Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems †
Abstract
:1. Introduction
2. Spain Electricity Generation Mix and Associated CO2 Emissions
2.1. Installed Capacity and Energy Production per Technology in Mainland Spain
2.2. CO2 Emissions
3. Evaluation of the Additional PV Capacity and Required Storage Capacity
3.1. Evaluation of the Additional PV Capacity
3.2. Evaluation of Storage Capacity
Algorithm 1: Storage Algorithm |
|
4. Discussion
4.1. Replacement of Coal-Fired Thermal Power Plants
4.2. Replacement of Cogeneration Power Plants
4.3. Replacement of CCGT Power Plants
4.4. Replacement of All CO2 Emitting Power Plants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
SolarPV(t) | Energy generated by solar photovoltaic (PV) power plants normalized per hour during the period of one year in Mainland Spain (MWh); (t) indicates a vector with 8760 rows |
Hydro(t) | Energy generated by hydropower plants per hour in Mainland Spain for one year (MWh) |
Wind(t) | Energy generated by wind power plants per hour in Mainland Spain for one year (MWh) |
SolarTher(t) | Energy generated by thermal solar power plants per hour in Mainland Spain for one year (MWh) |
OtherRen(t) | Energy generated by other renewable power plants (tidal and geothermal power plant per hour in Mainland Spain during one year (MWh) |
WastRen(t) | Energy generated by renewable waste power plants per hour in Mainland Spain during one year (MWh) |
PumpHydro(t) | Energy generated by pumped hydropower plants per hour in Mainland Spain during one year (MWh) |
Nuclear(t) | Energy generated by nuclear power plants per hour in Mainland Spain during one year (MWh) |
Coal(t) | Energy generated by coal-fired thermal power plants per hour in Mainland Spain during one year (MWh) |
CCGT(t) | Energy generated by Combined Cycle Gas Turbine (CCGT) power plants per hour in Mainland Spain during one year (MWh) |
Cogen(t) | Energy generated by cogeneration power plants per hour in Mainland Spain during one year (MWh) |
WastNonRen(t) | Energy generated by non-renewable waste power plants per hour in Mainland Spain during one year (MWh) |
InterExch(t) | Energy imported–exported from/to neighboring countries per hour in Mainland Spain for one year (MWh) |
CO2Gen(t) | Energy generated by generic thermal power plants per hour for one year (MWh) |
Surplus(t) | Excess energy (MWh) |
Defect(t) | Defect energy (MWh) |
PVinstalled | Total PV capacity (MW) |
Hydroinstalled | Total hydropower capacity (MW) |
Windinstalled | Total wind capacity (MW) |
SolarTherinstalled | Total thermal solar capacity (MW) |
OtherReninstalled | Total other renewable capacity (MW) |
WasteReninstalled | Total waste renewable capacity (MW) |
PumpHydroinstalled | Total hydropower capacity (MW) |
Nuclearinstalled | Total nuclear capacity (MW) |
Coalinstalled | Total coal capacity (MW) |
CCGTinstalled | Total CCGT capacity (MW) |
Cogeninstalled | Total cogeneration capacity (MW) |
WastNonReninstalled | Total non-renewable waste capacity (MW) |
PVadd Initial | Additional PV capacity required to cover CO2-emitted generation technologies (MW) |
PV_CapFactor | Ratio between annual energy generated by PV power plants and the current PV capacity |
SolarPVadd(t) | Initial additional PV energy generated by the additional PV capacity installed to cover CO2-emitted generation technologies (MWh) |
RTE | Storage Round Trip Efficiency (RTE) |
PVadd_end | Final additional PV capacity required to cover CO2-emitted generation technologies (MW) |
ηcharg | Charging efficiency |
ηdischarg | Discharging efficiency |
BatCap(t) | Battery capacity (MWh) |
References
- Ritchie, H.; Roser, M. CO2 and Greenhouse Gas Emissions. 2020. Published Online at OurWorldInData.org. 2020. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 6 September 2021).
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 6 September 2021).
- European Environmental Agency (EEA). Greenhouse Gas Emissions by Aggregated Sector. 19 December 2019. Available online: https://www.eea.europa.eu/data-and-maps/daviz/ghg-emissions-by-aggregated-sector-5#tab-dashboard-02 (accessed on 6 September 2021).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Informe de Inventario Nacional Gases de Efecto Invernadero. March 2020. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/es-2020-nir_tcm30-508122.pdf (accessed on 6 September 2021).
