Performance Enhancement of Interdigitated Heterojunction Solar Cells with Discotic Molecule
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Titanium Dioxide Nanotubes
2.3. Device Fabrication
2.4. Test and Measurements
3. Results and Discussion
3.1. Morphology of Vertically Orientated TiO2 Nanotubes Array
3.2. Molecules Alignment in Composite Film
3.3. Performance of Solar Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schopp, N.; Brus, V.V. A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics. Energies 2022, 15, 4639. [Google Scholar] [CrossRef]
- Riede, M.; Spoltore, D.; Leo, K. Organic solar cells—The path to commercial success. Adv. Energy Mater. 2021, 11, 2002653. [Google Scholar] [CrossRef]
- Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F. A critical review on semitransparent organic solar cells. Nano Energy 2020, 78, 105376. [Google Scholar] [CrossRef]
- Anagnostou, K.; Stylianakis, M.M.; Petridis, K.; Kymakis, E. Building an Organic Solar Cell: Fundamental Procedures for Device Fabrication. Energies 2019, 12, 2188. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.; Blaszczyk, O.; Jagadamma, L.; Roland, T.; Chowdhury, M.; Ruseckas, A.; Samuel, I.W. Engineered exciton diffusion length enhances device efficiency in small molecule photovoltaics. J. Mater. Chem. A 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, L.E.; Bueno, F.T.; Ribeiro, L.; Ribeiro Junior, L.A.; da Silva Filho, D.A.; de Oliveira Neto, P.H. Role of Exciton Density in Organic Materials: Diffusion Length, Lifetime, and Quantum Efficiency. Chem. Mater. 2019, 31, 6818–6823. [Google Scholar] [CrossRef]
- Kim, J.H.; Schaefer, C.; Ma, T.; Zhao, J.; Turner, J.; Ghasemi, M.; Constantinou, I.; So, F.; Yan, H.; Gadisa, A. The Critical Impact of Material and Process Compatibility on the Active Layer Morphology and Performance of Organic Ternary Solar Cells. Adv. Energy Mater. 2019, 9, 1802293. [Google Scholar] [CrossRef]
- Zhu, R.; Man, S.W.; You, L.; Santi, P.; Ratti, C. The effect of urban morphology on the solar capacity of three-dimensional cities. Renew. Energy 2020, 153, 1111–1126. [Google Scholar] [CrossRef]
- Xu, X.P.; Yu, L.Y.; Meng, H.F.; Dai, L.M.; Yan, H.; Li, R.P.; Peng, Q. Polymer Solar Cells with 18.74% Efficiency: From Bulk Heterojunction to Interdigitated Bulk Heterojunction. Adv. Funct. Mater. 2022, 32, 2108797. [Google Scholar] [CrossRef]
- Chevuntulak, C.; Rakpaises, T.; Sridumrongsak, N.; Thainoi, S.; Kiravittaya, S.; Nuntawong, N.; Sopitpan, S.; Yordsri, V.; Thanachayanont, C.; Kanjanachuchai, S. Molecular Beam Epitaxial Growth of Interdigitated Quantum Dots for Heterojunction Solar Cells. J. Cryst. Growth 2019, 512, 159–163. [Google Scholar] [CrossRef]
- Eisenhauer, D.; Trinh, C.; Amkreutz, D.; Becker, C. Light management in crystalline silicon thin-film solar cells with imprint-textured glass superstrate. Sol. Energy Mater. Sol. Cells 2019, 200, 109928. [Google Scholar] [CrossRef]
- Sun, P.; Li, X.; Shao, J.; Braun, P. High-Performance Packaged 3D Lithium-Ion Microbatteries Fabricated Using Imprint Lithography. Adv. Mater. 2021, 33, 2006229. [Google Scholar] [CrossRef]
- Mercier, T.M.; Rahman, T.; Krishnan, C.; Khorani, E.; Shaw, P.J.; Pollard, M.E.; Boden, S.A.; Lagoudakis, P.G.; Charlton, M.D. High symmetry nano-photonic quasi-crystals providing novel light management in silicon solar cells. Nano Energy 2021, 84, 105874. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, J.H.; Kwak, M.K. Surface texturing methods for solar cell efficiency enhancement. Int. J. Precis. Eng. Manuf. 2020, 21, 1389–1398. [Google Scholar] [CrossRef]
- Malgras, V.; Shirai, Y.; Takei, T.; Yamauchi, Y. Coalescence-Driven Verticality in Mesoporous TiO2 Thin Films with Long-Range Ordering. J. Am. Chem. Soc. 2020, 142, 15815–15822. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, L. Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem. Mater. 2010, 22, 6656–6664. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, J.; Wang, Y.; Xiang, C.; Sun, D.; Wu, L.; Tang, X.; Sun, K.; Zang, Z.; Sun, L. Interdigitated CuS/TiO2 nanotube bulk heterojunctions achieved via ion exchange. Electrochim. Acta 2016, 199, 180–186. [Google Scholar] [CrossRef]
