The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level
Abstract
:1. Introduction
2. Literature Review
3. Background and Hypothesis
3.1. Background
3.2. Hypothesis
4. Methodology and Data
4.1. Data
4.2. Variables and Data
4.2.1. Dependent Variable
4.2.2. Independent Variable
4.2.3. Mediation Variables
4.2.4. Control Variable
4.3. Model Setting
4.3.1. Baseline Model: Dynamic Panel Data Model
4.3.2. Mediating Effect Model
5. Empirical Results
5.1. Baseline Model Results
5.2. Mediating Effect Test
5.3. Robustness Test
- (1)
- Replacing dependent variable.
- (2)
- Digital finance lags by one period.
- (3)
- Deleting municipality.
- (4)
- Replacing the econometric model.
5.4. Further Analysis
5.4.1. Regional Heterogeneity
5.4.2. City Size Heterogeneity
5.4.3. City Resource Dependence Heterogeneity
6. Discussion
7. Conclusions and Implications
7.1. Conclusions
7.2. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, D.; Li, G.; Yu, J. Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities. Energy 2022, 247, 123395. [Google Scholar] [CrossRef]
- Sharma, V.; Greig, C.; Lant, P. What is stopping India’s rapid decarbonisation? Examining social factors, speed, and institutions in Odisha. Energy Res. Soc. Sci. 2021, 78, 102117. [Google Scholar] [CrossRef]
- Danish; Ulucak, R. A revisit to the relationship between financial development and energy consumption: Is globalization paramount? Energy 2021, 227, 120337. [Google Scholar] [CrossRef]
- Xu, Q.; Zhong, M.; Li, X. How does digitalization affect energy? International evidence. Energy Econ. 2022, 107, 105879. [Google Scholar] [CrossRef]
- Hu, K.; Raghutla, C.; Chittedi, K.R.; Zhang, R.; Koondhar, M.A. The effect of energy resources on economic growth and carbon emissions: A way forward to carbon neutrality in an emerging economy. J. Environ. Manag. 2021, 298, 113448. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.-L.; Meng, X.-N.; Duan, M.-M.; Wu, X.-Y. Energy consumption, environmental pollution, and technological innovation efficiency: Taking industrial enterprises in China as empirical analysis object. Environ. Sci. Pollut. Res. 2020, 27, 34147–34157. [Google Scholar] [CrossRef] [PubMed]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Qu, C.; Shao, J.; Shi, Z. Does financial agglomeration promote the increase of energy efficiency in China? Energy Policy 2020, 146, 111810. [Google Scholar] [CrossRef]
- Song, M.; Xie, Q.; Shen, Z. Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints. Energy Policy 2021, 153, 112267. [Google Scholar] [CrossRef]
- Baloch, M.A.; Danish; Meng, F. Modeling the non-linear relationship between financial development and energy consumption: Statistical experience from OECD countries. Environ. Sci. Pollut. Res. 2019, 26, 8838–8846. [Google Scholar] [CrossRef] [PubMed]
- Leyshon, A.; French, S.; Signoretta, P. Financial exclusion and the geography of bank and building society branch closure in Britain. Trans. Inst. Br. Geogr. 2008, 33, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Awan, U.; Sroufe, R.; Shahbaz, M. Industry 4.0 and the circular economy: A literature review and recommendations for future research. Bus. Strat. Environ. 2021, 30, 2038–2060. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Z. The development of digital finance in China: Present and future. China Econ. Q. 2018, 17, 205–218. (In Chinese) [Google Scholar]
- Li, J.; Wu, Y.; Xiao, J.J. The impact of digital finance on household consumption: Evidence from China. Econ. Model. 2019, 86, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Tang, K.; Qiu, Y.; Zhou, D. Does command-and-control regulation promote green innovation performance? Evidence from China’s industrial enterprises. Sci. Total Environ. 2020, 712, 136362. [Google Scholar] [CrossRef]
- Gomber, P.; Koch, J.-A.; Siering, M. Digital Finance and FinTech: Current research and future research directions. J. Bus. Econ. 2017, 87, 537–580. [Google Scholar] [CrossRef]
- Mollick, E. The dynamics of crowdfunding: An exploratory study. J. Bus. Ventur. 2014, 29, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Le, T.-H.; Le, H.-C.; Taghizadeh-Hesary, F. Does financial inclusion impact CO2 emissions? Evidence from Asia. Financ. Res. Lett. 2020, 34, 101451. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Duan, H.; Wang, X. Coupling between energy efficiency and industrial structure: An urban agglomeration case. Energy 2021, 234, 121304. [Google Scholar] [CrossRef]
