Impact of Active Diesel Particulate Filter Regeneration on Carbon Dioxide, Nitrogen Oxides and Particle Number Emissions from Euro 5 and 6 Vehicles under Laboratory Testing and Real-World Driving
Abstract
:1. Introduction
- -
- Investigate the impact of DPF regeneration on CO2, NOx and PN emissions in a wide range of operating conditions, including a mix of laboratory and on-road testing.
- -
- Assess the DPF regeneration frequency and duration.
- -
- Estimate Ki factors and verify the official values (where available).
- -
- Propose updated NOx emission factors (EF) taking into consideration DPF regeneration.
- -
- Investigate the impact of DPF regeneration on vehicle efficiency.
- -
- Section 2 presents the materials and methods, including the tested vehicles, the driving profiles and the measuring equipment.
- -
- Section 3 focuses on the methodologies for the identification of the active DPF regeneration, using either detailed ECU and OBD data or tailpipe temperature and emissions data.
- -
- Section 4 analyses and discusses the results of the experimental campaign and is organised in four sub-sections:
- ○
- Section 4.1 focuses on individual tests, analysing the emissions impact of DPF regeneration.
- ○
- Section 4.2 analyses the DPF regeneration frequency and duration.
- ○
- Section 4.3 assesses the impact of DPF regeneration on the overall emission of each vehicle.
- ○
- Section 4.4 estimates the energy consumption and efficiency under DPF regenerating conditions.
- -
- Section 5 summarises the work conducted and the relevant conclusions, together with the scientific contribution of the paper and some suggestions for future work.
- -
- Appendix A and Appendix B provide additional data and information concerning the testing procedures and the emissions results.
2. Materials and Methods
2.1. Tested Vehicles
2.2. Test Schedules and Driving Profiles
2.3. Measurement Equipment
- SEMTECH-DS (Sensors, Saline, MI, USA—model 2008)
- SEMTECH-ECOSTAR (Sensors, Saline, MI, USA—model 2013)
- MOVE (AVL, Graz, Austria—model 2016)
3. Identification of Active DPF Regeneration
3.1. Using Detailed ECU and OBD Data
3.2. Using Tailpipe Temperature and Emissions Data
4. Results
4.1. Impact of DPF Regeneration on Emissions of Individual Tests
4.2. DPF Regeneration Frequency and Duration
4.3. Impact of DPF Regeneration on Overall Emissions
- -
- during the regeneration period in laboratory testing (NEDC, WLTC)
- -
- during the regeneration period under real-world driving
- -
- for the complete regeneration interval, i.e., the period between the start of two consecutive regeneration events
4.4. Energy Consumption and Efficiency
5. Conclusions
- A comprehensive investigation of both CO2 (equivalently, fuel consumption) and pollutant (NOx and PN) emissions under DPF regenerating conditions, extended also to energy efficiency and covering regeneration frequency and duration, as well. Most of the existing studies address only individual topics, mainly pollutant emissions (mostly PN).
- Detailed analysis of the underlying phenomena during the active DPF regeneration, assessing the varying impacts under different operating conditions.
- Assessment of Ki factors under real-world operating conditions and verification of the official values (where available).
