metric and Equation | Specified Name of the Metric but Not the Equation | Performance Evaluation Metric | Equation | |
---|---|---|---|---|
[96,104,105,111,150,155,156,158,160,161,163,168,170] | Confusion matrix | - | ||
Used in FD (1 nonfault class and 1 fault class) | ||||
Global | [104,105] | Correct rate (CR) | ||
[104] | Misclassification rate (MisCR) | |||
Local | [153] | [57,164,168,171] | Fault-detection rate (FDR) | |
[154] | Correct rate | |||
[84] | [70] | Detection accuracy | ||
[101] | Classification accuracy | |||
[104,105] | Hit rate | |||
[104] | Recall | |||
[104] | True-positive rate | |||
[153] | False-alarm rate | |||
[84,104,105,154] | [57,111,168,171] | False-alarm rate (FAR) | ||
Used in FDD (1 nonfault class and multiple fault classes) | ||||
Global | [56,57,94,95,151,152,155,156,158] | [161,163,166] | Accuracy | |
[150] | [96,104,105] | Correct rate (CR) | ||
[165,169,190] | [159,160] | Correct diagnosis rate | ||
[101] | Classification accuracy | |||
[162] | Diagnosis rate | |||
[165,169,190] | [159] | False-diagnosis rate (FaDR) | ||
[94] | Macro-F1 (MF1) [191] | |||
[95] | Matthew’s correlation coefficient (MCC) | |||
[95] | G-mean | |||
Local | [155,161] | False-alarm rate | ||
[56,104,105] | [167] | False-alarm rate (FAR) | ||
[155] | Fake-alarm rate (FaAR) | |||
[155,156] | Misdiagnosed-alarm rate (MisR) | |||
[155] | Missed-detection rate (MDR) | |||
[156] | Misdiagnosed normal rate (MisNR) | |||
Local (calculated per class) | [95,156] | Precision (PREC) | ||
[157,167,170] | Diagnosis ratio | |||
[104,156] | Recall (REC) | |||
[59] | Sensitivity index | |||
[95] | Sensitivity | |||
[111] | Successful diagnosed ratio | |||
[104,105] | Hit rate | |||
[157,167,170] | Detection ratio | |||
[156] | F1-score (F1) | |||
[95] | F-measure | |||
[56] | False-negative rate (FNR) | |||
[56] | False-positive rate (FPR) |
Building System | Description | Reference | Type of Data/Code | Open Source? |
---|---|---|---|---|
Dataset repositories | ||||
Chiller | Tools and data for FDD methods applied to chillers: ASHRAE RP-1043 | [172] | Experimental data | No |
Air-handling units | Tools for evaluating fault detection and diagnostic methods for air-handling units: ASHRAE RP-1312 | [148] | Simulation data | No |
Real building | Demonstration of fault detection and diagnostic methods in a real building: ASHRAE RP-1020 | [149] | Implementation | No |
Vapor compression equipment | Development and comparison of one-lone model training techniques for model-based FDD methods applied to vapor-compression equipment: ASHRAE RP-1139 | [174] | Simulation/numerical data | No |
Chiller | Electric factory dataset | [180] | Experimental data | No |
Heat pump | Validation of the self-diagnosis efficiency system | [192] | Experimental data, hardware-in-the-loop | No |
Air-handling unit and rooftop unit | Labeled data for FDD | [140] | Experimental and simulation data | Yes |
Air-handling unit | Air-handling fault test data | [193] | Experimental data | No |
Chiller and boiler plant | Automated diagnostic algorithms for chillers, boilers, cooling towers, and chilled-water distribution | [194] | Simulation data | No |
Open code and data repositories | ||||
Air-handling unit | Development of fault models for hybrid fault detection and diagnostics algorithm | [195,196] | Code and data | Yes |
Air-handling unit | Fault detection and diagnosis in air-handling unit using Dymola data | [197] | Code and data | Yes |
Building energy-use data | Methods to analyze the available data set of historic building energy fault data | [198] | Code and data | Yes |
Heat pump and air conditioner | LabView codes and associated codes for using a rule-based-chart method of fault detection and diagnosis | [199] | Code and data | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melgaard, S.P.; Andersen, K.H.; Marszal-Pomianowska, A.; Jensen, R.L.; Heiselberg, P.K. Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review. Energies 2022, 15, 4366. https://doi.org/10.3390/en15124366
Melgaard SP, Andersen KH, Marszal-Pomianowska A, Jensen RL, Heiselberg PK. Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review. Energies. 2022; 15(12):4366. https://doi.org/10.3390/en15124366
Chicago/Turabian StyleMelgaard, Simon P., Kamilla H. Andersen, Anna Marszal-Pomianowska, Rasmus L. Jensen, and Per K. Heiselberg. 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review" Energies 15, no. 12: 4366. https://doi.org/10.3390/en15124366
APA StyleMelgaard, S. P., Andersen, K. H., Marszal-Pomianowska, A., Jensen, R. L., & Heiselberg, P. K. (2022). Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review. Energies, 15(12), 4366. https://doi.org/10.3390/en15124366