- Haider, S.; Mishra, P.P. Does innovative capability enhance the energy efficiency of Indian Iron and Steel firms? A Bayesian stochastic frontier analysis. Energy Econ. 2021, 95, 105128. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, T. Regional energy-environmental performance and investment strategy for China’s non-ferrous metals industry: A non-radial DEA based analysis. J. Clean. Prod. 2017, 163, 187–201. [Google Scholar] [CrossRef]
- Curtis, E.M.; Lee, J.M. When do environmental regulations backfire? Onsite industrial electricity generation, energy efficiency and policy instruments. J. Environ. Econ. Manag. 2019, 96, 174–194. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Yuan, H. The spatial threshold effect and its regional boundary of new-type urbanization on energy efficiency. Energy Policy 2022, 164, 112866. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Hu, J.-L.; Wang, S.-C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B. Decomposition of aggregate CO2 emissions: A production-theoretical approach. Energy Econ. 2008, 30, 1054–1067. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J. Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China. Energy Econ. 2015, 47, 87–97. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Q.; Guan, L.; Wang, X. Analysis of Factors Influencing Energy Efficiency Based on Spatial Quantile Autoregression: Evidence from the Panel Data in China. Energies 2021, 14, 504. [Google Scholar] [CrossRef]
- Antonietti, R.; Fontini, F. Does energy price affect energy efficiency? Cross-country panel evidence. Energy Policy 2019, 129, 896–906. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, S. Does market-based electricity price affect China’s energy efficiency? Energy Econ. 2020, 91, 104909. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Q.; Zhang, B.; Sun, C. Trade policy uncertainty and improvement in energy efficiency: Empirical evidence from prefecture-level cities in China. Energy Econ. 2021, 104, 105691. [Google Scholar] [CrossRef]
- Wei, Z.; Han, B.; Pan, X.; Shahbaz, M.; Zafar, M.W. Effects of diversified openness channels on the total-factor energy efficiency in China’s manufacturing sub-sectors: Evidence from trade and FDI spillovers. Energy Econ. 2020, 90, 104836. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Regional heterogeneity of China’s energy efficiency in “new normal”: A meta-frontier Super-SBM analysis. Energy Policy 2019, 134, 110941. [Google Scholar] [CrossRef]
- Xu, M.; Tan, R.; He, X. How does economic agglomeration affect energy efficiency in China?: Evidence from endogenous stochastic frontier approach. Energy Econ. 2022, 108, 105901. [Google Scholar] [CrossRef]
- Tanaka, K.; Managi, S. Industrial agglomeration effect for energy efficiency in Japanese production plants. Energy Policy 2021, 156, 112442. [Google Scholar] [CrossRef]
- Li, B.; Han, Y.; Wang, C.; Sun, W. Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China. Energy Policy 2022, 167, 113081. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, W.; Cheng, J. Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models. Energy Policy 2020, 147, 111858. [Google Scholar] [CrossRef]
- Siddik, M.; Alam, N.; Kabiraj, S. Digital Finance for Financial Inclusion and Inclusive Growth. In Digital Transformation in Business and Society; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 155–168. [Google Scholar]
- Grossman, J.; Tarzai, M. Serving Smallholder Farmers: Recent Developments in Digital Finance. Consultative Group to Assist the Poor; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Feng, S.; Zhang, R.; Li, G. Environmental decentralization, digital finance and green technology innovation. Struct. Chang. Econ. Dyn. 2022, 61, 70–83. [Google Scholar] [CrossRef]
- Wang, K.-L.; Zhu, R.-R.; Cheng, Y.-H. Does the Development of Digital Finance Contribute to Haze Pollution Control? Evidence from China. Energies 2022, 15, 2660. [Google Scholar] [CrossRef]
- Pierrakis, Y.; Collins, L. Crowdfunding: A New Innovative Model of Providing Funding to Projects and Businesses. 2013. Available online: https://ssrn.com/abstract=2395226 (accessed on 1 May 2022).