- Proposal of updated NOx emission factors that take into consideration the DPF regeneration effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Nomenclature
Appendix A. Number of Tests and Distance Travelled for Each Vehicle and Tests Where DPF Regeneration Occurred
Vehicle ID | Mileage at Start of Test Campaign [km] | Number of Tests and Distance Travelled | |
---|---|---|---|
Chassis Dyno | On-Road | ||
1 | 24,473 | 18 tests—392.6 km | 9 tests—917.3 km |
2 | 4810 | 22 tests—393.7 km | 12 tests—1185.3 km |
3 | 14,771 | 33 tests—665.8 km | 11 tests—1028.2 km |
4 | 4792 | 26 tests—627 km | 8 tests—803 km |
5 | 25,602 | 41 tests—852.9 km | 13 tests—1297.1 km |
6 | 29,173 | 20 tests—272.4 km | 4 tests—436.2 km |
7 | 23,120 | 17 tests—309 km | ― |
8 | 79 | 36 tests—733.0 km | 10 tests—1015.0 km |
Vehicle ID | NEDC | WLTC | RDE 1 | RDE 2 | Motorway | Hilly |
---|---|---|---|---|---|---|
1 | 13 (1) | 5 | 3 (1) | 2 | 2 (1) | 2 |
2 | 17 | 5 (1) | 6 (2) | 5 | ― | 1 |
3 | 25 (1) | 8 | 5 (2) | 3 | 2 | 1 |
4 | 13 | 13 | 4 (1) | 4 | ― | ― |
5 | 21 | 20 (1) | 3 | 6 (1) | 2 (2) | 2 |
6 | 20 (1) | ― | 4 | ― | ― | ― |
7 | 13 (1) | 4 | ― | ― | ― | ― |
8 | 20 | 16 | 4 | 4 | 1 | 1 |
Appendix B. Absolute Impact of DPF Regeneration on Emissions
- Table A3: Emissions of the complete tests with DPF regeneration
- Table A4: Emissions during the DPF regeneration only
- Table A5: Emissions of the complete tests without DPF regeneration
- Table A6: Emissions of the tests without DPF regeneration during the regeneration phase of the equivalent tests, i.e., what would be the emissions of the vehicle during the regeneration phase if regeneration did not occur
Vehicle ID | DPF REG Frequency [km] | DPF REG Duration [s]/[km] | CO2 Emissions [g/km] | NOx Emissions [mg/km] | PN Emissions [#/km] | ||||
---|---|---|---|---|---|---|---|---|---|
Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | ||
1 | 406–500 | 710 s/8.3 km | 625–957 s 16.0–29.1 km | 244.1 | 166.4–187.3 | 447.2 | 228.1–341.9 | 3.6 × 1012 | ― |
2 | 469–593 | 805 s/14.8 km | 798–996 s 7.7–13.5 km | 202.6 | 147.9–155.9 | 132.2 | 44.7–51.6 | 1.9 × 1012 | ― |
3 | 558–632 | 306 s/5.9 km | 434–1874 s 14.3–21.3 km | 166.2 | 166.7 | 436.1 | 585.2 | 2.0 × 1011 | ― |
4 | ― | ― | 685 s/9.3 km | ― | 159.5 | ― | 402.6 | ― | ― |
5 | 326–390 | 1025 s/12.1 km | 926 s/22.0 km | 190.2 | 167.1 | 258.4 | 217.8 | 6.0 × 1012 | ― |
6 | 480 | 895 s/5.2 km | ― | 214.2 | ― | 397.9 | ― | 1.6 × 1012 | ― |
7 | ― | 600 s/8.0 km | ― | 232.8 | ― | 591.4 | ― | 2.2 × 1012 | ― |
Vehicle ID | DPF REG Frequency [km] | DPF REG Duration [s]/[km] | CO2 Emissions [g/km] | NOx Emissions [mg/km] | PN Emissions [#/km] | ||||
---|---|---|---|---|---|---|---|---|---|
Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-road | Chassis Dyno | On-Road | ||
1 | 406–500 | 710 s/8.3 km | 625–957 s 16.0–29.1 km | 261.9 | 182.5–230.2 | 536.5 | 443.5–685.1 | 4.6 × 1012 | ― |
2 | 469–593 | 805 s/14.8 km | 798–996 s 7.7–13.5 km | 236.2 | 222.0–285.5 | 175.2 | 271.2–404.5 | 2.9 × 1012 | ― |