- McKinsey. Global Energy Perspective 2019: Reference Case. January 2019. Available online: https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Global%20Energy%20Perspective%202019/McKinsey-Energy-Insights-Global-Energy-Perspective-2019_Reference-Case-Summary.ashx (accessed on 7 September 2021).
- Betts, R.; Jones, C.; Keeling, Y.J.R.; Kennedy, J.; Knight, J.; Scaife, A. Analysis: What Impact Will the Coronavirus Pandemic Have on Atmospheric CO2? CarbonBrief. Available online: https://www.carbonbrief.org/analysis-what-impact-will-the-coronavirus-pandemic-have-on-atmospheric-co2 (accessed on 7 May 2020).
- REE. El Sistema Eléctrico Español. Previsión de Cierre. 2019. Available online: https://www.ree.es/es/datos/publicaciones/informe-anual-sistema/sistema-electrico-espanol-prevision-cierre-2019 (accessed on 8 May 2020).
- Solar Power Europe, EU Market Outlook for Solar Power 2019–2023. 2019. Available online: https://www.solarpowereurope.org/wp-content/uploads/2019/12/SolarPower-Europe_EU-Market-Outlook-for-Solar-Power-2019-2023_.pdf?cf_id=5387 (accessed on 8 May 2020).
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochem. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2022, 15, e202101798. [Google Scholar] [CrossRef] [PubMed]
- Victoria, M.; Zhu, K.; Brown, T.; Andresen, G.B.; Greiner, M. The role of storage technologies throughout the decarbonisation of the sector-coupled European energy system. Energy Convers. Manag. 2010, 201, 111977. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Canalejo, C.; Sarrias-Mena, R.; García-Triviño, P.; Fernández-Ramírez, L.M. Energy management system design and economic feasibility evaluation for a hybrid wind power/pumped hydroelectric power plant. IEEE Lat. Am. Trans. 2019, 17, 1686–1693. [Google Scholar] [CrossRef]
- Javed, M.S.; Zhong, D.; Ma, T.; Song, A.; Ahmed, S. Hybrid pumped hydro and battery storage for renewable energy based power supply system. Appl. Energy 2020, 257, 114026. [Google Scholar] [CrossRef]
- Wang, W.; Tai, G.; Pei, J.; Pavesi, G.; Yuan, S. Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode. Renew. Energy 2022, 194, 719–733. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Plan Nacional Integrado de Energía y Clima 2021–2030 (PNIEC). 2019. Available online: https://www.miteco.gob.es/images/es/2019p004documentodealcance_tcm30-498916.pdf (accessed on 10 September 2021).
- BloombergNEF. Battery Pack Prices Fall as Market Ramps Up with Market Average at $156/kWh in 2019. 3 December 2019. Available online: https://about.bnef.com/blog/battery-pack-prices-fall-as-market-ramps-up-with-market-average-at-156-kwh-in-2019/ (accessed on 15 September 2021).
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Hornsdale Power Reserve. Strengthening the Grid. 2020. Available online: https://hornsdalepowerreserve.com.au/our-vision/ (accessed on 16 September 2021).
- Spector, J. The Biggest Batteries Coming Soon to a Grid Near You. GreenTechMedia, 3 September 2019. Available online: https://www.greentechmedia.com/articles/read/the-biggest-batteries-coming-soon-to-a-grid-near-you (accessed on 2 February 2022).
- Proctor, D. World’s Largest-For Now-Battery Storage Project Online in California. Power Magazine, 1 September 2020. Available online: https://www.powermag.com/worlds-largest-for-now-battery-storage-project-online-in-california/ (accessed on 2 February 2022).
