A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics
Abstract
:1. Introduction
2. Materials
2.1. Narrow Band Gap Polymer Donors
2.2. Narrow Band Gap Non-Fullerene Acceptors
3. Transparent Electrodes
4. Device Engineering
4.1. Evaluation of ST-OPVs: Figures of Merit
4.2. Theoretical Performance Limits of ST-OPVs
4.3. Current Performance and Strategies to Increase LUE
5. Device Physics in Narrow Band Gap ST-OPVs
5.1. Changes in Active Layer-Importance of Bulk Recombination and Shunt Leakage
5.2. Changes in the Interfacial Processes in Narrow Band Gap OPVs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ajayan, J.; Nirmal, D.; Mohankumar, P.; Saravanan, M.; Jagadesh, M.; Arivazhagan, L. A Review of Photovoltaic Performance of Organic/Inorganic Solar Cells for Future Renewable and Sustainable Energy Technologies. Superlattices Microstruct. 2020, 143, 106549. [Google Scholar] [CrossRef]
- Brabec, C.J.; Distler, A.; Du, X.; Egelhaaf, H.-J.; Hauch, J.; Heumueller, T.; Li, N. Material Strategies to Accelerate OPV Technology Toward a GW Technology. Adv. Energy Mater. 2020, 10, 2001864. [Google Scholar] [CrossRef]
- Husain, A.A.F.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A Review of Transparent Solar Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Shin, D.H.; Jang, C.W.; Lee, H.S.; Seo, S.W.; Choi, S.-H. Semitransparent Flexible Organic Solar Cells Employing Doped-Graphene Layers as Anode and Cathode Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 3596–3601. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G.; Cui, C.; Li, Y. Flexible and Semitransparent Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1701791. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; White, M.S.; Głowacki, E.D.; Sekitani, T.; Someya, T.; Sariciftci, N.S.; Bauer, S. Ultrathin and Lightweight Organic Solar Cells with High Flexibility. Nat. Commun. 2012, 3, 770. [Google Scholar] [CrossRef] [Green Version]
- Brus, V.V.; Lee, J.; Luginbuhl, B.R.; Ko, S.-J.; Bazan, G.C.; Nguyen, T.-Q. Hall of Fame Article: Solution-Processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance (Adv. Mater. 30/2019). Adv. Mater. 2019, 31, 1970219. [Google Scholar] [CrossRef] [Green Version]
- Aghassi, A.; Fay, C.D. Understanding the Loss Mechanisms in High-Performance Solution-Processed Small Molecule Bulk Heterojunction Solar Cells Doped with a PFN Impurity. Phys. Chem. Chem. Phys. 2019, 21, 13176–13185. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Admassie, S.; Inganäs, O.; Mammo, W.; Perzon, E.; Andersson, M.R. Electrochemical and Optical Studies of the Band Gaps of Alternating Polyfluorene Copolymers. Synth. Met. 2006, 156, 614–623. [Google Scholar] [CrossRef]
- Phan, H.; Kelly, T.J.; Zhugayevych, A.; Bazan, G.C.; Nguyen, T.-Q.; Jarvis, E.A.; Tretiak, S. Tuning Optical Properties of Conjugated Molecules by Lewis Acids: Insights from Electronic Structure Modeling. J. Phys. Chem. Lett. 2019, 10, 4632–4638. [Google Scholar] [CrossRef]
- Lee, J.; Ko, S.-J.; Seifrid, M.; Lee, H.; Luginbuhl, B.R.; Karki, A.; Ford, M.; Rosenthal, K.; Cho, K.; Nguyen, T.-Q.; et al. Bandgap Narrowing in Non-Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 Nm. Adv. Energy Mater. 2018, 8, 1801212. [Google Scholar] [CrossRef]
- Liu, W.; Sun, S.; Zhou, L.; Cui, Y.; Zhang, W.; Hou, J.; Liu, F.; Xu, S.; Zhu, X. Design of Near-Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-Performance Semitransparent Ternary Organic Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202116111. [Google Scholar] [CrossRef]