3 | 558–632 | 306 s/5.9 km | 434–1874 s 14.3–21.3 km | 165.2 | 263.4 | 412.0 | 1837.6 | 5.4 × 1010 | ― |
4 | ― | ― | 685 s/9.3 km | ― | 229.6 | ― | ― | ― | ― |
5 | 326–390 | 1025 s/12.1 km | 926 s/22.0 km | 225.2 | 202.0 | 437.7 | 544.0 | 8.9 × 1012 | ― |
6 | 480 | 895 s/5.2 km | ― | 308.0 | ― | 705.3 | ― | 2.8 × 1012 | ― |
7 | ― | 600 s/8.0 km | ― | 253.0 | ― | 785.1 | ― | 3.3 × 1012 | ― |
Vehicle ID | DPF REG Frequency [km] | DPF REG Duration [s]/[km] | CO2 Emissions [g/km] | NOx Emissions [mg/km] | PN Emissions [#/km] | ||||
---|---|---|---|---|---|---|---|---|---|
Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | ||
1 | 406–500 | 710 s/8.3 km | 625–957 s 16.0–29.1 km | 149.7 | 146.1–175.2 | 76.0 | 190.3–290.1 | 3.8 × 1010 | ― |
2 | 469–593 | 805 s/14.8 km | 798–996 s 7.7–13.5 km | 144.3 | 142.7 | 17.5 | 39.3 | 1.7 × 1010 | ― |
3 | 558–632 | 306 s/5.9 km | 434–1874 s 14.3–21.3 km | 139.8 | 154.0 | 351.8 | 561.9 | 1.5 × 1009 | ― |
4 | ― | ― | 685 s/9.3 km | ― | 135.7 | ― | 368.0 | ― | ― |
5 | 326–390 | 1025 s/12.1 km | 926 s/22.0 km | 141.1 | 158.0 | 57.7 | 100.5 | 1.5 × 1009 | ― |
6 | 480 | 895 s/5.2 km | ― | 129.3 | ― | 194.9 | ― | 1.7 × 1009 | ― |
7 | ― | 600 s/8.0 km | ― | 158.9 | ― | 382.2 | ― | 5.4 × 1009 | ― |
Vehicle ID | DPF REG Frequency [km] | DPF REG Duration [s]/[km] | CO2 Emissions [g/km] | NOx Emissions [mg/km] | PN Emissions [#/km] | ||||
---|---|---|---|---|---|---|---|---|---|
Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | ||
1 | 406–500 | 710 s/8.3 km | 625–957 s 16.0–29.1 km | 146.4 | 134.6–173.7 | 69.4 | 162.3–373.2 | 3.5 × 1010 | ― |
2 | 469–593 | 805 s/14.8 km | 798–996 s 7.7–13.5 km | 147.8 | 139.3–149.9 | 14.7 | 6.6–11.5 | 1.1 × 1010 | ― |
3 | 558–632 | 306 s/5.9 km | 434–1874 s 14.3–21.3 km | 116.2 | 204.1 | 113.2 | 1035.7 | 5.9 × 1011 | ― |
4 | ― | ― | 685 s/9.3 km | ― | 135.6 | ― | ― | ― | ― |
5 | 326–390 | 1025 s/12.1 km | 926 s/22.0 km | 134.0 | 150.6 | 37.2 | 77.0 | 1.7 × 1009 | ― |
6 | 480 | 895 s/5.2 km | ― | 143.2 | ― | 244.2 | ― | 2.7 × 1009 | ― |
7 | ― | 600 s/8.0 km | ― | 156.9 | ― | 434.2 | ― | 3.8 × 1009 | ― |
References
- Hoffmann, B.; Roebbel, N.; Gumy, S.; Forastiere, F.; Brunekreef, B.; Jarosinska, D.; Walker, K.D.; van Erp, A.M.; O’Keefe, R.; Greenbaum, D.; et al. Air Pollution and Health: Recent Advances in Air Pollution Epidemiology to Inform the European Green Deal: A Joint Workshop Report of ERS, WHO, ISEE and HEI. Eur. Respir. J. 2020, 56, 2002575. [Google Scholar] [CrossRef] [PubMed]
- Hooftman, N.; Messagie, M.; Van Mierlo, J.; Coosemans, T. A Review of the European Passenger Car Regulations—Real Driving Emissions vs Local Air Quality. Renew. Sustain. Energy Rev. 2018, 86, 1–21. [Google Scholar] [CrossRef]
- Statista. Degree of Urbanisation (Percentage of Urban Population in Total Population) by Continent in 2020. Available online: https://www.statista.com/statistics/270860/urbanization-by-continent/ (accessed on 10 March 2022).