- Gomber, P.; Kauffman, R.J.; Parker, C.; Weber, B.W. On the Fintech Revolution: Interpreting the Forces of Innovation, Disruption, and Transformation in Financial Services. J. Manag. Inf. Syst. 2018, 35, 220–265. [Google Scholar] [CrossRef]
- Demertzis, M.; Merler, S.; Wolff, G. Capital Markets Union and the Fintech Opportunity. J. Financ. Regul. 2018, 4, 157–165. [Google Scholar] [CrossRef]
- Aldieri, L.; Gatto, A.; Vinci, C.P. Evaluation of energy resilience and adaptation policies: An energy efficiency analysis. Energy Policy 2021, 157, 112505. [Google Scholar] [CrossRef]
- Cagno, E.; Ramirez-Portilla, A.; Trianni, A. Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector. Energy Policy 2015, 83, 240–256. [Google Scholar] [CrossRef]
- Anand, S.; Chhikara, K.S. A theoretical and quantitative analysis of financial inclusion and economic growth. Manag. Labour Stud. 2013, 38, 103–133. [Google Scholar]
- Clark, C. The conditions of economic progress. London: Macmillan. Econ. J. 1940, 51, 120–124. [Google Scholar]
- Yin, Z.; Gong, X.; Guo, P.; Wu, T. What Drives Entrepreneurship in Digital Economy? Evidence from China. Econ. Model. 2019, 82, 66–73. [Google Scholar] [CrossRef]
- Zenou, Y. Job search and mobility in developing countries. Theory and policy implications. J. Dev. Econ. 2008, 86, 336–355. [Google Scholar] [CrossRef]
- Wei, C.; Shen, M.H. Can structural adjustment improve energy efficiency: A study based on China’s provincial data. World Econ. 2008, 11, 77–85. [Google Scholar]
- Xiong, S.; Ma, X.; Ji, J. The impact of industrial structure efficiency on provincial industrial energy efficiency in China. J. Clean. Prod. 2019, 215, 952–962. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S.; Yang, X.; Xie, G. Does internet development improve green total factor energy efficiency? Evidence from China. Energy Policy 2021, 153, 112247. [Google Scholar] [CrossRef]
- Li, G.; Gao, D.; Li, Y. Dynamic environmental regulation threshold effect of technical progress on green total factor energy efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2021, 29, 8804–8815. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Kong, Y.; Ye, B.; Shi, Y.; Zeng, X. Spatial variation of energy efficiency based on a Super-Slack-Based Measure: Evidence from 104 resource-based cities. J. Clean. Prod. 2019, 240, 117669. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z. Measuring the development of digital inclusive finance in China: Index compilation and spatial characteristics. China Econ. Q. 2020, 19, 1401–1418. [Google Scholar]
- Gao, D.; Mo, X.; Duan, K.; Li, Y. Can Green Credit Policy Promote Firms’ Green Innovation? Evidence from China. Sustainability 2022, 14, 3911. [Google Scholar] [CrossRef]
- Fan, H.; Tao, S.; Hashmi, S.H. Does the Construction of a Water Ecological Civilization City Improve Green Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China. Int. J. Environ. Res. Public Health 2021, 18, 11829. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, L.M.; Lobo, J.; Strumsky, D. Invention in the city: Increasing returns to patenting as a scaling function of metropolitan size. Res. Policy 2007, 36, 107–120. [Google Scholar] [CrossRef]
- Gan, C.; Zheng, R.; Yu, D. An empirical study on the effects of industrial structure on economic growth and fluctuations in China. Econ. Res. J. 2011, 5, 4–16. [Google Scholar]