- Anctil, A.; Lee, E.; Lunt, R.R. Net Energy and Cost Benefit of Transparent Organic Solar Cells in Building-Integrated Applications. Appl. Energy 2020, 261, 114429. [Google Scholar] [CrossRef]
- Ballif, C.; Perret-Aebi, L.-E.; Lufkin, S.; Rey, E. Integrated Thinking for Photovoltaics in Buildings. Nat. Energy 2018, 3, 438. [Google Scholar] [CrossRef]
- Jelle, B.P.; Breivik, C. State-of-the-Art Building Integrated Photovoltaics. Energy Procedia 2012, 20, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Jelle, B.P.; Breivik, C. The Path to the Building Integrated Photovoltaics of Tomorrow. Energy Procedia 2012, 20, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Guo, X.; Peng, Z.; Qu, B.; Yan, H.; Ade, H.; Zhang, M.; Forrest, S.R. Color-Neutral, Semitransparent Organic Photovoltaics for Power Window Applications. Proc. Natl. Acad. Sci. USA 2020, 117, 21147–21154. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Karki, A.; Vollbrecht, J.; Dixon, A.L.; Schopp, N.; Schrock, M.; Reddy, G.N.M.; Nguyen, T.-Q. Understanding the High Performance of over 15% Efficiency in Single-Junction Bulk Heterojunction Organic Solar Cells. Adv. Mater. 2019, 31, 1903868. [Google Scholar] [CrossRef]
- Zhu, C.; Yuan, J.; Cai, F.; Meng, L.; Zhang, H.; Chen, H.; Li, J.; Qiu, B.; Peng, H.; Chen, S.; et al. Tuning the Electron-Deficient Core of a Non-Fullerene Acceptor to Achieve over 17% Efficiency in a Single-Junction Organic Solar Cell. Energy Environ. Sci. 2020, 13, 2459–2466. [Google Scholar] [CrossRef]
- Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% Efficiency for Single-Junction Organic Solar Cells. Sci. China Chem. 2019, 62, 746–752. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% Efficiency Organic Photovoltaic Cells Enabled by a Chlorinated Acceptor with Increased Open-Circuit Voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef]
- Gutzler, R.; Perepichka, D.F. π-Electron Conjugation in Two Dimensions. J. Am. Chem. Soc. 2013, 135, 16585–16594. [Google Scholar] [CrossRef]
- Gutzler, R. Band-Structure Engineering in Conjugated 2D Polymers. Phys. Chem. Chem. Phys. 2016, 18, 29092–29100. [Google Scholar] [CrossRef] [Green Version]
- Scharber, M.C.; Sariciftci, N.S. Low Band Gap Conjugated Semiconducting Polymers. Adv. Mater. Technol. 2021, 6, 2000857. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Y.; Hsu, B.B.Y.; Lorbach, A.; Qi, L.; Heeger, A.J.; Bazan, G.C. Design and Properties of Intermediate-Sized Narrow Band-Gap Conjugated Molecules Relevant to Solution-Processed Organic Solar Cells. J. Am. Chem. Soc. 2014, 136, 5697–5708. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Gong, X.; Heeger, A.J. Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef]
- Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chem. Rev. 2015, 115, 12633–12665. [Google Scholar] [CrossRef]
- Lim, D.-H.; Ha, J.-W.; Choi, H.; Cheol Yoon, S.; Ram Lee, B.; Ko, S.-J. Recent Progress of Ultra-Narrow-Bandgap Polymer Donors for NIR-Absorbing Organic Solar Cells. Nanoscale Adv. 2021, 3, 4306–4320. [Google Scholar] [CrossRef]
- Kitamura, C.; Tanaka, S.; Yamashita, Y. Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units. Chem. Mater. 1996, 8, 570–578. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kertesz, M. The effect of additional fused rings on the stabilities and the band gaps of heteroconjugated polymers. Int. J. Quantum Chem. 1987, 32, 163–170. [Google Scholar] [CrossRef]
