Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries
Abstract
:1. Introduction
2. Literature Review
2.1. Study Area: ASEAN Countries
2.2. Studies on the Effect of Determinants on RE
3. Materials and Methods
Data
Variable | Definition | Source |
---|---|---|
= Share of renewable energy in electricity generation (%) | WDI | |
Share of hydropower energy in electricity generation (%) | SDG | |
Share of solar energy in electricity generation (%) | SDG | |
Share of wind energy in electricity generation (%) | SDG | |
= Share of bioenergy energy in electricity generation (%) | SDG | |
= Share of geothermal energy in electricity generation (%) | SDG | |
CO2 emissions (metric tons per capita) | WDI | |
Total population (count) | WDI | |
Energy use (kg of oil equivalent per capita) | WDI | |
Average OPEC oil price (US dollars) | OPEC | |
R&D expenditures (% of GDP) | WDI | |
Human Development Index (index value–continuous) | UNDP | |
Number of patent applications (count) | WDI | |
KYO | KYO = Ratification of the Kyoto Protocol (dummy variable) | UNFCCC |
4. Empirical Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, J. There Is More CO2 in the Atmosphere Today Than Any Point Since the Evolution of Humans; CNN: Atlanta, GA, USA, 2019. [Google Scholar]
- Chen, W.; Lei, Y. The Impacts of Renewable Energy and Technological Innovation on Environment-Energy-Growth Nexus: New Evidence from a Panel Quantile Regression. Renew. Energy 2018, 123, 1–14. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Jianguo, W. The Asymmetric Relationship between Financial Development, Trade Openness, Foreign Capital Flows, and Renewable Energy Consumption: Fresh Evidence from Panel NARDL Investigation. Renew. Energy 2020, 159, 827–842. [Google Scholar] [CrossRef]
- Mamkhezri, J.; Thacher, J.A.; Chermak, J.M. Consumer Preferences for Solar Energy: A Choice Experiment Study. Energy J. 2020, 41, 57–184. [Google Scholar] [CrossRef]
- Mamkhezri, J.; Thacher, J.A.; Chermak, J.M.; Berrens, R.P. Does the Solemn Oath Lower WTP Responses in a Discrete Choice Experiment Application to Solar Energy? J. Environ. Econ. Policy 2020, 9, 447–473. [Google Scholar] [CrossRef]
- Mamkhezri, J. Market and Non-Market Valuation of Renewable Energy. Ph.D. Thesis, The University of New Mexico, Albuquerque, NM, USA, 2019. [Google Scholar]
- Mamkhezri, J.; Malczynski, L.A.; Chermak, J.M. Assessing the Economic and Environmental Impacts of Alternative Renewable Portfolio Standards: Winners and Losers. Energies 2021, 14, 3319. [Google Scholar] [CrossRef]
- Dai, H.; Mamkhezri, J.; Arshed, N.; Javaid, A.; Salem, S.; Khan, Y.A. Role of Energy Mix in Determining Climate Change Vulnerability in G7 Countries. Sustainability 2022, 14, 2161. [Google Scholar] [CrossRef]
- Mamkhezri, J.; Muhamad, G.M.; Khezri, M. Assessing the Spatial Effects of Economic Freedom on Forest-Products, Grazing-Land, and Cropland Footprints: The Case of Asia-Pacific Countries. J. Environ. Manag. 2022, 316, 115274. [Google Scholar] [CrossRef]
- Wang, J.; Mamkhezri, J.; Khezri, M.; Karimi, M.S.; Khan, Y.A. Insights from European Nations on the Spatial Impacts of Renewable Energy Sources on CO2 Emissions. Energy Rep. 2022, 8, 5620–5630. [Google Scholar] [CrossRef]