- Gao, D.; Li, Y.; Li, G. Boosting the green total factor energy efficiency in urban China: Does low-carbon city policy matter? Environ. Sci. Pollut. Res. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Guo, Y.; Wu, H. The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work? Bus. Strat. Environ. 2021, 31, 403–424. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Bartik, T.J. How Do the Effects of Local Growth on Employment Rates Vary with Initial Labor Market Conditions? Upjohn Work. Pap. J. Artic. 2006, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Bond, S.R. Dynamic panel data models: A guide to micro data methods and practice. Port. Econ. J. 2002, 1, 141–162. [Google Scholar] [CrossRef]
- Cao, S.; Nie, L.; Sun, H.; Sun, W.; Taghizadeh-Hesary, F. Digital finance, green technological innovation and energy-environmental performance: Evidence from China’s regional economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
First Dimension | Secondary Dimension | Specific Indicators | |
---|---|---|---|
Breadth of Coverage | Account Coverage | Number of Alipay accounts per 10,000 people | |
Proportion of Alipay card-tied users | |||
Average number of bank cards tied to each Alipay account | |||
Depth of Use | Payment Business | Number of payments per capita | |
Payment amount per capita | |||
Ratio of the number of users who are active 50 times or more per year to the number of users who are active 1 time or more per year | |||
Money Funds | Number of Yu Ebao purchases per capita | ||
Amount of Yu Ebao purchased per capita | |||
Number of Yu Ebao purchases per 10,000 alipay users | |||
Credit Business | For individual users | Number of Internet consumer loan users per 10,000 adult Alipay users | |
Number of loans per capita | |||
Loan amount per capita | |||
For micro and small business operators | Number of Internet micro and small business loans users per 10,000 adult Alipay users | ||
Average number of loans for micro and small operators | |||
Average loan amount for micro and small operators | |||
Insurance Business | Number of insured users per 10,000 Alipay users | ||
Number of insurance per capita | |||
Insurance amount per capita | |||
Investment Business | Number of people involved in Internet investment and wealth management per 10,000 Alipay users | ||
Number of investments per capita | |||
Investment amount per capita | |||
Credit Business | Number of users using credit-based lifestyle services (including finance, accommodation, travel, social networking, etc.) per 10,000 Alipay users | ||
Number of calls per natural person for credit collection | |||
Degree of digitization | Convenience | Percentage of mobile payment transactions | |
Percentage of the mobile payment amount | |||
Cost of financial services | Average loan interest rate for micro and small operators | ||
The average interest rate for personal loans |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
GTFEE | 1930 | 0.563831 | 0.180721 | 0.241103 | 1 |
LnDFI | 1930 | 4.874333 | 0.506609 | 2.971952 | 5.713676 |
LnPGDP | 1930 | 10.64405 | 0.571256 | 8.841593 | 13.05569 |
LnGDPG | 1930 | 2.784496 | 0.788214 | −3.65805 | 5.384516 |
LnFDI | 1930 | 10.02489 | 1.901228 | −0.14596 | 14.94127 |
LnTRA | 1930 | 12.08984 | 2.092555 | −1.38757 | 17.79981 |
LnGOV | 1930 | −1.74595 | 0.41209 | −3.12626 | −0.35045 |
LnPOP | 1930 | 6.459114 | 0.931677 | 1.773419 | 11.8246 |
DIFF-GMM | SYS-GMM | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
L.GTFEE | 0.131 ** | 0.073 | 0.614 *** | 0.592 *** |
(0.051) | (0.053) | (0.034) | (0.032) | |
LnDFI | 0.056 *** | 0.156 *** | 0.058 *** | 0.053 *** |
(0.013) | (0.020) | (0.018) | (0.016) | |
LnPGDP | 0.050 | 0.078 *** | ||
(0.031) | (0.022) | |||
LnGDPG | 0.006 | 0.018 *** | ||
(0.005) | (0.005) | |||
LnGOV | −0.404 *** | −0.173 *** | ||