- Johnson, T. Vehicular Emissions in Review. SAE Int. J. Engines 2016, 9, 1258–1275. [Google Scholar] [CrossRef]
- Orihuela, M.P.; Gómez-Martín, A.; Miceli, P.; Becerra, J.A.; Chacartegui, R.; Fino, D. Experimental Measurement of the Filtration Efficiency and Pressure Drop of Wall-Flow Diesel Particulate Filters (DPF) Made of Biomorphic Silicon Carbide Using Laboratory Generated Particles. Appl. Therm. Eng. 2018, 131, 41–53. [Google Scholar] [CrossRef]
- Zhong, D.; He, S.; Tandon, P.; Moreno, M.; Boger, T. Measurement and Prediction of Filtration Efficiency Evolution of Soot Loaded Diesel Particulate Filters; SAE Technical Paper No. 2012-01-0363; SAE International: Warrendale, PA, USA, 2012. [Google Scholar]
- Majewsky, W.A.; Khair, M.K. Diesel Emissions and Their Control; SAE International: Warrendale, PA, USA, 2006; ISBN 978-0-7680-0674-2. [Google Scholar]
- Hirata, H.; Kakinohaha, M.; Ibe, M. Exhaust Gas Purification System Utilising Ozone. U.S. Patent 8,051,643, 8 November 2011. [Google Scholar]
- Hemmings, S.; Megaritis, A. Periodically Regenerating Diesel Particulate Filter with a Hydrogen/Carbon Monoxide Mixture Addition. Int. J. Hydrogen Energy 2012, 37, 3573–3584. [Google Scholar] [CrossRef]
- Leblanc, M.; Noël, L.; R’Mili, B.; Boréave, A.; D’Anna, B.; Raux, S. Impact of Engine Warm-up and DPF Active Regeneration on Regulated & Unregulated Emissions of a Euro 6 Diesel SCR Equipped Vehicle. J. Earth Sci. Geotech. Eng. 2016, 6, 29–50. [Google Scholar]
- Valverde, V.; Giechaskiel, B. Assessment of Gaseous and Particulate Emissions of a Euro 6d-Temp Diesel Vehicle Driven >1300 km Including Six Diesel Particulate Filter Regenerations. Atmosphere 2020, 11, 645. [Google Scholar] [CrossRef]
- Sappok, A.; Wong, V. Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control; SAE Technical Paper No. 2010-01-0811; SAE International: Warrendale, PA, USA, 2010; pp. pp. 1,3,5,12. [Google Scholar]
- Cui, Y.; Cai, Y.; Fan, R.; Shi, Y.; Gu, L.; Pu, X.; Tian, J. Effects of Residual Ash on DPF Capture and Regeneration. Int. J. Automot. Technol. 2018, 19, 759–769. [Google Scholar] [CrossRef]
- Jang, J.; Lee, Y.; Kwon, O. Comparison of Fuel Efficiency and Exhaust Emissions between the Aged and New DPF Systems of Euro 5 Diesel Passenger Car. Int. J. Automot. Technol. 2017, 18, 751–758. [Google Scholar] [CrossRef]
- Ko, J.; Myung, C.-L.; Park, S. Impacts of Ambient Temperature, DPF Regeneration, and Traffic Congestion on NOx Emissions from a Euro 6-Compliant Diesel Vehicle Equipped with an LNT under Real-World Driving Conditions. Atmos. Environ. 2019, 200, 1–14. [Google Scholar] [CrossRef]
- Dwyer, H.; Ayala, A.; Zhang, S.; Collins, J.; Huai, T.; Herner, J.; Chau, W. Emissions from a Diesel Car during Regeneration of an Active Diesel Particulate Filter. J. Aerosol Sci. 2010, 41, 541–552. [Google Scholar] [CrossRef]
- Chigada, P.I.; Ahmadinejad, M.; Newman, A.D.; Ng, A.I.P.; Torbati, A.; Watling, T.C. Impact of SCR Activity on Soot Regeneration and the Converse Effects of Soot Regeneration on SCR Activity on a Vana-Dia-SCRF®; SAE Technical Paper No. 2018-01-0962; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- DieselNet. Selective Catalytic Reduction. Available online: https://dieselnet.com/tech/cat_scr.php (accessed on 11 October 2021).
