Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method
Abstract
:1. Introduction
- (1)
- A hierarchical economic-dispatch model considering source-load bilateral carbon trading is proposed in the article. The first layer conducted economic dispatch to minimize the costs of power generation and source-side carbon trading. Then, based on the CEF theory, the actual carbon emissions of the loads were measured. In the second layer, demand-response optimization was carried out to minimize the load-side carbon-trading costs.
- (2)
- Using the Aumann–Shapley method, the carbon-emission responsibilities of the participants in carbon trading were reasonably allocated, and thus, a source-load bilateral ladder-type carbon-trading mechanism was constructed.
- (3)
- Based on the modified New England 39-bus and IEEE 118-bus test system, the effectiveness of the proposed model in peak shaving and valley filling, wind-power consumption, and carbon mitigation was verified. Moreover, compared with the source-side and load-side unilateral carbon-trading models, the proposed source-load bilateral carbon-trading model has obvious advantages in carbon mitigation.
2. Source-Load Bilateral Carbon-Trading Mechanism Based on the Aumann–Shapley Method and CEF Theory
2.1. The Carbon-Allowance Allocation of Source-Side and Load-Side Based on the Aumann–Shapley Method
2.2. The Measurement of Source-Load Bilateral Carbon-Emission Responsibilities
2.2.1. The Measurement of Source-Side Carbon-Emission Responsibilities
2.2.2. The Measurement of Load-Side Carbon-Emission Responsibilities via the CEF Theory
2.3. Source-Load Bilateral Carbon-Trading Mechanism
3. Hierarchical Optimal-Dispatch Model Considering the Source-Load Bilateral Carbon-Trading Mechanism and Load-Side Electrical Energy Storage
3.1. Hierarchical Model Framework
3.2. First-Layer Optimization
3.2.1. Objective
3.2.2. Constraints
3.3. Second-Layer Optimization
3.3.1. Objective
3.3.2. Constraints
4. Test Results and Discussion
4.1. The Modified New England 39-Bus Test System
4.1.1. Basic System Parameters
4.1.2. Parameters of the Source-Load Bilateral Ladder-Type Carbon-Trading Mechanism
4.1.3. Optimization Results of the Proposed Source-Load BCT Mechanism
4.1.4. Comparative Analysis of the UCT Mechanism and the Proposed BCT Mechanism
4.2. Large-Scale System Testing: A Modified IEEE 118-Bus System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 degrees C world. Nature 2021, 597, 230–234. [Google Scholar] [CrossRef]
- Smith, C.J.; Forster, P.M.; Allen, M.; Fuglestvedt, J.; Millar, R.J.; Rogelj, J.; Zickfeld, K. Current fossil fuel infrastructure does not yet commit us to 1.5 degrees C warming. Nat. Commun. 2019, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gutschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 degrees C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef]
- Höhne, N.; Gidden, M.J.; den Elzen, M.; Hans, F.; Fyson, C.; Geiges, A.; Jeffery, M.L.; Gonzales-Zuñiga, S.; Mooldijk, S.; Hare, W.; et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat. Clim. Chang. 2021, 11, 820–822. [Google Scholar] [CrossRef]
- Zhou, S.; Tong, Q.; Pan, X.; Cao, M.; Wang, H.; Gao, J.; Ou, X. Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective. Energy Econ. 2021, 95, 105137. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Bidokhti, A.; Fakhrzad, M.-B.; Sadegheih, A.; Zare Mehrjerdi, Y. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy 2022, 238, 121602. [Google Scholar] [CrossRef]
- Xiao, J.; Li, G.; Xie, L.; Wang, S.; Yu, L. Decarbonizing China’s power sector by 2030 with consideration of technological progress and cross-regional power transmission. Energy Policy 2021, 150, 112150. [Google Scholar] [CrossRef]
- Kang, J.-N.; Wei, Y.-M.; Liu, L.-C.; Han, R.; Yu, B.-Y.; Wang, J.-W. Energy systems for climate change mitigation: A systematic review. Appl. Energy 2020, 263, 114602. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Jafari, M.; Botterud, A.; Sakti, A. Decarbonizing power systems: A critical review of the role of energy storage. Renew. Sustain. Energy Rev. 2022, 158, 112077. [Google Scholar] [CrossRef]
- Suman, A. Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal. Renew. Sustain. Energy Rev. 2021, 151, 111524. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 1–34. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, T.; Li, Y.; Li, L.; Chi, F.; Wang, K.; Wang, X.; Wang, X. Decarbonization Technologies and Inspirations for the Development of Novel Power Systems in the Context of Carbon Neutrality. Proc. CSEE 2021, 41, 28–51. [Google Scholar] [CrossRef]
- Jiang, K.; Ashworth, P.; Zhang, S.; Liang, X.; Sun, Y.; Angus, D. China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109601. [Google Scholar] [CrossRef]