- Wudl, F.; Kobayashi, M.; Heeger, A.J. Poly(Isothianaphthene). J. Org. Chem. 1984, 49, 3382–3384. [Google Scholar] [CrossRef]
- Brédas, J.L.; Heeger, A.J.; Wudl, F. Towards Organic Polymers with Very Small Intrinsic Band Gaps. I. Electronic Structure of Polyisothianaphthene and Derivatives. J. Chem. Phys. 1986, 85, 4673–4678. [Google Scholar] [CrossRef]
- Kawabata, K.; Saito, M.; Osaka, I.; Takimiya, K. Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids. J. Am. Chem. Soc. 2016, 138, 7725–7732. [Google Scholar] [CrossRef]
- Steckler, T.T.; Henriksson, P.; Mollinger, S.; Lundin, A.; Salleo, A.; Andersson, M.R. Very Low Band Gap Thiadiazoloquinoxaline Donor–Acceptor Polymers as Multi-Tool Conjugated Polymers. J. Am. Chem. Soc. 2014, 136, 1190–1193. [Google Scholar] [CrossRef]
- Mikie, T.; Osaka, I. Small-Bandgap Quinoid-Based π-Conjugated Polymers. J. Mater. Chem. C 2020, 8, 14262–14288. [Google Scholar] [CrossRef]
- Li, X.; Guo, J.; Yang, L.; Chao, M.; Zheng, L.; Ma, Z.; Hu, Y.; Zhao, Y.; Chen, H.; Liu, Y. Low Bandgap Donor-Acceptor π-Conjugated Polymers From Diarylcyclopentadienone-Fused Naphthalimides. Front. Chem. 2019, 7, 362. [Google Scholar] [CrossRef]
- Wardani, R.P.; Jeong, M.; Lee, S.W.; Whang, D.R.; Kim, J.H.; Chang, D.W. Simple Methoxy-Substituted Quinoxaline-Based D-A Type Polymers for Nonfullerene Polymer Solar Cells. Dye. Pigment. 2021, 192, 109346. [Google Scholar] [CrossRef]
- Yue, H.; Kong, L.; Wang, B.; Yuan, Q.; Zhang, Y.; Du, H.; Dong, Y.; Zhao, J. Synthesis and Characterization of Novel D-A Type Neutral Blue Electrochromic Polymers Containing Pyrrole [3-c]Pyrrole-1,4-Diketone as the Acceptor Units and the Aromatics Donor Units with Different Planar Structures. Polymers 2019, 11, 2023. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, M.; Otsura, T.; Naito, H.; Ohshita, J. Synthesis of New D-A Polymers Containing Disilanobithiophene Donor and Application to Bulk Heterojunction Polymer Solar Cells. Polym. J. 2015, 47, 733–738. [Google Scholar] [CrossRef]
- Murugesan, V.; de Bettignies, R.; Mercier, R.; Guillerez, S.; Perrin, L. Synthesis and Characterizations of Benzotriazole Based Donor–Acceptor Copolymers for Organic Photovoltaic Applications. Synth. Met. 2012, 162, 1037–1045. [Google Scholar] [CrossRef]
- Hückel, E. Zur Quantentheorie der Doppelbindung. Z. Phys. 1930, 60, 423–456. [Google Scholar] [CrossRef]
- Slifkin, M.A. Molecular Orbital Theory and Experimentally Determined Energy-Levels. Nature 1963, 200, 877–879. [Google Scholar] [CrossRef]
- Kim, J.; Hong, Z.; Li, G.; Song, T.; Chey, J.; Lee, Y.S.; You, J.; Chen, C.-C.; Sadana, D.K.; Yang, Y. 10.5% Efficient Polymer and Amorphous Silicon Hybrid Tandem Photovoltaic Cell. Nat. Commun. 2015, 6, 6391. [Google Scholar] [CrossRef] [Green Version]
- Dou, L.; Chen, C.-C.; Yoshimura, K.; Ohya, K.; Chang, W.-H.; Gao, J.; Liu, Y.; Richard, E.; Yang, Y. Synthesis of 5H-Dithieno [3,2-b:2′,3′-d]Pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules 2013, 46, 3384–3390. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Acc. Chem. Res. 2020, 53, 1218–1228. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Liang, N.; Yao, H.; Wei, Z.; He, C.; Yuan, X.; Hou, J. Effects of Energy-Level Offset between a Donor and Acceptor on the Photovoltaic Performance of Non-Fullerene Organic Solar Cells. J. Mater. Chem. A 2019, 7, 18889–18897. [Google Scholar] [CrossRef]