- Da Silva, P.P.; Cerqueira, P.A.; Ogbe, W. Determinants of Renewable Energy Growth in Sub-Saharan Africa: Evidence from Panel ARDL. Energy 2018, 156, 45–54. [Google Scholar] [CrossRef]
- Tian, X.; Kou, G.; Zhang, W. Geographic Distance, Venture Capital and Technological Performance: Evidence from Chinese Enterprises. Technol. Forecast. Soc. Chang. 2020, 158, 120155. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Chen, H.; Ji, Z. Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2020, 17, 587. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy Innovation and Renewable Energy Consumption in the Correction of Air Pollution Levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Ali, S.; Khan, Z. Eco-Innovation and Energy Productivity: New Determinants of Renewable Energy Consumption. J. Environ. Manag. 2020, 271, 111028. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, P.; Zhang, Z.G.; Li, J. Impact of Environmental Regulations on Industrial Structure Upgrading: An Empirical Study on Beijing-Tianjin-Hebei Region in China. J. Clean. Prod. 2019, 238, 763–773. [Google Scholar] [CrossRef]
- Yao, Y.; Ivanovski, K.; Inekwe, J.; Smyth, R. Human Capital and Energy Consumption: Evidence from OECD Countries. Energy Econ. 2019, 84, 104534. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, H. Human Capital in the Long Run. J. Dev. Econ. 2016, 122, 147–169. [Google Scholar] [CrossRef]
- Aguirre, M.; Ibikunle, G. Determinants of Renewable Energy Growth: A Global Sample Analysis. Energy Policy 2014, 69, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.-H.; Huang, C.-M.; Lee, M.-C. Threshold Effect of the Economic Growth Rate on the Renewable Energy Development from a Change in Energy Price: Evidence from OECD Countries. Energy Policy 2009, 37, 5796–5802. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable Energy Consumption, CO2 Emissions and Oil Prices in the G7 Countries. Energy Econ. 2009, 31, 456–462. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Pires Manso, J.R. Motivations Driving Renewable Energy in European Countries: A Panel Data Approach. Energy Policy 2010, 38, 6877–6885. [Google Scholar] [CrossRef]
- Lu, W.C. Renewable Energy, Carbon Emissions, and Economic Growth in 24 Asian Countries: Evidence from Panel Cointegration Analysis. Environ. Sci. Pollut. Res. 2017, 24, 26006–26015. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Determinants of Renewable Energy Technological Innovation in China under CO2 Emissions Constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef]
- Przychodzen, W.; Przychodzen, J. Determinants of Renewable Energy Production in Transition Economies: A Panel Data Approach. Energy 2020, 191, 116583. [Google Scholar] [CrossRef]
- Assi, A.F.; Zhakanova Isiksal, A.; Tursoy, T. Renewable Energy Consumption, Financial Development, Environmental Pollution, and Innovations in the ASEAN + 3 Group: Evidence from (P-ARDL) Model. Renew. Energy 2021, 165, 689–700. [Google Scholar] [CrossRef]
