Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis
Abstract
:1. Introduction
2. Energy Models
3. Description
3.1. Weather Circumstance and Energy Requirements
3.2. Derby Office Building
3.3. System Component
4. Results and Discussion
4.1. Subsection PV/T Performance
4.2. Heat Pump Performance
4.3. Effect of Optical Filtration Channel Height
5. Conclusions
- OF is extremely effective at improving the whole PV/T unit performance.
- The electrical energy obtained from PV/T with an OF system could reach 5620 kWh/year with 14.65% power efficiency, which is higher compared to the normal PV/T system of 5085 kWh with 11.64% electrical efficiency.
- The thermal energy generation from the PV/T with OF unit is 5370 kWh/year with 74.92% efficiency, while the normal PV/T unit is only 4818 kWh with 71.88% efficiency.
- The yearly electricity consumption of the PV/T with OF and HP unit is 2251.2 kWh, by comparison, the normal system needed to consume an overall power of about 2963.2 kWh per annum. Meanwhile, the annual COP of the HP with OF could achieve 4.94 which is greater than the normal HP of 3.83.
- When the OF channel height is increased, it exerts an adverse effect on the PV surface temperature, but the overall thermal efficiency is enhanced.
- When the volume concentration of the nanofluid is boosted, the overall system efficiency is enhanced due to low thermal resistance to heat losses and low radiation-shielding layers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dutta, R.; Chanda, K.; Maity, R. Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis. Renew. Energy 2022, 188, 819–829. [Google Scholar] [CrossRef]
- Adedeji, A.R.; Zaini, F.; Mathew, S.; Dagar, L.; Petra, M.I.; Silva, L.C.D. Sustainable energy towards air pollution and climate change mitigation. J. Environ. Manag. 2020, 260, 109978. [Google Scholar] [CrossRef] [PubMed]
- Rounis, E.D.; Athienitis, A.; Stathopoulos, T. Review of air-based PV/T and BIPV/T systems—Performance and modelling. Renew. Energy 2021, 163, 1729–1753. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Li, M.; Keovisar, V.; Li, X.; Kong, D.; Yu, Q. Comparative study on energy and exergy properties of solar photovoltaic/thermal air collector based on amorphous silicon cells. Appl. Therm. Eng. 2021, 185, 116376. [Google Scholar] [CrossRef]
- Herrando, M.; Markides, C.N.; Hellgardt, K. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Appl. Energy 2014, 122, 288–309. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Sung, H.; Yen, K. Experimental study of photovoltaic/thermal (PV/T) hybrid system. Int. J. Smart Grid Clean Energy 2013, 2, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, A.; Guzzini, A.; Pellegrini, M.; Saccani, C. Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment. Renew. Energy 2017, 111, 543–555. [Google Scholar] [CrossRef]
- Tang, X.; Quan, Z.; Zhao, Y. Experimental investigation of solar panel cooling by a novel micro heat pipe array. Energy Power Eng. 2010, 2, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Abdelrazik, A.S.; Al-Sulaiman, F.A.; Saidur, R. Feasibility study for the integration of optical filtration and nano-enhanced phase change materials to the conventional PV-based solar systems. Renew. Energy 2022, 187, 463–483. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Saidur, R.; Al-Sulaiman, F.A. Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter. Energy 2021, 215, 119172. [Google Scholar] [CrossRef]
- Dejarnette, D.; Otanicar, T.; Brekke, N.; Hari, P.; Roberts, K.; Aaron, E. Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9175, 917509. [Google Scholar]
- Han, X.; Xue, D.; Zheng, J.; Alelyani, S.M.; Chen, X. Spectral characterization of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells. Renew. Energy 2019, 131, 938–945. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Al-Sulaiman, F.A.; Saidur, R. Optical behavior of a water/silver nanofluid and their influence on the performance of a photovoltaic-thermal collector. Sol. Energy Mater. Sol. Cells 2019, 201, 110054. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Sopian, K.; Chaichan, M.T.; Kazem, H.A.; Ibrahim, A.; Mat, S.; Ruslan, M.H. Evaluation of the nanofluid and nano PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Convers. Manag. 2017, 151, 693–708. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Sopian, K.; Chaichan, M.T.; Kazem, H.A.; Ibrahim, A.; Mat, S.; Ruslan, M.H. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol. Energy 2018, 162, 378–396. [Google Scholar] [CrossRef]
- Aberoumand, S.; Ghamari, S.; Shabani, B. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Sol. Energy 2018, 165, 167–177. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Wang, Q.; Alelyani, S.M.; Qu, J. Investigation of CoSO4-based Ag nanofluids as spectral beam splitters for hybrid PV/T applications. Sol. Energy 2019, 177, 387–394. [Google Scholar] [CrossRef]
- Dehaj, M.S.; Mohiabadi, M.Z. Experimental investigation of heat pipe solar collector using MgO nanofluids. Sol. Energy Mater. Sol. Cells 2019, 191, 91–99. [Google Scholar] [CrossRef]
- Sharafeldin, M.A.; Gróf, G. Evacuated tube solar collector performance using CeO2/water nanofluid. J. Clean. Prod. 2018, 185, 347–356. [Google Scholar] [CrossRef]
