Thermodynamic Analysis of the Possibility of Using Biomass as a Component of High-Energy Materials
Abstract
:1. Introduction
- avoidance/prevention;
- re-use, through, among others, giving a new function;
- recycling;
- other recovery, incl. energy recovery (waste-to-energy WTE);
- disposal.
- Biomass as a fuel;
- 2.
- Biomass as a fuel in various forms;
- directly as combustible fuel;
- as a gas fuel;
- as liquid fuel;
- as granular fuel (fuel pellets);
- to generate electricity.
2. Materials and Methods
2.1. Characteristics of the ANFO Explosive
2.2. IT Tool—Computer Program for Thermodynamic Calculations
2.3. Description of the Methodology of Calculating Thermodynamic Parameters
- variant 1.1—modification of the ANFO composition, replacing diesel oil with biomass;
- variant 1.2—modification of ANFO composition, replacing ammonium nitrate (V) with biomass;
- variant 1.3—modification of the ANFO composition, simultaneous replacement of ammonium nitrate (V) and diesel oil with biomass;
- variant 1.4—searching for the optimal proportions of ingredients (oxygen balance close to zero) of the composition at a constant biomass content of, respectively, 7.0%, 9.0%, 11.0% and 13.0%.
3. Results and Discussion
3.1. The Results of Thermodynamic Calculations of Variants 1.1–1.3 and Their Discussion
3.2. The Results of Thermodynamic Calculations of Variant 1.4 and Their Discussion
4. Conclusions
- ➢
- In the case of thermodynamic calculations of variant 1.1—replacing diesel with biomass, the most favorable energy parameters were found for the composition: 1.1/B0.5 (94.0% ammonium nitrate (V), 5.5% diesel, 0.5% biomass) and 1.1/B1.0 (94.0% ammonium nitrate (V) 5.0% diesel, 1.0% biomass);
- ➢
- The calculations made for variant 1.3—simultaneous replacement of ammonium nitrate (V) and diesel fuel showed that for EX containing 2.0% of biomass, i.e., 1.3/B2.0 (93.0% ammonium nitrate (V), 5.0% diesel, 2.0% biomass), 4.0% biomass; i.e., 1.3/B4.0 (92.0% ammonium nitrate (V), 4.0% diesel, 4.0% biomass) and 6.0% biomass; 1.3/B6.0 (91.0% ammonium nitrate, 3.0% diesel, 6.0% biomass), a decrease in thermodynamic parameters (apart from the explosion temperature) is insignificant and ranges from about 1.0–3.0%;
- ➢
- Modification of the ANFO composition at a constant fixed biomass content while maintaining the optimal oxygen balance (variant 1.4) confirmed that the most favorable thermodynamic parameters were obtained for 1.4/B7.0 (90.5% ammonium nitrate (V), 2.5% diesel, 7.0% biomass), whose predicted thermodynamic parameters are lower than the base ANFO by about 1.1–3.6%;
- ➢
- Thermodynamic simulations made in the ZMWCyw program helped obtain estimated values of the energy parameters of explosives calculated on the basis of a mathematical algorithm. The program does not take into account, inter alia, the distribution of individual components in the mixture (degree of homogenization), their fragmentation, chemical form, functional EX form, diameter of the load or the method of charge initiation;
- ➢
- Initial tests (theoretical calculations) based on the general formula of biomass confirmed its suitability for use as a component in EX. Further research requires the use of a specific type of biomass (plant or animal), determining the elemental composition and energy parameters of the samples, and developing a technology for its introduction and homogenization with other components of the explosive. Due to the promising results, “in situ” tests in field conditions are planned in order to verify the theoretical assumptions;
- ➢
- The production of EX on the basis of ANFO with the use of biomass can contribute to lowering the cost of producing the explosive. It is a widely available, renewable and a low-cost component, unlike diesel fuel, the price of which depends on the geopolitical situation in the world and taxation and is subject to significant fluctuations. Industrial scale production of ANFO from biomass can reuse large amounts of waste substances. The potential economic benefits appear to be of particular importance in local conditions in economically developing countries. The use of energy properties of biomass for the purposes of EX production may contribute to environmental benefits consisting of the reuse of waste, which is part of the broadly understood idea of recycling and the circular economy. In Poland, for the purposes of blasting works only in opencast mines, about 7 million kg of EX are used annually (according to data from 2020). Assuming the production of only 20% of ANFO, out of this value containing 1.0% of biomass in its composition, it is possible to reuse 14,000 kg of the waste substance per year.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S.; Lee, S.H.; Kumar, P.; Kim, K.H.; Lee, S.S.; Bhattacharya, S.S. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Q.; Li, G.; Tseng, C.H. Sustainable municipal waste management strategies through life cycle assessment method: A review. J. Environ. Manag. 2021, 287, 112238. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Liu, J.; Li, T.; Xu, G.; Liu, W. Thermodynamic and economic evaluation of a novel waste-to-energy design incorporating anaerobic digestion and incineration. Energy Convers. Manag. 2022, 252, 115083. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.H.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. Clim. Atmos. Sci. 2019, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 3 June 2022).
- Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.150.01.0109.01.ENG (accessed on 3 June 2022).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001 (accessed on 3 June 2022).
- Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Wyszyński, Z.; Michalska-Klimczak, B.; Pągowski, K.; Kamińska, S. Biomass as the main source of renewable energy in Poland. In Proceedings of the International Scientific Conference, Jelgava, Latvia, 24–25 May 2012; pp. 91–96. Available online: https://llufb.llu.lv/conference/Renewable_energy_energy_efficiency/Latvia_Univ_Agriculture_REEE_conference_2012-91-96.pdf (accessed on 3 June 2022).
- Terhi, S.; Liimatainen, H. Turning Grain Crop Residues into High-Value Extraction Compounds. 2017. Available online: http://www.oulu.fi/university/node/45466 (accessed on 3 June 2022).
- Liu, H.; Jiang, G.M.; Zhuang, H.Y.; Wang, K.J. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renew. Sustain. Energy Rev. 2008, 12, 1402–1418. [Google Scholar] [CrossRef]
- Mahmood, A.; Hussain, A.; Shahzad, A.N.; Honermeier, B. Biomass and biogas yielding potential of sorghum as affected by planting density, sowing time and cultivar. Pakistan J. Bot. 2015, 47, 2401–2408. [Google Scholar]
- Bechis, S. Possible impact of pelletised crop residues use as a fuel for cooking in Niger. In Renewing Local Planning to Face Climate Change in the Tropics, Green Energy and Technology; Springer: Cham, Switzerland, 2017; pp. 311–322. Available online: https://link.springer.com/chapter/10.1007/978-3-319-59096-7_15 (accessed on 3 June 2022).
- Baum, R.; Wajszczuk, K.; Peplinski, B.; Wawrzynowicz, J. Potential for agricultural biomass production for Energy purposes in Poland: A review. Contemp. Econ. 2013, 7, 63–74. Available online: https://www.econstor.eu/bitstream/10419/105415/1/755751248.pdf (accessed on 3 June 2022). [CrossRef] [Green Version]
- Zajemska, M.; Musiał, D. Energetyczne wykorzystanie biomasy z produkcji rolniczej w procesie współspalania, Problemy Inżynierii Rolniczej Energy use of biomass from agricultural production in co-combustion proces). Probl. Agric. Eng. 2013, 4, 107–118. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-34bc2a3e-84e0-473d-9c74-c8475402b292/c/Zajemska.pdf (accessed on 3 June 2022).
- Ministerstwo Gospodarki. Krajowy Plan Działania w Zakresie Energii ze Źródeł Odnawialnych. Warszawa 2010. Available online: https://wfosigw.wroclaw.pl/files/download_pl/769_krajowy-plan-dzialania-w-zakresie-energii-ze-zrodel-odnawialnych.pdf (accessed on 3 June 2022).