- Karki, A.; Vollbrecht, J.; Gillett, A.J.; Selter, P.; Lee, J.; Peng, Z.; Schopp, N.; Dixon, A.L.; Schrock, M.; Nádaždy, V.; et al. Unifying Charge Generation, Recombination, and Extraction in Low-Offset Non-Fullerene Acceptor Organic Solar Cells. Adv. Energy Mater. 2020, 10, 2001203. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Zhang, M.; Liu, Y.; Zhou, G.; Xu, S.; Zhang, F.; Zhu, H.; Liu, F.; Zhu, X. Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells. iScience 2019, 19, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Ran, N.A.; Love, J.A.; Heiber, M.C.; Jiao, X.; Hughes, M.P.; Karki, A.; Wang, M.; Brus, V.V.; Wang, H.; Neher, D.; et al. Charge Generation and Recombination in an Organic Solar Cell with Low Energetic Offsets. Adv. Energy Mater. 2018, 8, 1701073. [Google Scholar] [CrossRef]
- Armin, A.; Li, W.; Sandberg, O.J.; Xiao, Z.; Ding, L.; Nelson, J.; Neher, D.; Vandewal, K.; Shoaee, S.; Wang, T.; et al. A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells. Adv. Energy Mater. 2021, 11, 2003570. [Google Scholar] [CrossRef]
- Wang, J.; Xie, S.; Zhang, D.; Wang, R.; Zheng, Z.; Zhou, H.; Zhang, Y. Ultra-Narrow Bandgap Non-Fullerene Organic Solar Cells with Low Voltage Losses and a Large Photocurrent. J. Mater. Chem. A 2018, 6, 19934–19940. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, F.; Geng, X.; Zhang, J.; Wang, S.; Xie, Y.; Li, Z.; Yang, H.; Yuan, Y.; Ding, L. A Carbon-Oxygen-Bridged Ladder-Type Building Block for Efficient Donor and Acceptor Materials Used in Organic Solar Cells. Sci. Bull. 2017, 62, 1331–1336. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Jia, X.; Li, D.; Wang, S.; Geng, X.; Liu, F.; Chen, J.; Yang, S.; Russell, T.P.; Ding, L. 26 mA cm−2Jsc from Organic Solar Cells with a Low-Bandgap Nonfullerene Acceptor. Sci. Bull. 2017, 62, 1494–1496. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Z.; Ding, L.; Wang, J. Thermostable Single-Junction Organic Solar Cells with a Power Conversion Efficiency of 14.62%. Sci. Bull. 2018, 63, 340–342. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Song, S.; Huang, J.; Du, Z.; Lee, H.; Zhu, Z.; Ko, S.-J.; Nguyen, T.-Q.; Kim, J.Y.; Cho, K.; et al. Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics. ACS Mater. Lett. 2020, 2, 395–402. [Google Scholar] [CrossRef]
- Yang, C.; An, Q.; Bai, H.-R.; Zhi, H.-F.; Ryu, H.S.; Mahmood, A.; Zhao, X.; Zhang, S.; Woo, H.Y.; Wang, J.-L. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5% Efficiency. Angew. Chem. Int. Ed. 2021, 60, 19241–19252. [Google Scholar] [CrossRef]
- Jia, Z.; Qin, S.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J.; Li, X.; He, Y.; Lai, W.; Li, N.; et al. High Performance Tandem Organic Solar Cells via a Strongly Infrared-Absorbing Narrow Bandgap Acceptor. Nat. Commun. 2021, 12, 178. [Google Scholar] [CrossRef]
- Ahlswede, E.; Hanisch, J.; Powalla, M. Influence of Cathode Sputter Deposition on Organic Solar Cells. Appl. Phys. Lett. 2007, 90, 063513. [Google Scholar] [CrossRef]
- Way, A.; Luke, J.; Evans, A.D.; Li, Z.; Kim, J.-S.; Durrant, J.R.; Hin Lee, H.K.; Tsoi, W.C. Fluorine Doped Tin Oxide as an Alternative of Indium Tin Oxide for Bottom Electrode of Semi-Transparent Organic Photovoltaic Devices. AIP Adv. 2019, 9, 085220. [Google Scholar] [CrossRef]
- Aydin, E.; De Bastiani, M.; Yang, X.; Sajjad, M.; Aljamaan, F.; Smirnov, Y.; Hedhili, M.N.; Liu, W.; Allen, T.G.; Xu, L.; et al. Zr-Doped Indium Oxide (IZRO) Transparent Electrodes for Perovskite-Based Tandem Solar Cells. Adv. Funct. Mater. 2019, 29, 1901741. [Google Scholar] [CrossRef]