- Sun, C.; Zhang, H. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Sources 2021, 493, 229445. [Google Scholar]
- Ayeng’o, S.P.; Schirmer, T.; Kairies, K.P.; Axelsen, H.; Sauer, D.U. Comparison of off-grid power supply systems using lead-acid and lithium-ion batteries. Sol. Energy 2018, 162, 140–152. [Google Scholar] [CrossRef]
- Madathil, S.C.; Yamangil, E.; Nagarajan, H.; Barnes, A.; Bent, R.; Backhaus, S.; Mason, S.J.; Mashayekh, S.; Stadler, M. Resilient Off-Grid Microgrids: Capacity Planning and N-1 Security. IEEE Trans. Smart Grid 2018, 9, 6511–6521. [Google Scholar] [CrossRef]
- Hidalgo-Leon, R.; Amoroso, F.; Urquizo, J.; Villavicencio, V.; Torres, M.; Singh, P.; Soriano, G. Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador. Energies 2022, 15, 1776. [Google Scholar] [CrossRef]
- Ranjan, S.; Jaiswal, S.; Latif, A.; Das, D.C.; Sinha, N.; Hussain, S.S.; Ustun, T.S. Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies Energies. Energies 2021, 14, 8276. [Google Scholar] [CrossRef]
- Garlík, B. Energy Sustainability of a Cluster of Buildings with the Application of Smart Grids and the Decentralization of Renewable Energy Sources. Energies 2022, 15, 1649. [Google Scholar] [CrossRef]
- Talluri, G.; Lozito, G.M.; Grasso, F.; Iturrino Garcia, C.; Luchetta, A. Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities. Energies 2021, 14, 8480. [Google Scholar] [CrossRef]
- Steinke, F.; Wolfrum, P.; Hoffmann, C. Grid vs. storage in a 100% renewable Europe. Renew. Energy 2013, 50, 826–832. [Google Scholar] [CrossRef]
- Gils, H.C.; Scholz, Y.; Pregger, T.; de Tena, D.L.; Heide, D. Integrated modelling of variable renewable energy-based power supply in Europe. Energy 2017, 123, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Cebulla, F.; Naegler, T.; Pohl, M. Electrical energy storage in highly renewable European energy systems: Capacity requirements, spatial distribution, and storage dispatch. J. Energy Storage 2017, 14, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.G.; Andresen, G.B.; Greiner, M. Storage and balancing synergies in a fully or highly renewable pan-European power system. Energy Policy 2012, 51, 642–651. [Google Scholar] [CrossRef]
- Syranidou, C.; Linssen, J.; Stolten, D.; Robinius, M. Integration of Large-Scale Variable Renewable Energy Sources into the Future European Power System: On the Curtailment Challenge. Energies 2020, 13, 5490. [Google Scholar] [CrossRef]
- Gimeno, J.; Llera, E.; Scarpellini, S. Investment Determinants in Self-Consumption Facilities: Characterization and Qualitative Analysis in Spain. Energies 2018, 11, 2178. [Google Scholar] [CrossRef] [Green Version]
- Mariano, M.; Grossmann, I. Optimal integration of renewable based processes for fuels and power production: Spain case study. Appl. Energy 2018, 213, 595–610. [Google Scholar]
- Guerra, K.; Haro, P.; Gutierrez, R.E.; Gomez-Barea, A. Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements. Appl. Energy 2022, 310, 118561. [Google Scholar] [CrossRef]
- Fraile-Ardanuy, J.; Alvaro-Hermana, R.; Merino, J.; Castaño-Solis, S. Determining the storage capacity for carbon-free generation mix scenario in Spain. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Eu-rope (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020. [Google Scholar]
- Red Eléctrica de España. Avance del Sistema Eléctrico Español 2019. March 2020. Available online: https://www.ree.es/es/datos/publicaciones/informe-anual-sistema/avance-del-informe-del-sistema-electrico-espanol-2019 (accessed on 7 May 2021).
- Ministerio de Transición Ecológica. Real Decreto 244/2019 por el Que se Regulan las Condiciones Administrativas, Técnicas y Económicas del Autoconsumo de Energía Eléctrica. 2019. Available online: https://www.boe.es/boe/dias/2019/04/06/pdfs/BOE-A-2019-5089.pdf (accessed on 9 May 2021).
- Bellini, E. Portugal’s Second PV Auction Draws World Record Low Bid of $0.0132/kWh. PV Magazine, 24 August 2020. Available online: https://www.pv-magazine.com/2020/08/24/portugals-second-pv-auction-draws-world-record-low-bid-of-0-0132-kwh/ (accessed on 9 May 2021).
- Sistema de Información del Operador del Sistema e. SIOS. Generation and Consumption. 2020. Available online: https://www.esios.ree.es/en (accessed on 9 May 2021).
- REE Press release. The Energy Transition Chalks Up Another Success: Emissions Fall to the Historical Minimum. Available online: https://www.ree.es/en/press-office/news/featured-story/2020/02/energy-transition-chalks-another-success-emissions-fall-to-historical-minimum (accessed on 28 January 2020).
- REE. Emisiones de CO2 Asociadas a la Generación Eléctrica en España. Available online: https://www.ree.es/es/sala-de-prensa/actualidad/especial/2020/06/las-emisiones-se-reducen-en-30-millones-de-toneladas-en-5-anos (accessed on 10 May 2021).
- European Commission. Commission Regulation (EU) No 601/2012 of 21 June 2012 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council. Off. J. Eur. Union 2012, L181, 30–104. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0601&from=EN (accessed on 10 October 2021).