- Ahmed, T.; Ahmad, B. Burning of crop residue and its potential for electricity generation. Pakistan Dev. Rev. 2014, 53, 275–293. Available online: http://thepdr.pk/pdr/index.php/pdr/article/download/2613/2613 (accessed on 3 June 2022). [CrossRef] [Green Version]
- Champagne, P. Feasibility of producing bio-ethanol from waste residues: A Canadian perspective Feasibility of producing bio-ethanol from waste residues in Canada. Resour. Conserv. Recycl. 2007, 50, 211–230. [Google Scholar] [CrossRef]
- Niedziółka, I.; Szpryngiel, M.; Kachel-Jakubowska, M.; Kraszkiewicz, A.; Zawiślak, K.; Sobczak, P.; Nadulski, R. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renew. Energy 2015, 76, 312–317. [Google Scholar] [CrossRef]
- Obidziński, S. Pelletization of biomass waste with potato pulp content. Int. Agrophys. 2014, 28, 85–91. Available online: http://www.international-agrophysics.org/pdf-104053-35122?filename=Pelletization%20of%20biomass.pdf (accessed on 3 June 2022). [CrossRef] [Green Version]
- Obidziński, S.; Piekut, J.; Dec, D. The influence of potato pulp content on the properties of pellets from buckwheat hulls. Renew. Energy 2016, 87, 289–297. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Gulczyński, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Środa, K.; Kosowska-Golachowska, M.; Musiał, T.; Wolski, K. Combustion of pelleted sewage sludge with reference to coal and biomass. Fuel 2016, 170, 141–160. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Środa, K.; Kosowska-Golachowska, M.; Musiał, T.; Wolski, K. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form. Waste Manag. 2016, 53, 165–181. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Karwaczyńska, U.; Sporek, M. The Possibility of Disposing of Spent Coffee Ground with Energy Recycling. J. Ecol. Eng. 2015, 16, 133–138. Available online: https://bibliotekanauki.pl/api/full-texts/2020/12/10/6011bb51-6f8e-4c28-ac3a-75d50befe737.pdf (accessed on 3 June 2022). [CrossRef] [Green Version]
- Cichy, W.; Witczak, M.; Walkowiak, M. Fuel Properties of Woody Biomass from Pruning Operations in Fruit Orchards. BioResources 2017, 12, 6458–6470. Available online: https://www.researchgate.net/publication/319095329_Fuel_Properties_of_Woody_Biomass_from_Pruning_Operations_in_Fruit_Orchards (accessed on 3 June 2022). [CrossRef]
- Smaga, M.; Wielgosiński, G.; Kochański, A.; Korczak, K. Biomass as a Major Component of Pellets. Acta Innov. 2018, 26, 81–92. Available online: https://www.proakademia.eu/gfx/baza_wiedzy/465/nr_26_81-92_2_2_2.pdf (accessed on 3 June 2022). [CrossRef]
- Reddy, B.V.; Ramesh, S.; Kumar, A.A.; Wani, S.P.; Ortiz, R.; Ceballos, H.; Sreedevi, T.K. Bio-fuel crops research for energy security and rural development in developing countries. BioEnergy Res. 2008, 1, 248–258. Available online: https://link.springer.com/content/pdf/10.1007/s12155-008-9022-x.pdf (accessed on 3 June 2022). [CrossRef] [Green Version]
- Noor, S.; Latif, A.; Jan, M.; Ishaq, M. Overview of biomass conversion technologies. Sci. Vis. 2011, 16, 119–126. [Google Scholar]
- Biessikirski, A.; Ziąbka, M.; Dworzak, M.; Kuterasiński, Ł.; Twardosz, M. Effect of metal addition on ANFO’s morphology and energy detonation. Przem. Chem. 2019, 98, 928–931. [Google Scholar]
- Zygmunt, B. Detonation parameters of mixtures containing ammonium nitrate and Aluminum. Cent. Eur. J. Energ. Mater. 2009, 6, 57–66. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BAT1-0034-0024 (accessed on 22 July 2022).
- Buczkowski, D.; Zygmunt, B. Detonation properties of mixtures of ammo nium nitrate based fertilizers and fuels. Cent. Eur. J. Energ. Mater. 2011, 8, 99–106. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BAT1-0039-0032 (accessed on 22 July 2022).