- Kim, M.; Lim, C.; Jeong, D.; Nam, H.-S.; Kim, J.; Lee, J. Design of a MoOx/Au/MoOx Transparent Electrode for High-Performance OLEDs. Org. Electron. 2016, 36, 61–67. [Google Scholar] [CrossRef]
- Lee, K.-S.; Kim, I.; Yeon, C.B.; Lim, J.W.; Yun, S.J.; Jabbour, G.E. Thin Metal Electrodes for Semitransparent Organic Photovoltaics. ETRI J. 2013, 35, 587–593. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, B.; Haughn, C.; An, K.-H.; Pipe, K.P.; Shtein, M. Transparent and Conductive Electrodes Based on Unpatterned, Thin Metal Films. Appl. Phys. Lett. 2008, 93, 223304. [Google Scholar] [CrossRef]
- Chen, K.-S.; Salinas, J.-F.; Yip, H.-L.; Huo, L.; Hou, J.; Jen, A.K.-Y. Semi-Transparent Polymer Solar Cells with 6% PCE, 25% Average Visible Transmittance and a Color Rendering Index Close to 100 for Power Generating Window Applications. Energy Environ. Sci. 2012, 5, 9551. [Google Scholar] [CrossRef]
- Sun, X.; Hong, R.; Hou, H.; Fan, Z.; Shao, J. Thickness Dependence of Structure and Optical Properties of Silver Films Deposited by Magnetron Sputtering. Thin Solid Films 2007, 515, 6962–6966. [Google Scholar] [CrossRef]
- Hövel, M.; Gompf, B.; Dressel, M. Dielectric Properties of Ultrathin Metal Films around the Percolation Threshold. Phys. Rev. B 2010, 81, 035402. [Google Scholar] [CrossRef] [Green Version]
- Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres. Plasmonics 2016, 11, 941–951. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.K.; Debu, D.T.; French, D.A.; Herzog, J.B. Calculated Thickness Dependent Plasmonic Properties of Gold Nanobars in the Visible to Near-Infrared Light Regime. PLoS ONE 2017, 12, e0177463. [Google Scholar] [CrossRef]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- Gordel, M.; Olesiak-Banska, J.; Kolkowski, R.; Matczyszyn, K.; Buckle, M.; Samoc, M. Shell-Thickness-Dependent Nonlinear Optical Properties of Colloidal Gold Nanoshells. J. Mater. Chem. C 2014, 2, 7239–7246. [Google Scholar] [CrossRef]
- Ji, C.; Liu, D.; Zhang, C.; Jay Guo, L. Ultrathin-Metal-Film-Based Transparent Electrodes with Relative Transmittance Surpassing 100%. Nat. Commun. 2020, 11, 3367. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Ji, C.; Chen, X.; Hou, G.; Li, Y.; Zhou, X.; Cui, X.; Yang, X.; Ren, C.; et al. Low-Temperature Oxide/Metal/Oxide Multilayer Films as Highly Transparent Conductive Electrodes for Optoelectronic Devices. ACS Appl. Energy Mater. 2021, 4, 6553–6561. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, B.; Hou, J. Solution-Processed Silver Nanowire as Flexible Transparent Electrodes in Organic Solar Cells. Chin. J. Chem. 2021, 39, 2315–2329. [Google Scholar] [CrossRef]
- Tam, K.C.; Kubis, P.; Maisch, P.; Brabec, C.J.; Egelhaaf, H.-J. Fully Printed Organic Solar Modules with Bottom and Top Silver Nanowire Electrodes. Prog. Photovolt. Res. Appl. 2022, 30, 528–542. [Google Scholar] [CrossRef]
- Velasco Davoise, L.; Díez-Pascual, A.M.; Peña Capilla, R. Application of Graphene-Related Materials in Organic Solar Cells. Materials 2022, 15, 1171. [Google Scholar] [CrossRef]
- Yao, N.; Xia, Y.; Liu, Y.; Chen, S.; Jonsson, M.P.; Zhang, F. Solution-Processed Highly Efficient Semitransparent Organic Solar Cells with Low Donor Contents. ACS Appl. Energy Mater. 2021, 4, 14335–14341. [Google Scholar] [CrossRef]