- Cerdeira Bento, J.P.; Moutinho, V. CO2 Emissions, Non-Renewable and Renewable Electricity Production, Economic Growth, and International Trade in Italy. Renew. Sustain. Energy Rev. 2016, 55, 142–155. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Market Analysis; IRENA: Abu Dhabi, United Arab Emirates, 2018; pp. 1–110. [Google Scholar]
- Handayani, K.; Anugrah, P.; Goembira, F.; Overland, I.; Suryadi, B.; Swandaru, A. Moving beyond the NDCs: ASEAN Pathways to a Net-Zero Emissions Power Sector in 2050. Appl. Energy 2022, 311, 118580. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Kilinc, D.; Onater-Isberk, E.; Yelkenci, T. Estimating the Political, Economic and Environmental Factors’ Impact on the Installed Wind Capacity Development: A System GMM Approach. Renew. Energy 2016, 96, 636–644. [Google Scholar] [CrossRef]
- Cadoret, I.; Padovano, F. The Political Drivers of Renewable Energies Policies. Energy Econ. 2016, 56, 261–269. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. The Evaluation of Renewable Energy Policies across EU Countries and US States: An Econometric Approach. Energy Sustain. Dev. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Papież, M.; Śmiech, S.; Frodyma, K. Determinants of Renewable Energy Development in the EU Countries. A 20-Year Perspective. Renew. Sustain. Energy Rev. 2018, 91, 918–934. [Google Scholar] [CrossRef]
- Popp, D.; Hascic, I.; Medhi, N. Technology and the Diffusion of Renewable Energy. Energy Econ. 2011, 33, 648–662. [Google Scholar] [CrossRef]
- Koengkan, M. Capital Stock Development in Latin America and the Caribbean Region and Their Effect on Investment Expansion in Renewable Energy. J. Sustain. Financ. Investig. 2020, 12, 612–629. [Google Scholar] [CrossRef]
- Valdés Lucas, J.N.; Escribano Francés, G.; San Martín González, E. Energy Security and Renewable Energy Deployment in the EU: Liaisons Dangereuses or Virtuous Circle? Renew. Sustain. Energy Rev. 2016, 62, 1032–1046. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Manso, J.P. A Quantile Approach to Identify Factors Promoting Renewable Energy in European Countries. Environ. Resour. Econ. 2011, 49, 351–366. [Google Scholar] [CrossRef]
- Brunnschweiler, C.N. Finance for Renewable Energy: An Empirical Analysis of Developing and Transition Economies. Environ. Dev. Econ. 2010, 15, 241–274. [Google Scholar] [CrossRef] [Green Version]
- Paramati, S.R.; Apergis, N.; Ummalla, M. Financing Clean Energy Projects through Domestic and Foreign Capital: The Role of Political Cooperation among the EU, the G20 and OECD Countries. Energy Econ. 2017, 61, 62–71. [Google Scholar] [CrossRef]
- Ang, G.; Burli, P.; Röttgers, D. The Empirics of Enabling Investment and Innovation in Renewable Energy; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Amri, F. Intercourse across Economic Growth, Trade and Renewable Energy Consumption in Developing and Developed Countries. Renew. Sustain. Energy Rev. 2017, 69, 527–534. [Google Scholar] [CrossRef]
- Belaïd, F.; Zrelli, M.H. Renewable and Non-Renewable Electricity Consumption, Environmental Degradation and Economic Development: Evidence from Mediterranean Countries. Energy Policy 2019, 133, 110929. [Google Scholar] [CrossRef]