- Sitkiewicz-Wołodko, R.; Maranda, A.; Paszula, J.M. Modification of ANFO Detonation Parameters by Addition of Ground of Ammonium Nitrate(V) and Aluminium Powder. Cent. Eur. J. Energ. Mater. 2019, 16, 122–134. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-d2207b5e-2c74-49c3-a5b2-757b147f3315?q=bwmeta1.element.baztech-dae6be4c-5cfd-47bb-b1d9-c1bad932575b;8&qt=CHILDREN-STATELESS (accessed on 22 July 2022). [CrossRef]
- Biessikirski, A.; Barański, K.; Pytlik, M.; Kuterasiński, Ł.; Biegańska, J.; Słowiński, K. Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO. Energies 2021, 14, 2152. Available online: https://www.mdpi.com/1996-1073/14/8/2152/pdf (accessed on 22 July 2022). [CrossRef]
- Miyake, A.; Kobayashi, H.; Echigoya, H.; Kubota, S.; Wada, Y.; Ogata, Y.; Arai, H.; Ogawa, T. Detonation characteristics of ammonium nitrate and activated carbon mixture. J. Loss Prev. Process Ind. 2007, 20, 584–588. [Google Scholar] [CrossRef]
- Sheeran, H.; Sheeran, J. Water Resistant Sensitizing Additive for Ammonium Nitrate Blasting Agents. U.S. Patent US4780156A, 25 October 1988. Available online: https://patents.google.com/patent/US4780156A/en (accessed on 22 July 2022).
- Sheeran, J. Water Blocking in Explosive Compositions. U.S. Patent CA02912246, 10 April 2013. Available online: https://patents.google.com/patent/CA2812246A1/en (accessed on 22 July 2022).
- Damse, R. Waterproofing materials for ammonium nitrate. Def. Sci. J. 2004, 54, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Sugihara, H.; Noguchi, K.; Yoshihara, K.; Sato, Y. Development and field-blasting tests of water-resistant granular explosive. Sci. Technol. Energ. Mater. 2005, 66, 389–392. [Google Scholar]
- Resende, S.A.; Silva, V.C.; Lima, H.M. Study of non-conventional fuels for explosives mixes. Rem Rev. Esc. Minas 2014, 67, 297–302. [Google Scholar] [CrossRef]
- Biegańska, J.; Barański, K. Wpływ dodatków odpadowych tworzyw sztucznych na parametry energetyczne EX typu ANF (Effect of plastic waste additives on the energetic parameters of ANFO explosives). Mater. Wysokoenergetyczne/High Energy Mater. 2017, 9, 145–158. [Google Scholar] [CrossRef]
- PN-EN 13631-15 2007; Materiały wybuchowe do użytku cywilnego—Materiały wybuchowe kruszące—Cześć´ 15: Obliczanie właściwości termodynamicznych. In Explosives for Civil Uses—High. Explosives—Calculation of Thermodynamic Properties. Polish Committee for Standardization: Warsaw, Poland, 2007.
- Grys, S.; Trzcinski, W.A. Termodynamiczne modelowanie procesów spalania, wybuchu i detonacji nieidealnych ukladów wysokoenergetycznych (Thermodynamic modeling of combustion, explosion and detonation processes of non-ideal high-energy systems). Biuletyn WAT 2010, 59. Available online: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BWA9-0041-0050/c/httpwww_wat_edu_plm000000biuletyndownload_phptable3bazaartykulowfielddodajpobierzkey1220.pdf (accessed on 22 July 2022). (Only In Polish).
- Mader, C.H. Numerical Modeling of Detonations; University of California, Berkley: Berkley, CA, USA, 1979. [Google Scholar]
- White, W.B.; Johnson, S.M.; Danzig, G.B. Chemical equilibrium in complex mixtures. J. Chem. Phys. 1958, 28, 751–755. [Google Scholar] [CrossRef]
- Peduzzi, E.; Boissonnet, G.; Maréchal, F. Biomass modelling: Estimating thermodynamic properties from the elemental composition. Fuel 2016, 181, 207–217. [Google Scholar] [CrossRef]
- BN 80 6091 42; Górnicze Materiały Wybuchowe—Obliczanie parametrów użytkowych. In Mining Explosives—Calculation of Utilities Parameters. Polish Committee for Standardization: Warsaw, Poland, 1980.