- Papadopoulos, G.; Ntziachristos, L.; Tziourtzioumis, C.; Keramydas, C.; Lo, T.-S.; Ng, K.-L.; Wong, H.-L.A.; Wong, C.K.-L. Real-World Gaseous and Particulate Emissions from Euro IV to VI Medium Duty Diesel Trucks. Sci. Total Environ. 2020, 731, 139137. [Google Scholar] [CrossRef] [PubMed]
- Amanatidis, S.; Ntziachristos, L.; Giechaskiel, B.; Bergmann, A.; Samaras, Z. Impact of Selective Catalytic Reduction on Exhaust Particle Formation over Excess Ammonia Events. Environ. Sci. Technol. 2014, 48, 11527–11534. [Google Scholar] [CrossRef] [PubMed]
- Krajinska, A. New Diesels, New Problems; Transport & Environment: Brussels, Belgium, 2020. [Google Scholar]
- Giechaskiel, B. Particle Number Emissions of a Diesel Vehicle during and between Regeneration Events. Catalysts 2020, 10, 587. [Google Scholar] [CrossRef]
- Su, S.; Lv, T.; Lai, Y.; Mu, J.; Ge, Y.; Giechaskiel, B. Particulate Emissions of Heavy Duty Diesel Engines Measured from the Tailpipe and the Dilution Tunnel. J. Aerosol Sci. 2021, 156, 105799. [Google Scholar] [CrossRef]
- Samaras, Z.; Rieker, M.; Papaioannou, E.; van Dorp, W.F.; Kousoulidou, M.; Ntziachristos, L.; Andersson, J.; Bergmann, A.; Hausberger, S.; Keskinen, J.; et al. Perspectives for Regulating 10nm Particle Number Emissions Based on Novel Measurement Methodologies. J. Aerosol Sci. 2022, 162, 105957. [Google Scholar] [CrossRef]
- Samaras, Z.; Andersson, J.; Bergmann, A.; Hausberger, S.; Toumasatos, Z.; Keskinen, J.; Haisch, C.; Kontses, A.; Ntziachristos, L.; Landl, L.; et al. Measuring Automotive Exhaust Particles Down to 10 nm; European Commission: Brussels, Belgium, 2020; p. 12. [Google Scholar]
- Chasapidis, L.; Melas, A.D.; Tsakis, A.; Zarvalis, D.; Konstandopoulos, A. A Sampling and Conditioning Particle System for Solid Particle Measurements Down to 10 nm; SAE Technical Paper 2019-24-0154; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Toumasatos, Z.; Raptopoulos-Chatzistefanou, A.; Kolokotronis, D.; Pisitkopoulos, P.; Samaras, Z.; Ntziachristos, L. The Role of the Driving Dynamics beyond RDE Limits and DPF Regeneration Events on Pollutant Emissions of a Euro 6d-Temp Passenger Vehicle. J. Aerosol Sci. 2022, 161, 105947. [Google Scholar] [CrossRef]
- Mamakos, A.; Martini, G.; Manfredi, U. Assessment of the Legislated Particle Number Measurements Procedure for a Euro 5 and a Euro 6 Compliant Diesel Passenger Cars under Regulated and Unregulated Conditions. J. Aerosol Sci. 2013, 55, 31–47. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P.; Ntziachristos, L. Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere 2022, 13, 155. [Google Scholar] [CrossRef]
- Bikas, G.; Zervas, E. Regulated and Non-Regulated Pollutants Emitted during the Regeneration of a Diesel Particulate Filter. Energy Fuels 2007, 21, 1543–1547. [Google Scholar] [CrossRef]