- Sharafeldin, M.A.; Gróf, G. Efficiency of evacuated tube solar collector using WO3/Water nanofluid. Renew. Energy 2019, 134, 453–460. [Google Scholar] [CrossRef]
- Ebaid, M.S.Y.; Ghrair, A.M.; Al-Busoul, M. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Convers. Manag. 2018, 55, 324–343. [Google Scholar] [CrossRef]
- Sardarabadi, M.; Hosseinzadeh, M.; Kazemian, A.; Passandideh-Fard, M. Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy 2017, 138, 682–695. [Google Scholar] [CrossRef]
- Eidan, A.A.; AlSahlani, A.; Ahmed, A.Q.; Al-fahham, M.; Jalil, J.M. Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids. Sol. Energy 2018, 173, 780–788. [Google Scholar] [CrossRef]
- Mercan, M.; Yurddaş, A. Numerical analysis of evacuated tube solar collectors using nanofluids. Sol. Energy 2019, 191, 167–179. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Chaichan, M.T.; Kazem, H.A.; Sopian, K. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers. Manag. 2017, 148, 963–973. [Google Scholar] [CrossRef]
- Yuan, W.; Ji, J.; Modjinou, M.; Zhou, F.; Li, Z.; Song, Z.; Huang, S.; Zhao, X. Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material. Appl. Energy 2018, 232, 715–727. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Chaichan, M.T.; Kamaruzzaman, S.; Kazem, H.A.; Mahood, H.B.; Khadom, A.A. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol. Energy 2019, 177, 178–191. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Kazem, H.A.; Chaichan, M.T.; Kamaruzzaman, S. Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study. Therm. Sci. Eng. Prog. 2019, 11, 213–223. [Google Scholar] [CrossRef]
- Mao, H.; Gu, C.; Yan, S.; Xin, Q.; Cheng, S.; Tan, P.; Wang, X.; Xiu, F.; Liu, X.; Liu, J.; et al. MXene Quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv. Electron. Mater. 2020, 6, 1900493. [Google Scholar] [CrossRef]
- Lim, G.P.; Soon, C.F.; Morsin, M.; Ahmad, M.K.; Nayan, N.; Tee, K.S. Synthesis, characterization and antifungal property of Ti3C2Tx MXene nanosheets. Ceram. Int. 2020, 46, 20306–20312. [Google Scholar] [CrossRef]
- Fan, X.; Liu, L.; Jin, X.; Wang, W.; Zhang, S.; Tang, B. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J. Mater. Chem. A 2019, 7, 14319–14327. [Google Scholar] [CrossRef]
- Mo, Z.; Mo, P.; Yi, M.; Hu, Z.; Tan, G.; Selim, M.S.; Chen, Y.; Chen, X.; Hao, Z.; Wei, X. Ti3C2Tx@ Polyvinyl alcohol foam-supported phase change materials with simultaneous enhanced thermal conductivity and solar-thermal conversion performance. Sol. Energy Mater. Sol. Cells 2021, 219, 110813. [Google Scholar] [CrossRef]
- Samylingam, L.; Aslfattahi, N.; Saidur, R.; Yahya, S.M.; Afzal, A.; Arifutzzaman, A.; Tan, K.H.; Kadirgama, K. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Sol. Energy Mater. Sol. Cells 2020, 218, 110754. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Luo, B.; Wei, K.; Zeng, G. The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study. Energy 2021, 227, 120483. [Google Scholar] [CrossRef]
- CS6P-250P (250W) Solar Panel. Available online: https://www.zonnepanelen.net/nl/pdf/panels/CS6P-Pen.pdf (accessed on 1 July 2016).
- IVT Greenline HT Plus. Available online: http://www.varmepumpservice.se/LinkClick.aspx?fileticket=x3oH4kK01So%3D&tabid=1954 (accessed on 1 September 2008).
- Witzig, A.; Stöckli, U.; Kistler, P.; Bornatico, R.; Pfeiffer, M. Polysun inside: A universal platform for commercial software and research applications. In Proceedings of the EuroSun 2010, International Conference on Solar Heating, Cooling and Buildings, Graz, Austria, 28 September–1 October 2010. [Google Scholar]
Item | Description | Value |
---|---|---|
PV/T module + OF | Optical filtration channel height | 10 mm |
Make & Model | Canadian solar CS6P--250P | |
Module dimension | 1.6 × 0.98 × 0.04 m | |
Number of PV modules | 8 | |
Material | Polycrystalline silicon cell | |
Peak Power | 300 W | |
Conversion efficiency | 15.75% | |
Maximum Voltage (Vmpp) | 37.60 V | |
Maximum Current (Impp) | 8.10 A | |
Weight of PV module | 20.5 kg | |
Title angle | 25° | |
Copper Thermal pipe thickness | 2 mm | |
MXene-PCM layer diameter | 15 mm | |
Energy storage capacity of MXene-PCM | 442.7 J/g | |
EVA thickness | 10 mm | |
Insulation layer thickness | 8 mm | |
Heat pump | Emitted/Supplied output | 6/1.8 kW |
Refrigerant R407C mass flow rate | 0.02 kg/s | |
Nominal flow heating medium | 0.30 L/s | |
Minimum flow heating medium | 0.20 L/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhu, J.; Zoras, S.; Hassan, K.; Tong, H. Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis. Energies 2022, 15, 4988. https://doi.org/10.3390/en15144988
Cui Y, Zhu J, Zoras S, Hassan K, Tong H. Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis. Energies. 2022; 15(14):4988. https://doi.org/10.3390/en15144988
Chicago/Turabian StyleCui, Yuanlong, Jie Zhu, Stamatis Zoras, Khalid Hassan, and Hui Tong. 2022. "Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis" Energies 15, no. 14: 4988. https://doi.org/10.3390/en15144988
APA StyleCui, Y., Zhu, J., Zoras, S., Hassan, K., & Tong, H. (2022). Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis. Energies, 15(14), 4988. https://doi.org/10.3390/en15144988