- Wan, X.; Long, G.; Huang, L.; Chen, Y. Graphene—A Promising Material for Organic Photovoltaic Cells. Adv. Mater. 2011, 23, 5342–5358. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, X.; Xing, F.; Huang, L.; Long, G.; Yi, N.; Ni, W.; Liu, Z.; Tian, J.; Chen, Y. Solution-Processable Graphene Mesh Transparent Electrodes for Organic Solar Cells. Nano Res. 2013, 6, 478–484. [Google Scholar] [CrossRef]
- Shin, S.; Kim, J.; Kim, Y.-H.; Kim, S.-I. Enhanced Performance of Organic Light-Emitting Diodes by Using Hybrid Anodes Composed of Graphene and Conducting Polymer. Curr. Appl. Phys. 2013, 13, S144–S147. [Google Scholar] [CrossRef]
- Dianetti, M.; Susanna, G.; Calabrò, E.; Polino, G.; Otto, M.; Neumaier, D.; Reale, A.; Brunetti, F. Graphene with Ni-Grid as Semitransparent Electrode for Bulk Heterojunction Solar Cells (BHJ-SCs). Polymers 2022, 14, 1046. [Google Scholar] [CrossRef]
- Cui, N.; Song, Y.; Tan, C.-H.; Zhang, K.; Yang, X.; Dong, S.; Xie, B.; Huang, F. Stretchable Transparent Electrodes for Conformable Wearable Organic Photovoltaic Devices. npj Flex. Electron. 2021, 5, 31. [Google Scholar] [CrossRef]
- Sagadevan, S.; Shahid, M.M.; Yiqiang, Z.; Oh, W.-C.; Soga, T.; Lett, J.A.; Alshahateet, S.F.; Fatimah, I.; Waqar, A.; Paiman, S.; et al. Functionalized Graphene-Based Nanocomposites for Smart Optoelectronic Applications. Nanotechnol. Rev. 2021, 10, 605–635. [Google Scholar] [CrossRef]
- Morales-Masis, M.; De Wolf, S.; Woods-Robinson, R.; Ager, J.W.; Ballif, C. Transparent Electrodes for Efficient Optoelectronics. Adv. Electron. Mater. 2017, 3, 1600529. [Google Scholar] [CrossRef] [Green Version]
- Brus, V.V.; Gluba, M.A.; Mai, C.-K.; Fronk, S.L.; Rappich, J.; Nickel, N.H.; Bazan, G.C. Conjugated Polyelectrolyte/Graphene Hetero-Bilayer Nanocomposites Exhibit Temperature Switchable Type of Conductivity. Adv. Electron. Mater. 2017, 3, 1600515. [Google Scholar] [CrossRef]
- Kaikanov, M.; Kemelbay, A.; Amanzhulov, B.; Demeuova, G.; Akhtanova, G.; Bozheyev, F.; Tikhonov, A. Electrical Conductivity Enhancement of Transparent Silver Nanowire Films on Temperature-Sensitive Flexible Substrates Using Intense Pulsed Ion Beam. Nanotechnology 2021, 32, 145706. [Google Scholar] [CrossRef]
- Schopp, N.; Brus, V.V.; Nguyen, T.-Q. On Optoelectronic Processes in Organic Solar Cells: From Opaque to Transparent. Adv. Opt. Mater. 2021, 9, 2001484. [Google Scholar] [CrossRef]
- Sayigh, A. Sustainability, Energy and Architecture: Case Studies in Realizing Green Buildings; Academic Press: Boston, MA, USA, 2013; p. iii. ISBN 978-0-12-397269-9. [Google Scholar]
- Kirk, A.P. Chapter 1—Energy Demand and Solar Electricity. In Solar Photovoltaic Cells; Kirk, A.P., Ed.; Academic Press: Oxford, UK, 2015; pp. 1–8. ISBN 978-0-12-802329-7. [Google Scholar]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of Highly Transparent Photovoltaics for Distributed Applications. Nat. Energy 2017, 2, 849. [Google Scholar] [CrossRef]
- Yang, C.; Liu, D.; Bates, M.; Barr, M.C.; Lunt, R.R. How to Accurately Report Transparent Solar Cells. Joule 2019, 3, 1803–1809. [Google Scholar] [CrossRef]
- Schubert, E.F. Light-Emitting Diodes, 2nd ed.; E. Fred Schubert: Troy, NY, USA, 2006; ISBN 978-0-9863826-1-1. [Google Scholar]
- Xue, Q.; Xia, R.; Brabec, C.J.; Yip, H.-L. Recent Advances in Semi-Transparent Polymer and Perovskite Solar Cells for Power Generating Window Applications. Energy Environ. Sci. 2018, 11, 1688–1709. [Google Scholar] [CrossRef]
- Lunt, R.R.; Bulovic, V. Transparent, near-Infrared Organic Photovoltaic Solar Cells for Window and Energy-Scavenging Applications. Appl. Phys. Lett. 2011, 98, 113305. [Google Scholar] [CrossRef]