- Beatrice, C.; Costagliola, M.A.; Guido, C.; Napolitano, P.; Prati, M.V. How Much Regeneration Events Influence Particle Emissions of DPF-Equipped Vehicles? SAE Technical Paper 2017-24-0144; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Chappell, E.; Burke, R.; Lu, P.; Gee, M.; Williams, R. Analysis of a Diesel Passenger Car Behavior On-Road and Over Certification Duty Cycles; SAE Technical Paper 2016-01-2328; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Giechaskiel, B.; Munoz-Bueno, R.; Rubino, L.; Manfredi, U.; Dilara, P.; De Santi, G.; Andersson, J. Particle Measurement Programme (PMP):Particle Size and Number Emissions Before, During and After Regeneration Events of a Euro 4 DPF Equipped Light-Duty Diesel Vehicle; SAE Technical Paper 2007-01-1944; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- CLOVE Consortium. CLOVE Presentation on Proposals for Future LDV Exhaust Emission Standards in the 9th AGVES Meeting. 2021. Available online: https://circabc.europa.eu/ui/group/f57c2059-ef63-4baf-b793-015e46f70421/library/83a09cc8-7f8f-4ca6-9764-0b77da57d4cc/details (accessed on 10 March 2022).
- ICCT. European Vehicle Market. Statistics—Pocketbook 2021/22; International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- EEA. Monitoring of CO2 Emissions from Passenger Cars—Regulation (EU) 2019/631. Available online: https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-20 (accessed on 10 March 2022).
- Clairotte, M.; Valverde, V.; Bonnel, P.; Giechaskiel, B.; Carriero, M.; Otura, M.; Fontaras, G.; Pavlovic, J.; Martini, G.; Krasenbrink, A.; et al. Joint Research Centre 2017 Light-Duty Vehicles Emissions Testing—Contribution to the EU Market. Surveillance: Testing Protocols and Vehicle Emissions Performance; European Commission, Joint Research Centre: Ispra, Italy, 2018. [Google Scholar]
- Tsiakmakis, S.; Fontaras, G.; Ciuffo, B.; Samaras, Z. A Simulation-Based Methodology for Quantifying European Passenger Car Fleet CO2 Emissions. Appl. Energ. 2017, 199, 447–465. [Google Scholar] [CrossRef]
- Haralampous, O.A.; Kandylas, I.P.; Koltsakis, G.C.; Samaras, Z.C. Diesel Particulate Filter Pressure Drop Part 2: Onboard Calculation of Soot Loading. Int. J. Engine Res. 2004, 5, 163–173. [Google Scholar] [CrossRef]
- Valverde, V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Bonnel, P. On-Road Emissions of Euro 6d-TEMP Vehicles: Consequences of the Entry into Force of the RDE Regulation in Europe; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Rose, K.; Hamje, H.; Janses, L.; Fittavolini, C.; Clark, R.; Cardenas Almena, M.D.; Katsaounis, D.; Samaras, C.; Geivanidis, S.; Samaras, Z. Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs). SAE Int. J. Fuels Lubr. 2014, 7, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Ogawa, H. Analysis of the Trade-Off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation; SAE Technical Paper 2011-01-1847; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Dimitriadis, A.; Natsios, I.; Dimaratos, A.; Katsaounis, D.; Samaras, Z.; Bezergianni, S.; Lehto, K. Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Front. Mech. Eng. 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H. PN Emissions from Heavy-Duty Diesel Engine with Periodic Regenerating DPF; SAE Technical Paper 2013-01-1564; SAE International: Warrendale, PA, USA, 2013. [Google Scholar]