- Peñasco, C.; Anadón, L.D.; Verdolini, E. Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments. Nat. Clim. Chang. 2021, 11, 257–265. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Q.; Li, H.; Fan, H.; Qian, Y.; Klemeš, J.J. Review of recent progress of emission trading policy in China. J. Clean. Prod. 2022, 349, 131480. [Google Scholar] [CrossRef]
- Shen, N.; Zhao, Y.Q.; Deng, R.M. A review of carbon trading based on an evolutionary perspective. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 739–756. [Google Scholar] [CrossRef]
- Jin, J.; Zhou, P.; Li, C.; Guo, X.; Zhang, M. Low-carbon power dispatch with wind power based on carbon trading mechanism. Energy 2019, 170, 250–260. [Google Scholar] [CrossRef]
- Tan, Q.; Ding, Y.; Ye, Q.; Mei, S.; Zhang, Y.; Wei, Y. Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading. Appl. Energy 2019, 253, 113598. [Google Scholar] [CrossRef]
- Tan, Q.; Mei, S.; Ye, Q.; Ding, Y.; Zhang, Y. Optimization model of a combined wind–PV–thermal dispatching system under carbon emissions trading in China. J. Clean. Prod. 2019, 225, 391–404. [Google Scholar] [CrossRef]
- Wang, R.; Wen, X.; Wang, X.; Fu, Y.; Zhang, Y. Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading. Appl. Energy 2022, 311, 118664. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, Y.; Zhang, X. Stochastic optimization framework of the energy-water-emissions nexus for regional power system planning considering multiple uncertainty. J. Clean. Prod. 2021, 281, 124470. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, X.; Han, S.; Sun, L. Capacity Planning of Power-to-gas Devices Considering Reaction Heat Recovery and Cooperative Game. Power Syst. Technol. 2021, 45, 2801–2810. [Google Scholar]
- Zhang, X.; Liu, X.; Zhong, J. Integrated Energy System Planning Considering a Reward and Punishment Ladder-type Carbon Trading and Electric-thermal Transfer Load Uncertainty. Proc. Chin. Soc. Electr. Eng. 2020, 40, 6132–6141. [Google Scholar]
- Ahmed, E.M.; Rathinam, R.; Dayalan, S.; Fernandez, G.S.; Ali, Z.M.; Abdel Aleem, S.H.E.; Omar, A.I. A Comprehensive Analysis of Demand Response Pricing Strategies in a Smart Grid Environment Using Particle Swarm Optimization and the Strawberry Optimization Algorithm. Mathematics 2021, 9, 2338. [Google Scholar] [CrossRef]
- Yuan, G.; Gao, Y.; Ye, B. Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response. Renew. Energy 2021, 179, 1424–1446. [Google Scholar] [CrossRef]
- Yu, B.; Sun, F.; Chen, C.; Fu, G.; Hu, L. Power demand response in the context of smart home application. Energy 2022, 240, 122774. [Google Scholar] [CrossRef]
- Lv, G.; Cao, B.; Dexiang, J.; Wang, N.; Li, J.; Chen, G. Optimal scheduling of regional integrated energy system considering integrated demand response. CSEE J. Power Energy Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, J.; Tao, Y.; Zhao, J. Carbon-Oriented Operational Planning in Coupled Electricity and Emission Trading Markets. IEEE Trans. Power Syst. 2020, 35, 3145–3157. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, J.; Tao, Y. Robust energy systems scheduling considering uncertainties and demand side emission impacts. Energy 2022, 239, 122317. [Google Scholar] [CrossRef]
- Zhou, K.; Li, Y. Carbon finance and carbon market in China: Progress and challenges. J. Clean. Prod. 2019, 214, 536–549. [Google Scholar] [CrossRef]
- Zhou, Q.; Feng, D.; Xu, C.; Feng, C.; Sun, T.; Ding, T. Methods for Allocating Carbon Obligation in Demand Side: A Comparative Study. Autom. Electr. Power Syst. 2015, 7, 153–159. [Google Scholar]
- Kang, C.; Du, E.; Li, Y.; Zhang, N.; Chen, Q.; Guo, H.; Wang, P. Key Scientific Problems and Research Framework for Carbon Perspective Research of New Power Systems. Power Syst. Technol. 2022, 46, 821–833. [Google Scholar]
- Zhou, T.; Kang, C.; Xu, Q.; Chen, Q. Preliminary Theoretical Investigation on Power System Carbon Emission Flow. Autom. Electr. Power Syst. 2012, 36, 38–43. [Google Scholar]
- Kang, C.; Zhou, T.; Chen, Q.; Wang, J.; Sun, Y.; Xia, Q.; Yan, H. Carbon Emission Flow From Generation to Demand: A Network-Based Model. IEEE Trans. Smart Grid 2015, 6, 2386–2394. [Google Scholar] [CrossRef]
- Chen, L.; Sun, T.; Zhou, Y.; Ella, Z.; Fang, C.; Feng, D. Method of Carbon Obligation Allocation Between Generation Side and Demand Side in Power System. Autom. Electr. Power Syst. 2018, 42, 106–111. [Google Scholar]
- Chen, D. Study on Factor Decomposition and Network Flow Analysis of Carbon Emission in Power System. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2016. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1016065992.nh&DbName=CMFD2016 (accessed on 4 July 2022).