- Chang, S.-Y.; Cheng, P.; Li, G.; Yang, Y. Transparent Polymer Photovoltaics for Solar Energy Harvesting and Beyond. Joule 2018, 2, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Lunt, R.R. Theoretical Limits for Visibly Transparent Photovoltaics. Appl. Phys. Lett. 2012, 101, 043902. [Google Scholar] [CrossRef]
- Tuchinda, C.; Srivannaboon, S.; Lim, H.W. Photoprotection by Window Glass, Automobile Glass, and Sunglasses. J. Am. Acad. Dermatol. 2006, 54, 845–854. [Google Scholar] [CrossRef]
- Preto, S.; Gomes, C.C. Lighting in the Workplace: Recommended Illuminance (Lux) at Workplace Environs. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 180–191. [Google Scholar]
- Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F. A Critical Review on Semitransparent Organic Solar Cells. Nano Energy 2020, 78, 105376. [Google Scholar] [CrossRef]
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.-Y.; Marder, S.R.; Zhan, X. Non-Fullerene Acceptors for Organic Solar Cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Wadsworth, A.; Moser, M.; Marks, A.; Little, M.S.; Gasparini, N.; Brabec, C.J.; Baran, D.; McCulloch, I. Critical Review of the Molecular Design Progress in Non-Fullerene Electron Acceptors towards Commercially Viable Organic Solar Cells. Chem. Soc. Rev. 2019, 48, 1596–1625. [Google Scholar] [CrossRef]
- Ou, Q.-D.; Li, Y.-Q.; Tang, J.-X. Light Manipulation in Organic Photovoltaics. Adv. Sci. 2016, 3, 1600123. [Google Scholar] [CrossRef]
- Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.; Yip, H.-L.; et al. High-Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See-Through Functions. Adv. Mater. 2020, 32, 2001621. [Google Scholar] [CrossRef]
- Sheriff, H.K.M.; Li, Y.; Qu, B.; Forrest, S.R. Aperiodic Optical Coatings for Neutral-Color Semi-Transparent Organic Photovoltaics. Appl. Phys. Lett. 2021, 118, 033302. [Google Scholar] [CrossRef]
- Xie, Y.; Xia, R.; Li, T.; Ye, L.; Zhan, X.; Yip, H.-L.; Sun, Y. Highly Transparent Organic Solar Cells with All-Near-Infrared Photoactive Materials. Small Methods 2019, 3, 1900424. [Google Scholar] [CrossRef]
- Li, Y.; He, C.; Zuo, L.; Zhao, F.; Zhan, L.; Li, X.; Xia, R.; Yip, H.-L.; Li, C.-Z.; Liu, X.; et al. High-Performance Semi-Transparent Organic Photovoltaic Devices via Improving Absorbing Selectivity. Adv. Energy Mater. 2021, 11, 2003408. [Google Scholar] [CrossRef]
- Li, Y.; Ji, C.; Qu, Y.; Huang, X.; Hou, S.; Li, C.-Z.; Liao, L.-S.; Guo, L.J.; Forrest, S.R. High Efficiency Semi-Transparent Organic Photovoltaics. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 0098–0100. [Google Scholar]
- Yao, N.; Wang, J.; Chen, Z.; Bian, Q.; Xia, Y.; Zhang, R.; Zhang, J.; Qin, L.; Zhu, H.; Zhang, Y.; et al. Efficient Charge Transport Enables High Efficiency in Dilute Donor Organic Solar Cells. J. Phys. Chem. Lett. 2021, 12, 5039–5044. [Google Scholar] [CrossRef]
- Schopp, N.; Akhtanova, G.; Panoy, P.; Arbuz, A.; Chae, S.; Yi, A.; Kim, H.J.; Promarak, V.; Nguyen, T.Q.; Brus, V.V. Unraveling Device Physics of Dilute-Donor Narrow Band Gap Organic Solar Cells with Highly Transparent Active Layers. Advanced Mater. 2022. [Google Scholar] [CrossRef]
- Hussain, K.; Kaiser, W.; Gagliardi, A. Effect of Polymer Morphology on Dilute Donor Organic Solar Cells. J. Phys. Chem. C 2020, 124, 3517–3528. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Wang, Z.; Gao, W.; An, Q.; Zhang, M.; Ma, X.; Wang, J.; Miao, J.; Yang, C.; et al. Semitransparent Ternary Nonfullerene Polymer Solar Cells Exhibiting 9.40% Efficiency and 24.6% Average Visible Transmittance. Nano Energy 2019, 55, 424–432. [Google Scholar] [CrossRef]