- Karamitros, D.; Koltsakis, G. Model-Based Optimisation of Catalyst Zoning on SCR-Coated Particulate Filters. Chem. Eng. Sci. 2017, 173, 514–524. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, C.; Li, J.; Fang, J.; Tan, J.; Qin, Y.; Jiang, Y.; Qin, Z.; Bai, W.; Liang, K. Particle Emission Characteristics of DPF Regeneration from DPF Regeneration Bench and Diesel Engine Bench Measurement. Fuel 2020, 262, 116589. [Google Scholar] [CrossRef]
- Tong, Y.; Tan, J.; Meng, Z.; Chen, Z.; Tan, L. Experimental Investigation on the DPF High-Temperature Filtration Performance under Different Particle Loadings and Par-Ticle Deposition Distributions. Processes 2021, 9, 1465. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Komnos, D.; Fontaras, G. Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO2 Emissions of a Euro 6d-Temp Gasoline Vehicle. Energies 2021, 14, 6195. [Google Scholar] [CrossRef]
Vehicle ID | Vehicle Class/Segment | Emissions Standard | Emission Control System | Engine Capacity [l] | Rated Power [kW] | Transmission/Drivetrain |
---|---|---|---|---|---|---|
1 | M1/C | Euro 6b | EGR + DOC + LNT + DPF | 2.0 | 110 | AT6/FWD |
2 | M1/E | Euro 6b | EGR + DOC + LNT + DPF + SCR | 3.0 | 195 | AT8/RWD |
3 | M1/J (SUV) | Euro 6b | EGR + DOC + LNT + DPF | 1.7 | 85 | MT6/FWD |
4 | M1/J (SUV) | Euro 6b | EGR + DOC + SCR + DPF | 1.6 | 73 | MT5/FWD |
5 | M1/C | Euro 6b | EGR + DOC + LNT + DPF | 2.0 | 110 | AT6/FWD |
6 | M1/J (SUV) | Euro 5b | EGR + DOC + DPF | 2.0 | 130 | AT7/FWD |
7 | M1/J (SUV) | Euro 5b | EGR + DOC + DPF | 2.0 | 103 | MT6/4WD |
8 | N1—II | Euro 6b | EGR + DOC + SCR + DPF | 1.6 | 73 | MT5/FWD |
Test | Distance [km] | Duration [min] | Average/Maximum Speed [km/h] | Average Positive Acceleration [m/s2] | v × a_95% [W/kg] | RPA [m/s2] | Positive Elevation Gain [m/100 km] |
---|---|---|---|---|---|---|---|
NEDC | 11.0 | 19.7 | 33.6/120 | 0.131 | 8.2 | 0.111 | 0 |
WLTC | 23.3 | 30.0 | 46.6/131.3 | 0.174 | 12.6 | 0.145 | 0 |
RDE 1 | 94.3 | 107.3 | 52.7/139.4 | 0.336 | 15.5 | 0.128 | 740 |
RDE 2 | 79.3 | 96.8 | 49.1/135.1 | 0.345 | 15.3 | 0.140 | 645 |
Motorway | 139.5 | 143.2 | 58.4/135.8 | 0.306 | 16.4 | 0.112 | 363 |
Hilly | 62.3 | 109.2 | 34.2/62.5 | 0.358 | 8.8 | 0.161 | 1636 |
Vehicle ID | DPF REG Interval (Frequency) [km] | DPF REG Duration [s]/[km] | CO2 Emissions Increase [%] | NOx Emissions Increase [%] | PN Emissions Increase [×Times] | ||||
---|---|---|---|---|---|---|---|---|---|
Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | Chassis Dyno | On-Road | ||