- Bialek, J. Tracing the Flow of Electricity. IEEE Proc. Gener. Transm. Distrib. 1996, 143, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xu, Y.; Sun, H.; Zhao, X. Two-Stage Convexification-Based Optimal Electricity-Gas Flow. IEEE Trans. Smart Grid 2020, 11, 1465–1475. [Google Scholar] [CrossRef]
- Zimmerman, R.D.; Murillo-Sanchez, C.E.; Thomas, R.J. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power Syst. 2011, 26, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Jamie McIntyre, B.B.; Seto, H.; Borchardt, S. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources; World Nuclear Association: London, UK, 2011. [Google Scholar]
- Cheng, Y.; Zhang, N.; Zhang, B.; Kang, C.; Xi, W.; Feng, M. Low-Carbon Operation of Multiple Energy Systems Based on Energy-Carbon Integrated Prices. IEEE Trans. Smart Grid 2020, 11, 1307–1318. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, W.; Wu, L.; Mei, S.; Shahidehpour, M.; Li, Z. Decentralized Operation of Interdependent Power Distribution Network and District Heating Network: A Market-Driven Approach. IEEE Trans. Smart Grid 2019, 10, 5374–5385. [Google Scholar] [CrossRef]
Generator No. | Type | Capacity /(MW) | Cost Coefficient /(USD/MWh) | Carbon Intensity /(tCO2/MWh) |
---|---|---|---|---|
G1 | Coal-fired | 900 | 30 | 1.31 |
G2 | Gas-fired | 400 | 62 | 0.58 |
G3 | Coal-fired | 760 | 40 | 0.92 |
G4 | Gas-fired | 400 | 62 | 0.58 |
G5 | Wind turbine | 720 | 32 | 0 |
G6 | Coal-fired | 680 | 42 | 0.85 |
G7 | Wind turbine | 720 | 32 | 0 |
G8 | Wind turbine | 720 | 32 | 0 |
G9 | Coal-fired | 850 | 38 | 1.15 |
G10 | Coal-fired | 900 | 30 | 1.31 |
Load No. | Bus | Load Power /(MW) | Load No. | Bus | Load Power /(MW) | Load No. | Bus | Load Power /(MW) |
---|---|---|---|---|---|---|---|---|
L1 | 1 | 97 | L8 | 12 | 8 | L15 | 23 | 247 |
L2 | 3 | 322 | L9 | 14 | 9 | L16 | 24 | 308 |
L3 | 4 | 500 | L10 | 15 | 320 | L17 | 25 | 224 |
L4 | 7 | 233 | L11 | 16 | 329 | L18 | 26 | 139 |
L5 | 8 | 522 | L12 | 18 | 158 | L19 | 27 | 281 |
L6 | 9 | 6 | L13 | 20 | 280 | L20 | 28 | 206 |
L7 | 11 | 450 | L14 | 21 | 274 | L21 | 29 | 283 |
Item | Parameter | Item | Parameter |
---|---|---|---|
95% | 90% | ||
25% | 10% | ||
2%/month | 2 h |
Carbon-Responsibility Range/tCO2 | Carbon-Trading Price/(USD/tCO2) | |
---|---|---|
Source-Side | Load-Side | |
Case | Carbon-Trading Mechanism | Reference | ||
---|---|---|---|---|
Source-Side | Load-Side | Type | ||
Case 1 | ✔ | UCT | [31] | |
Case 2 | ✔ | UCT | [22] | |
Case 3 | ✔ | ✔ | BCT | Proposed in this study |
New England 39-Bus Test System | IEEE 118-Bus Test System | ||||
---|---|---|---|---|---|
Carbon-Trading Mechanism | Carbon Emission /(tCO2) | Carbon-Reduction Rate/(%) | Carbon-Trading Mechanism | Carbon Emission /(tCO2) | Carbon-Reduction Rate/(%) |
None | 96,470.3 | / | None | 188,586.0 | / |
Load-side UCT | 92,040.0 | 4.6 | Load-side UCT | 176,790.0 | 6.3 |
Source-side UCT | 87,132.9 | 9.7 | Source-side UCT | 171,250.5 | 9.2 |
Source-load BCT | 81,054.5 | 16.0 | Source-load BCT | 156,836.7 | 16.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, J.; Feng, J.; Deng, X.; Wang, C.; Sun, K.; Zhou, H. Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method. Energies 2022, 15, 5359. https://doi.org/10.3390/en15155359
Nan J, Feng J, Deng X, Wang C, Sun K, Zhou H. Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method. Energies. 2022; 15(15):5359. https://doi.org/10.3390/en15155359
Chicago/Turabian StyleNan, Junpei, Jieran Feng, Xu Deng, Chao Wang, Ke Sun, and Hao Zhou. 2022. "Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method" Energies 15, no. 15: 5359. https://doi.org/10.3390/en15155359
APA StyleNan, J., Feng, J., Deng, X., Wang, C., Sun, K., & Zhou, H. (2022). Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method. Energies, 15(15), 5359. https://doi.org/10.3390/en15155359