- Sitkiewicz-Wołodko, R.; Maranda, A. Analiza wybranych parametrów saletroli i emulsyjnych materiałów wybuchowych (Analysis of selected parameters of saletrols and emulsion explosives). Chemik 2016, 70, 3–18. Available online: https://miesiecznikchemik.pl/wp-content/uploads/2016/03/1_16_Maranda_PL.pdf (accessed on 3 June 2022). (Only In Polish).
Ingredients | Density [g/cm3] | Oxygen Balance [%] | Percentage of Ingredients | ||||||
---|---|---|---|---|---|---|---|---|---|
Ammonium Nitrate (V) | 0.82 | 20.00 | 94.00 | 94.00 | 94.00 | 94.00 | 94.00 | 94.00 | 94.00 |
Diesel | 0.84 | −348.25 | 6.00 | 5.50 | 5.00 | 4.50 | 4.00 | 3.50 | 3.00 |
Biomass | 0.82 | −139.05 | 0.00 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 | 3.00 |
EX density | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | ||
EX oxygen balance | −2.095 | −1.049 | −0.003 | 1.043 | 2.089 | 3.135 | 4.181 | ||
EX name | ANFO | 1.1/ B0.5 | 1.1/B1.0 | 1.1/B1.5 | 1.1/B2.0 | 1.1/B2.5 | 1.1/B3.0 |
Ingredients | Density [g/cm3] | Oxygen Balance [%] | Percentage of Ingredients | ||||||
---|---|---|---|---|---|---|---|---|---|
Ammonium Nitrate (V) | 0.82 | 20.00 | 94.00 | 93.50 | 93.00 | 92.50 | 92.00 | 91.50 | 91.00 |
Diesel | 0.84 | −348.25 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Biomass | 0.82 | −139.05 | 0.00 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 | 3.00 |
EX density | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | ||
EX oxygen balance | −2.095 | −2.890 | −3.686 | −4.481 | −5.276 | −6.071 | −6.867 | ||
EX name | ANFO | 1.2/B0.5 | 1.2/B1.0 | 1.2/B1.5 | 1.2/B2.0 | 1.2/B2.5 | 1.2/B3.0 |
Ingredients | Density [g/cm3] | Oxygen Balance [%] | Percentage of Ingredients | ||||||
---|---|---|---|---|---|---|---|---|---|
Ammonium Nitrate (V) | 0.82 | 20.00 | 94.00 | 93.00 | 92.00 | 91.00 | 90.00 | 89.00 | 88.00 |
Diesel | 0.84 | −348.25 | 6.00 | 5.00 | 4.00 | 3.00 | 2.00 | 1.00 | 0.00 |
Biomass | 0.82 | −139.05 | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 10.00 | 12.00 |
EX density | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | 0.821 | 0.820 | ||
EX oxygen balance | −2.095 | −2.890 | −2.095 | −1.594 | −1.092 | −0.591 | −0.089 | ||
EX name | ANFO | 1.3/B2.0 | 1.3/B4.0 | 1.3/B6.0 | 1.3/B8.0 | 1.3/B10.0 | 1.3/B12.0 |
Parameter | Unit | 1.1/B0.5 | 1.1/B1.0 | 1.1/B1.5 | 1.1/B2.0 | 1.1/B2.5 | 1.1/B3.0 |
---|---|---|---|---|---|---|---|
Explosion temperature; K | % | 0.91 | 1.16 | −0.70 | −2.78 | −4.89 | −7.02 |
Constant volume heat of explosion; kJ/kg | % | 0.79 | 0.68 | −2.27 | −5.47 | −8.69 | −11.91 |
Explosive power; kJ/kg | % | 0.12 | −0.30 | −2.30 | −4.46 | −6.64 | −8.85 |
Gas volume at standard conditions; L/kg | % | −0.78 | −1.43 | −1.61 | −1.73 | −1.85 | −1.97 |
Explosion pressure; MPa | % | −0.38 | −1.21 | −3.36 | −5.62 | −7.91 | −10.21 |