1 | 406–500 | 710 s/8.3 km | 625–957 s 16.0–29.1 km | 63%/79% | 7–14%/33–36% | 488%/673% | 18–20%/ 82–173% | ×95/×131 | ― |
2 | 469–593 | 805 s/14.8 km | 798–996 s 7.7–13.5 km | 41%/60% | 4–9%/59–90% | 774%/1095% | 14–31%/ 3417–4009% | ×106/×267 | ― |
3 | 558–632 | 306 s/5.9 km | 434–1874 s 14.3–21.3 km | 22%/42% | 8%/29% | 51%/264% | 4%/77% | ×43/×92 | ― |
4 | ― | ― | 685 s/9.3 km | ― | 18%/69% | ― | 9%/― | ― | ― |
5 | 326–390 | 1025 s/12.1 km | 926 s/22.0 km | 36%/68% | 6%/34% | 350%/1075% | 117%/606% | ×4092/×5372 | ― |
6 | 480 | 895 s/5.2 km | ― | 64%/115% | ― | 95%/189% | ― | ×476/×1049 | ― |
7 | ― | 600 s/8.0 km | ― | 47%/61% | ― | 55%/81% | ― | ×5/×876 | ― |
8 | No DPF regenerations observed |
Case | Duration [s] | Distance [km] | Average Speed [km/h] | Average Tailpipe Temperature [°C] | Average Exhaust Mass Flow [kg/h] | Cumulative Fuel Consumed [l] | Average EGR [%] |
---|---|---|---|---|---|---|---|
A: DPF REG in Motorway part | 434 | 14.3 | 118.6 | 250 | 208.5 | 1.53 (+23%) | 3.5% |
C: No DPF REG Motorway part | 424 | 14.3 | 125.6 | 166 | 200.8 | 1.24 | 34% |
B: DPF REG in Urban + Rural parts | 1874 | 21.3 | 41.0 | 155 | 66.7 | 1.77 (+55%) | 1.5% |
C: No DPF REG Urban + Rural parts | 1921 | 21.3 | 39.9 | 83 | 59.4 | 1.14 | 21% |
Driving Profile | w/o DPF REG | w/DPF REG | Change |
---|---|---|---|
Vehicle 1 | |||
NEDC | 146.4 | 261.9 | 78% |
RDE 1 | 173.7 | 230.2 | 33% |
Vehicle 3 | |||
RDE 1—Motorway (A) ‐ | 204.1 | 263.4 | 29% |
RDE 1—Urban + Rural (B) | 132.2 | 179.0 | 35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimaratos, A.; Giechaskiel, B.; Clairotte, M.; Fontaras, G. Impact of Active Diesel Particulate Filter Regeneration on Carbon Dioxide, Nitrogen Oxides and Particle Number Emissions from Euro 5 and 6 Vehicles under Laboratory Testing and Real-World Driving. Energies 2022, 15, 5070. https://doi.org/10.3390/en15145070
Dimaratos A, Giechaskiel B, Clairotte M, Fontaras G. Impact of Active Diesel Particulate Filter Regeneration on Carbon Dioxide, Nitrogen Oxides and Particle Number Emissions from Euro 5 and 6 Vehicles under Laboratory Testing and Real-World Driving. Energies. 2022; 15(14):5070. https://doi.org/10.3390/en15145070
Chicago/Turabian StyleDimaratos, Athanasios, Barouch Giechaskiel, Michaël Clairotte, and Georgios Fontaras. 2022. "Impact of Active Diesel Particulate Filter Regeneration on Carbon Dioxide, Nitrogen Oxides and Particle Number Emissions from Euro 5 and 6 Vehicles under Laboratory Testing and Real-World Driving" Energies 15, no. 14: 5070. https://doi.org/10.3390/en15145070
APA StyleDimaratos, A., Giechaskiel, B., Clairotte, M., & Fontaras, G. (2022). Impact of Active Diesel Particulate Filter Regeneration on Carbon Dioxide, Nitrogen Oxides and Particle Number Emissions from Euro 5 and 6 Vehicles under Laboratory Testing and Real-World Driving. Energies, 15(14), 5070. https://doi.org/10.3390/en15145070