- Nicolini, M.; Tavoni, M. Are Renewable Energy Subsidies Effective? Evidence from Europe. Renew. Sustain. Energy Rev. 2017, 74, 412–423. [Google Scholar] [CrossRef]
- Nyiwul, L. Economic Performance, Environmental Concerns, and Renewable Energy Consumption: Drivers of Renewable Energy Development in Sub-Sahara Africa. Clean Technol. Environ. Policy 2017, 19, 437–450. [Google Scholar] [CrossRef]
- Romano, A.A.; Scandurra, G. Investments in Renewable Energy Sources in Countries Grouped by Income Level. Energy Sources Part B Econ. Plan. Policy 2016, 11, 929–935. [Google Scholar] [CrossRef]
- Johnstone, N.; Haščič, I.; Popp, D. Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environ. Resour. Econ. 2010, 45, 133–155. [Google Scholar] [CrossRef]
- Pedroni, P. Fully Modified OLS for Heterogeneous Cointegrated Panels. In Nonstationary Panels, Panel Cointe-Gration, and Dynamic Panels; Baltagi, B.H., Fomby, T.B., Carter Hill, R., Eds.; Advances in Econometrics; Emerald Group Publishing Limited: Bingley, UK, 2001; Volume 15, pp. 93–130. ISBN 978-1-84950-065-4. [Google Scholar]
- Pedroni, P. Purchasing Power Parity Tests in Cointegrated Panels. Rev. Econ. Stat. 2001, 83, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Van Ruijven, B.; van Vuuren, D.P. Oil and Natural Gas Prices and Greenhouse Gas Emission Mitigation. Energy Policy 2009, 37, 4797–4808. [Google Scholar] [CrossRef]
- Mamkhezri, J.; Bohara, A.K.; Islas Camargo, A. Air Pollution and Daily Mortality in the Mexico City Metropolitan Area. Atmósfera 2020, 33, 249–267. [Google Scholar] [CrossRef]
- Mamkhezri, J.; Torell, G.L. Assessing the Impact of Exceptional Drought on Emissions and Electricity Generation: The Case of Texas. Energy J. 2022, 43, 461–470. [Google Scholar] [CrossRef]
- Mamkhezri, J.; Razzaghi, S.; Khezri, M.; Heshmati, A. Regional Effects of Maternal Mortality Determinants in Africa and the Middle East: How About Political Risks of Conflicts? Front. Public Health 2022, 10, 865903. [Google Scholar] [CrossRef]
- Al-Silefanee, R.R.; Mamkhezri, J.; Khezri, M.; Karimi, M.S.; Khan, Y.A. Effect of Islamic Financial Development on Carbon Emissions: A Spatial Econometric Analysis. Front. Environ. Sci. 2022, 10, 10322679. [Google Scholar] [CrossRef]
Target Type | Country | Renewable Energy Goal * | KP ** |
---|---|---|---|
Nameplate capacity | Philippines | 15.3 gigawatts RE installed capacity by 2030 | 20 November 2003 |
Singapore | 350 megawatts of solar capacity by 2020 and at least 2 gigawatts RE by 2030 | 12 April 2006 | |
Percentage | Indonesia | 23% RE share in the electricity mix by 2025 | 3 December 2004 |
Malaysia | 31% RE share in the electricity mix by 2025, 40% in 2035 | 4 September 2002 | |
Thailand | 30% RE share in total final energy | 28 August 2002 | |
Vietnam | 32% RE share in the electricity mix by 2030 and 43% by 2050 | 25 September 2002 |
Variable | Mean | Median | Max | Min | Std Dev | Obs |
---|---|---|---|---|---|---|
2.511 | 2.429 | 4.103 | 0.573 | 0.959 | 114 | |
2.075 | 2.129 | 4.071 | 0.000 | 1.161 | 114 | |
0.159 | 0.015 | 1.787 | 0.000 | 0.358 | 114 | |