Parameter | Unit | 1.3/B2.0 | 1.3/B4.0 | 1.3/B6.0 | 1.3/B8.0 | 1.3/B10.0 | 1.3/B12.0 |
---|---|---|---|---|---|---|---|
Explosion temperature; K | % | 0.21 | 0.42 | 0.60 | 0.49 | −0.42 | −1.58 |
Constant volume heat of explosion; kJ/kg | % | −0.28 | −0.56 | −0.88 | −1.60 | −3.36 | −5.43 |
Explosive power; kJ/kg | % | −0.66 | −1.34 | −2.04 | −2.96 | −4.48 | −6.16 |
Gas volume at standard conditions; L/kg | % | −0.87 | −1.74 | −2.62 | −3.43 | −4.07 | −4.66 |
Explosion pressure; MPa | % | −1.01 | −2.02 | −3.07 | −4.53 | −6.23 | −8.06 |
Ingredients | Density [g/cm3] | Oxygen Balance [%] | Percentage of Ingredients | ||||
---|---|---|---|---|---|---|---|
Ammonium Nitrate (V) | 0.82 | 20.00 | 94.0 | 87.0 | 88.5 | 89.50 | 90.50 |
Diesel | 0.84 | −348.25 | 6.0 | 0.0 | 0.5 | 1.5 | 2.5 |
Biomass | 0.82 | −139.05 | 0.0 | 13.0 | 11.0 | 9.0 | 7.0 |
EX density | 0.821 | 0.820 | 0.820 | 0.820 | 0.821 | ||
EX oxygen balance | −2.095 | −0.677 | 0.663 | 0.162 | −0.340 | ||
EX name | ANFO | 1.4/B13.0 | 1.4/B11.0 | 1.4/B9.0 | 1.4/B7.0 |
Parameter | Unit | ANFO | 1.4/B13.0 | 1.4/B11.0 | 1.4/B9.0 | 1.4/B7.0 |
---|---|---|---|---|---|---|
Explosion temperature | K | 2663.00 | 2652.80 | 2636.70 | 2650.20 | 2679.60 |
Constant volume heat of explosion | kJ/kg | 3957.90 | 3817.10 | 3784.40 | 3822.80 | 3913.40 |
Explosive power | kJ/kg | 972.80 | 924.90 | 921.10 | 928.30 | 949.10 |
Gas volume at standard conditions | l/kg | 997.40 | 952.00 | 953.80 | 956.30 | 967.00 |
Explosion pressure | MPa | 2796.85 | 2614.20 | 2597.17 | 2628.56 | 2695.24 |
Parameter | Unit | 1.4/B13.0 | 1.4/B11.0 | 1.4/B9.0 | 1.4/B7.0 |
---|---|---|---|---|---|
Explosion temperature; K | % | −0.38 | −0.99 | 0.10 | 0.62 |
Constant volume heat of explosion; kJ/kg | % | −3.56 | −4.38 | −2.40 | −1.12 |
Explosive power; kJ/kg | % | −4.92 | −5.31 | −3.68 | −2.44 |
Gas volume at standard conditions, L/kg | % | −4.55 | −4.37 | −3.77 | −3.05 |
Explosion pressure; MPa | % | −6.53 | −7.14 | −5.34 | −3.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biegańska, J.; Barański, K. Thermodynamic Analysis of the Possibility of Using Biomass as a Component of High-Energy Materials. Energies 2022, 15, 5624. https://doi.org/10.3390/en15155624
Biegańska J, Barański K. Thermodynamic Analysis of the Possibility of Using Biomass as a Component of High-Energy Materials. Energies. 2022; 15(15):5624. https://doi.org/10.3390/en15155624
Chicago/Turabian StyleBiegańska, Jolanta, and Krzysztof Barański. 2022. "Thermodynamic Analysis of the Possibility of Using Biomass as a Component of High-Energy Materials" Energies 15, no. 15: 5624. https://doi.org/10.3390/en15155624
APA StyleBiegańska, J., & Barański, K. (2022). Thermodynamic Analysis of the Possibility of Using Biomass as a Component of High-Energy Materials. Energies, 15(15), 5624. https://doi.org/10.3390/en15155624