- De Sisternes, F.J.; Jenkins, J.D.; Botterud, A. The value of energy storage in decarbonizing the electricity sector. Appl. Energy 2016, 175, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Mongird, K.; Viswanathan, V.; Balducci, P.; Alam, J.; Fotedar, V.; Koritarov, V.; Hadjerioua, B. An Evaluation of Energy Storage Cost and Performance Characteristics. Energies 2020, 13, 3307. [Google Scholar] [CrossRef]
- Icons. wanicon and smalllikeart. Available online: https://www.flaticon.com/authors (accessed on 6 May 2020).
- Ministerio del Interior. Dirección General de Tráfico. Series Históricas-Parque de Vehículos. Available online: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ (accessed on 10 October 2020).
- Gimeno-Gutiérrez, M.; Lacal-Arántegui, R. Assessment of the European Potential for Pumped Hydropower Energy Storage. A GIS-Based Assessment of Pumped Hydro Power Storage Potential; European Commision Joint Resarch Centre, Institute for Energy and Transport: Ispra, Italy, 2013; ISBN 978-92-79-29511-9. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/jrc_20130503_assessment_european_phs_potential.pdf (accessed on 10 October 2020).
Capacity Factor | 2019 | 2018 | 2017 | 2016 | 2015 | Mean |
---|---|---|---|---|---|---|
Hydro | 0.17 | 0.23 | 0.12 | 0.24 | 0.19 | 0.19 |
Wind | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
Solar PV | 0.12 | 0.19 | 0.21 | 0.19 | 0.20 | 0.18 |
Solar thermal | 0.26 | 0.22 | 0.26 | 0.25 | 0.25 | 0.25 |
Other renewable | 0.38 | 0.47 | 0.48 | 0.52 | 0.71 | 0.51 |
Renewable waste | 0.69 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 |
Pumped turbination | 0.06 | 0.07 | 0.08 | 0.10 | 0.09 | 0.08 |
Nuclear | 0.90 | 0.85 | 0.89 | 0.85 | 0.83 | 0.86 |
Coal | 0.13 | 0.42 | 0.51 | 0.42 | 0.56 | 0.41 |
CCGT | 0.24 | 0.12 | 0.15 | 0.12 | 0.12 | 0.15 |
Cogeneration | 0.60 | 0.58 | 0.55 | 0.45 | 0.43 | 0.52 |
Non-renewable waste | 0.52 | 0.58 | 0.61 | 0.49 | 0.24 | 0.49 |
Coal | CCGT | Cogeneration | Non-Renewable Waste |
---|---|---|---|
0.95 | 0.37 | 0.37 | 0.24 |
Energy (MWh) | t = 1 | t = 2 | t = 3 | Total |
---|---|---|---|---|
SolarPVadd(t) | 3 MWh | 1 MWh | 1 MWh | 5 MWh |
CO2Gen(t) | 2 MWh | 1 MWh | 2 MWh | 5 MWh |
Surplus(t) | +1 MWh | 0 MWh | −1 MWh | 0 MWh |
1st Coal | 2nd Cogen | 3rd CCGT | 4th CO2 Emit. | |
---|---|---|---|---|
Additional PV Systems (GW) | 11.5 | 31.56 | 54.26 | 101.24 |
Storage Capacity (TWh) | 4.18 | 3.45 | 6.77 | 8.56 |
Li-Ion Battery Cost ($ billion) | 652 | 690 | 1056 | 1335 |
CO2 Emission reduction (%) | 32.9% | 36.5% | 85.9% | 100% |
CO2 Emissions (MtCO2-eq) | 36.8 | 30.0 | 22.0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraile Ardanuy, J.; Alvaro-Hermana, R.; Castano-Solis, S.; Merino, J. Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems. Energies 2022, 15, 4780. https://doi.org/10.3390/en15134780
Fraile Ardanuy J, Alvaro-Hermana R, Castano-Solis S, Merino J. Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems. Energies. 2022; 15(13):4780. https://doi.org/10.3390/en15134780
Chicago/Turabian StyleFraile Ardanuy, Jesús, Roberto Alvaro-Hermana, Sandra Castano-Solis, and Julia Merino. 2022. "Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems" Energies 15, no. 13: 4780. https://doi.org/10.3390/en15134780
APA StyleFraile Ardanuy, J., Alvaro-Hermana, R., Castano-Solis, S., & Merino, J. (2022). Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems. Energies, 15(13), 4780. https://doi.org/10.3390/en15134780