(0.058) | (0.037) | |||
LnPOP | −0.016 | −0.089 *** | ||
(0.014) | (0.016) | |||
LnTRA | 0.019 ** | 0.008 | ||
(0.009) | (0.006) | |||
LnFDI | 0.034 *** | 0.007 ** | ||
(0.011) | (0.003) | |||
_cons | −0.796 *** | −2.015 *** | −0.141 | 0.370 ** |
(0.084) | (0.390) | (0.170) | (0.156) | |
N | 1370 | 1370 | 1651 | 1651 |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.159 | 0.327 | 0.654 | 0.564 |
Sargan | 1.000 | 1.000 | 1.000 | 1.000 |
GTI | ISP | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
GTFEE | LnGTI | GTFEE | GTFEE | LnISU | GTFEE | |
L.GTFEE | 0.592 *** | 0.624 *** | 0.592 *** | 0.592 *** | ||
(0.032) | (0.029) | (0.032) | (0.031) | |||
LnDFI | 0.053 *** | 0.068 ** | 0.037 *** | 0.053 *** | 0.043 *** | 0.015 * |
(0.016) | (0.034) | (0.013) | (0.016) | (0.011) | (0.008) | |
L.LnGTI | 0.737 *** | |||||
(0.020) | ||||||
LnGTI | 0.024 *** | |||||
(0.008) | ||||||
L.LnISU | 0.825 *** | |||||
(0.017) | ||||||
LnISU | 0.035 *** | |||||
(0.011) | ||||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
_cons | 0.370 ** | −0.814 ** | 0.396 *** | 0.370 ** | −0.435 *** | 0.420 *** |
(0.156) | (0.340) | (0.136) | (0.156) | (0.106) | (0.093) | |
N | 1651 | 1651 | 1651 | 1651 | 1651 | 1651 |
AR(1) | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 | 0.000 |
AR(2) | 0.564 | 0.503 | 0.472 | 0.564 | 0.498 | 0.431 |
Sargan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
GTFEE-EBM | L.LnDFI | Non-Municipality | POLS | FE | |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
L.GTFEE | 0.342 *** | 0.581 *** | 0.612 *** | ||
(0.023) | (0.036) | (0.032) | |||
LnDFI | 0.068 *** | 0.052 *** | 0.064 *** | 0.047 *** | |
(0.014) | (0.016) | (0.017) | (0.011) | ||
L.LnDFI | 0.021 ** | ||||
(0.009) | |||||
Controls | Yes | Yes | Yes | Yes | Yes |
_cons | −0.321 ** | 0.193 | 0.427 *** | −1.083 *** | −1.262 *** |
(0.143) | (0.166) | (0.152) | (0.166) | (0.179) | |
N | 1653 | 1651 | 1632 | 1930 | 1930 |
AR(1) | 0.000 | 0.000 | 0.004 | ||
AR(2) | 0.553 | 0.485 | 0.439 | ||
Sargan | 1.000 | 1.000 | 1.000 |
Central and Western | East | Small Cities | Large Cities | Non-Resource | Resource | |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
L.GTFEE | 0.637 *** | 0.536 *** | 0.492 *** | 0.727 *** | 0.543 *** | 0.678 *** |
(0.034) | (0.019) | (0.029) | (0.023) | (0.027) | (0.026) | |
LnDFI | 0.054 *** | −0.016 | 0.089 *** | 0.013 | 0.042 *** | 0.029 ** |
(0.014) | (0.013) | (0.017) | (0.014) | (0.015) | (0.012) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
_cons | 0.634 *** | −0.090 | 0.018 | 0.267 ** | −0.050 | 0.786 *** |
(0.150) | (0.173) | (0.199) | (0.128) | (0.151) | (0.149) | |
N | 1059 | 592 | 910 | 741 | 994 | 657 |
AR(1) | 0.001 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 |
AR(2) | 0.612 | 0.637 | 0.482 | 0.469 | 0.589 | 0.603 |
Sargan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xiong, R.; Lv, S.; Gao, D. The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level. Energies 2022, 15, 5455. https://doi.org/10.3390/en15155455
Liu Y, Xiong R, Lv S, Gao D. The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level. Energies. 2022; 15(15):5455. https://doi.org/10.3390/en15155455
Chicago/Turabian StyleLiu, Yang, Ruochan Xiong, Shigong Lv, and Da Gao. 2022. "The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level" Energies 15, no. 15: 5455. https://doi.org/10.3390/en15155455
APA StyleLiu, Y., Xiong, R., Lv, S., & Gao, D. (2022). The Impact of Digital Finance on Green Total Factor Energy Efficiency: Evidence at China’s City Level. Energies, 15(15), 5455. https://doi.org/10.3390/en15155455