- Xu, C.; Jin, K.; Xiao, Z.; Zhao, Z.; Ma, X.; Wang, X.; Li, J.; Xu, W.; Zhang, S.; Ding, L.; et al. Wide Bandgap Polymer with Narrow Photon Harvesting in Visible Light Range Enables Efficient Semitransparent Organic Photovoltaics. Adv. Funct. Mater. 2021, 31, 2107934. [Google Scholar] [CrossRef]
- Albes, T.; Xu, L.; Wang, J.; Hsu, J.W.P.; Gagliardi, A. Origin of Photocurrent in Fullerene-Based Solar Cells. J. Phys. Chem. C 2018, 122, 15140–15148. [Google Scholar] [CrossRef]
- Murthy, L.N.S.; Kramer, A.; Zhang, B.; Su, J.-M.; Chen, Y.-S.; Wong, K.-T.; Vandenberghe, W.G.; Hsu, J.W.P. Energy Levels in Dilute-Donor Organic Solar Cell Photocurrent Generation: A Thienothiophene Donor Molecule Study. Org. Electron. 2021, 92, 106137. [Google Scholar] [CrossRef]
- Brus, V.V.; Proctor, C.M.; Ran, N.A.; Nguyen, T.-Q. Capacitance Spectroscopy for Quantifying Recombination Losses in Nonfullerene Small-Molecule Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2016, 6, 1502250. [Google Scholar] [CrossRef]
- Vollbrecht, J.; Brus, V.V.; Ko, S.-J.; Lee, J.; Karki, A.; Cao, D.X.; Cho, K.; Bazan, G.C.; Nguyen, T.-Q. Quantifying the Nongeminate Recombination Dynamics in Nonfullerene Bulk Heterojunction Organic Solar Cells. Adv. Energy Mater. 2019, 9, 1901438. [Google Scholar] [CrossRef]
- Schopp, N.; Brus, V.V.; Lee, J.; Dixon, A.; Karki, A.; Liu, T.; Peng, Z.; Graham, K.R.; Ade, H.; Bazan, G.C.; et al. Effect of Palladium-Tetrakis(Triphenylphosphine) Catalyst Traces on Charge Recombination and Extraction in Non-Fullerene-Based Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2009363. [Google Scholar] [CrossRef]
- Street, R.A. Electronic Structure and Properties of Organic Bulk-Heterojunction Interfaces. Adv. Mater. 2016, 28, 3814–3830. [Google Scholar] [CrossRef] [PubMed]
- Street, R.A.; Krakaris, A.; Cowan, S.R. Recombination Through Different Types of Localized States in Organic Solar Cells. Adv. Funct. Mater. 2012, 22, 4608–4619. [Google Scholar] [CrossRef]
- Brus, V.V. Light Dependent Open-Circuit Voltage of Organic Bulk Heterojunction Solar Cells in the Presence of Surface Recombination. Org. Electron. 2016, 29, 1–6. [Google Scholar] [CrossRef]
- Brus, V.V.; Schopp, N.; Ko, S.-J.; Vollbrecht, J.; Lee, J.; Karki, A.; Bazan, G.C.; Nguyen, T.-Q. Temperature and Light Modulated Open-Circuit Voltage in Nonfullerene Organic Solar Cells with Different Effective Bandgaps. Adv. Energy Mater. 2021, 11, 2003091. [Google Scholar] [CrossRef]
- Schopp, N.; Nguyen, T.-Q.; Brus, V.V. Optical Expediency of Back Electrode Materials for Organic Near-Infrared Photodiodes. ACS Appl. Mater. Interfaces 2021, 13, 27217–27226. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schopp, N.; Brus, V.V. A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics. Energies 2022, 15, 4639. https://doi.org/10.3390/en15134639
Schopp N, Brus VV. A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics. Energies. 2022; 15(13):4639. https://doi.org/10.3390/en15134639
Chicago/Turabian StyleSchopp, Nora, and Viktor V. Brus. 2022. "A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics" Energies 15, no. 13: 4639. https://doi.org/10.3390/en15134639
APA StyleSchopp, N., & Brus, V. V. (2022). A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics. Energies, 15(13), 4639. https://doi.org/10.3390/en15134639