0.103 | 0.000 | 1.213 | 0.000 | 0.244 | 114 | |
0.868 | 0.868 | 1.690 | 0.055 | 0.391 | 114 | |
0.625 | 0.000 | 3.088 | 0.000 | 0.983 | 114 | |
1.072 | 1.000 | 2.499 | −0.399 | 0.868 | 114 | |
17.741 | 18.114 | 19.405 | 15.209 | 1.235 | 114 | |
6.863 | 6.726 | 8.024 | 5.885 | 0.621 | 114 | |
4.014 | 4.109 | 4.695 | 3.141 | 0.506 | 114 | |
−0.957 | −1.253 | 0.956 | −3.046 | 1.115 | 114 | |
−0.332 | −0.359 | −0.067 | −0.548 | 0.120 | 114 | |
8.514 | 8.585 | 9.380 | 6.750 | 0.555 | 114 |
Level | First Difference | ||||
---|---|---|---|---|---|
Method | Statistic | p-Values | Statistic | p-Values | |
LLC | 1.517 | 0.935 | −0.927 | 0.177 | |
IPS | 0.143 | 0.557 | −3.488 * | 0.000 | |
Fisher–ADF | 14.814 | 0.252 | 34.423 * | 0.001 | |
LLC | −1.759 ** | 0.039 | −5.605 * | 0.000 | |
IPS | 0.730 | 0.767 | −4.216 * | 0.000 | |
Fisher–ADF | 10.813 | 0.545 | 41.628 * | 0.000 | |
LLC | −0.323 | 0.373 | −1.765 * | 0.039 | |
IPS | 1.790 | 0.963 | −1.068 | 0.143 | |
Fisher–ADF | 9.412 | 0.667 | 23.254 * | 0.026 | |
LLC | −3.527 * | 0.000 | −4.203 * | 0.000 | |
IPS | 0.095 | 0.538 | −3.545 * | 0.000 | |
Fisher–ADF | 12.011 | 0.445 | 34.927 * | 0.001 | |
LLC | −3.101 * | 0.001 | −4.489 * | 0.000 | |
IPS | −1.697 ** | 0.045 | −2.709 * | 0.003 | |
Fisher–ADF | 18.399 ** | 0.104 | 26.280 * | 0.010 | |
LLC | 1.407 | 0.920 | −5.666 * | 0.000 | |
IPS | 3.012 | 0.999 | −5.856 * | 0.000 | |
Fisher–ADF | 9.661 | 0.646 | 56.337 * | 0.000 | |
LLC | −5.085 * | 0.000 | −2.327 * | 0.010 | |
IPS | −1.124 | 0.131 | −2.571 * | 0.005 | |
Fisher–ADF | 18.498 | 0.101 | 26.712 * | 0.009 | |
LLC | −0.306 | 0.380 | −11.484 * | 0.000 | |
IPS | 0.736 | 0.769 | −7.521 * | 0.000 | |
Fisher–ADF | 9.450 | 0.664 | 73.573 * | 0.000 |
Dependent Variable | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Estimation 1 | Estimation 2 | Estimation 3 | Estimation 4 | Estimation 5 | Estimation 6 | |||||||
Coefficient | p-Values | Coefficient | p-Values | Coefficient | p-Values | Coefficient | p-Values | Coefficient | p-Values | Coefficient | p-Values | ||
Equation (1) | −0.207 ** | 0.016 | −0.247 * | 0.007 | 0.159 | 0.399 | 0.155 | 0.187 | 0.138 | 0.358 | −0.011 | 0.240 | |
−0.441 * | 0.001 | −0.391 * | 0.006 | 0.575* | 0.055 | 0.664 * | 0.001 | 0.325 | 0.169 | −0.053 * | 0.000 | ||
1.405 * | 0.000 | 1.107 * | 0.004 | 1.332*** | 0.100 | 0.167 | 0.738 | −0.079 | 0.901 | −0.028 | 0.465 | ||
0.831 * | 0.001 | 0.149 | 0.549 | 0.270 | 0.607 | −0.343 | 0.294 | −0.651 | 0.120 | 0.096* | 0.000 | ||
−0.115 *** | 0.061 | −0.008 | 0.902 | −0.340 ** | 0.014 | −0.146 *** | 0.086 | −0.008 | 0.943 | 0.001 | 0.837 | ||
0.984 | 0.987 | 0.495 | 0.561 | 0.721 | 0.990 | ||||||||
Kao | −4.154 * | 0.000 | −4.160 * | 0.000 | −4.253 * | 0.000 | −4.221 * | 0.000 | −4.173* | 0.000 | −4.145 * | 0.000 | |
Equation (2) | −0.183 ** | 0.030 | −0.210 ** | 0.014 | 0.082 | 0.649 | 0.087 | 0.409 | 0.093 | 0.525 | −0.007 | 0.427 | |
−0.414 * | 0.002 | −0.358 * | 0.008 | 0.505 *** | 0.075 | 0.594 * | 0.001 | 0.285 | 0.215 | −0.049 * | 0.001 | ||
1.527 * | 0.000 | 1.325 * | 0.001 | 0.789 | 0.336 | −0.356 | 0.462 | −0.437 | 0.512 | −0.005 | 0.905 | ||
0.837 * | 0.001 | 0.315 | 0.206 | −0.094 | 0.858 | −0.524 *** | 0.094 | −0.880 ** | 0.043 | 0.103 * | 0.000 | ||
−0.130 ** | 0.034 | −0.041 | 0.506 | −0.270 ** | 0.040 | −0.093 | 0.226 | 0.034 | 0.749 | −0.001 | 0.837 | ||
−0.065 | 0.298 | −0.123 *** | 0.052 | 0.291 ** | 0.031 | 0.261 * | 0.001 | 0.185 *** | 0.090 | −0.012 *** | 0.066 | ||
0.984 | 0.988 | 0.529 | 0.612 | 0.731 | 0.990 | ||||||||
Kao | −3.985 * | 0.000 | −3.993 * | 0.000 | −4.087 * | 0.000 | −4.061 * | 0.000 | −3.978 * | 0.000 | −3.975 * | 0.000 | |
Equation (3) | −0.187 ** | 0.026 | −0.181 ** | 0.027 | 0.105 | 0.576 | 0.098 | 0.388 | 0.058 | 0.691 | −0.010 | 0.277 | |
−0.424 * | 0.001 | −0.332 * | 0.009 | 0.528 *** | 0.075 | 0.614 * | 0.001 | 0.254 | 0.264 | −0.052 * | 0.000 | ||
1.788 * | 0.003 | 2.536 * | 0.000 | 0.120 | 0.927 | −0.998 | 0.212 | −1.834 *** | 0.074 | −0.011 | 0.866 | ||
1.012 * | 0.004 | 0.896 * | 0.008 | −0.373 | 0.630 | −0.941 ** | 0.047 | −1.587* | 0.009 | 0.105 * | 0.006 | ||
−0.115 *** | 0.056 | 0.005 | 0.929 | −0.353 * | 0.010 | −0.155 *** | 0.060 | −0.027 | 0.797 | 0.001 | 0.827 | ||
−1.333 | 0.411 | −5.195 * | 0.001 | 4.422 | 0.231 | 4.216 *** | 0.060 | 6.444 ** | 0.025 | −0.060 | 0.739 | ||
0.984 | 0.989 | 0.502 | 0.587 | 0.733 | 0.990 | ||||||||
Kao | −4.072 * | 0.000 | −4.081* | 0.000 | −4.034 * | 0.000 | −4.022 * | 0.000 | −4.073 * | 0.000 | −4.061 * | 0.000 | |
Equation (4) | −0.194 ** | 0.024 | −0.260 * | 0.005 | 0.194 | 0.304 | 0.144 | 0.227 | 0.195 | 0.180 | −0.011 | 0.222 | |
−0.412 * | 0.003 | −0.419 * | 0.004 | 0.652 ** | 0.030 | 0.640* | 0.001 | 0.446 ** | 0.053 | −0.054 * | 0.000 | ||
1.453 * | 0.000 | 1.076 * | 0.006 | 1.442 *** | 0.074 | 0.145 | 0.774 | 0.086 | 0.889 | −0.030 | 0.444 | ||
0.903 * | 0.000 | 0.121 | 0.637 | 0.434 | 0.415 | −0.352 | 0.295 | −0.472 | 0.249 | 0.092 * | 0.001 | ||
−0.122 ** | 0.045 | −0.003 | 0.962 | −0.359 * | 0.009 | −0.143 *** | 0.094 | −0.029 | 0.779 | 0.002 | 0.772 | ||
−0.090 | 0.204 | 0.055 | 0.470 | −0.219 | 0.165 | 0.035 | 0.721 | −0.282 | 0.211 | 0.005 | 0.537 | ||
0.984 | 0.987 | 0.491 | 0.565 | 0.727 | 0.990 | ||||||||
Kao | −4.159 * | 0.000 | −4.161 * | 0.000 | −4.254 * | 0.000 | −4.214 * | 0.000 | −4.152* | 0.000 | −4.140* | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khezri, M.; Karimi, M.S.; Mamkhezri, J.; Ghazal, R.; Blank, L. Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries. Energies 2022, 15, 4604. https://doi.org/10.3390/en15134604
Khezri M, Karimi MS, Mamkhezri J, Ghazal R, Blank L. Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries. Energies. 2022; 15(13):4604. https://doi.org/10.3390/en15134604
Chicago/Turabian StyleKhezri, Mohsen, Mohammad Sharif Karimi, Jamal Mamkhezri, Reza Ghazal, and Larry Blank. 2022. "Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries" Energies 15, no. 13: 4604. https://doi.org/10.3390/en15134604
APA StyleKhezri, M., Karimi, M. S., Mamkhezri, J., Ghazal, R., & Blank, L. (2022). Assessing the Impact of Selected Determinants on Renewable Energy Sources in the Electricity Mix: The Case of ASEAN Countries. Energies, 15(13), 4604. https://doi.org/10.3390/en15134604