- Mor, G.K.; Kim, S.; Paulose, M.; Varghese, O.K.; Shankar, K.; Basham, J.; Grimes, C.A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Lett. 2009, 9, 4250–4257. [Google Scholar] [CrossRef]
- Švrček, V.; Turkevych, I.; Kondo, M. Photoelectric properties of silicon nanocrystals/P3HT bulk-heterojunction ordered in titanium dioxide nanotube arrays. Nanoscale Res. Lett. 2009, 4, 1389–1394. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jho, J.Y. Fabrication of highly ordered and vertically oriented TiO2 nanotube arrays for ordered heterojunction polymer/inorganic hybrid solar cell. Sol. Energy Mater. Sol. Cells 2011, 95, 3152–3156. [Google Scholar] [CrossRef]
- Büttner, P.; Döhler, D.; Korenko, S.; Möhrlein, S.; Bochmann, S.; Vogel, N.; Mínguez-Bacho, I.; Bachmann, J. Solid state interdigitated Sb2S3 based TiO2 nanotube solar cells. RSC Adv. 2020, 10, 28225–28231. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.; Mor, G.K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. J. Non-Cryst. Solids 2008, 354, 2767–2771. [Google Scholar] [CrossRef]
- Salazar, R.; Altomare, M.; Lee, K.; Tripathy, J.; Kirchgeorg, R.; Nguyen, N.T.; Mokhtar, M.; Alshehri, A.; Al-Thabaiti, S.A.; Schmuki, P. Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite-based solid-state solar cells. ChemElectroChem 2015, 2, 824–828. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-Y.; Wang, J.-G.; Sun, H.-H.; Wei, B. Heterostructured TiO2/NiTiO3 nanorod arrays for inorganic sensitized solar cells with significantly enhanced photovoltaic performance and stability. ACS Appl. Mater. Interfaces 2018, 10, 11580–11586. [Google Scholar] [CrossRef]
- Liu, Z.F.; Siekmann, J.; Klingebiel, B.; Rau, U.; Kirchartz, T. Interface Optimization via Fullerene Blends Enables Open-Circuit Voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 Solar Cells. Adv. Energy Mater. 2021, 11, 13. [Google Scholar] [CrossRef]
- Bartesaghi, D.; Perez, I.D.; Kniepert, J.; Roland, S.; Turbiez, M.; Neher, D.; Koster, L.J.A. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 2015, 6, 10. [Google Scholar] [CrossRef]
- Termine, R.; Golemme, A. Charge Mobility in Discotic Liquid Crystals. Int. J. Mol. Sci. 2021, 22, 877. [Google Scholar] [CrossRef]
- Kumar, M.; Varshney, S.; Kumar, S. Emerging nanoscience with discotic liquid crystals. Polym. J. 2020, 53, 283–297. [Google Scholar] [CrossRef]
- Wang, T.; Niu, M.-S.; Guo, J.-J.; Zhang, K.-N.; Wen, Z.-C.; Liu, J.-Q.; Qin, C.-C.; Hao, X.-T. 3D charge transport pathway in organic solar cells via incorporation of discotic liquid crystal columns. Solar RRL 2020, 4, 2000047. [Google Scholar] [CrossRef]
- Li, H.; Gong, H.; Sun, M.; Zhang, H.; Ji, C.; Liang, C.; You, F.; Jing, X.; Kong, X.; He, Z. Tuning molecular interaction in polymer solar cells via a multifunctional discotic component to enhance photovoltaic response. Solar RRL 2022, 6, 2200101. [Google Scholar] [CrossRef]
- Nosheen, B.; Perveen, F.; Ashraf, Z.; Bais, A.; Noor, T. Charge transfer and opto-electronic properties of some newly designed polycatenar discotic liquid crystal derivatives: A DFT study. J. Mol. Modeling 2020, 26, 291. [Google Scholar] [CrossRef] [PubMed]
- Micheletti, C.; Lee, B.; Deering, J.; Binkley, D.M.; Coulson, S.; Hussanain, A.; Zurob, H.; Grandfield, K. Ti–5Al–5Mo–5V–3Cr bone implants with dual-scale topography: A promising alternative to Ti–6Al–4V. Nanotechnology 2020, 31, 235101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-J.; Zhao, J.; Qiao, Z.-J.; Wang, J.-M.; Sun, S.-H.; Fu, W.-X.; Zhang, X.-Y.; Yu, Z.-Y.; Dou, Y.-H.; Kang, J.-L.; et al. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries. Rare Met. 2021, 40, 393–399. [Google Scholar] [CrossRef]
- Dasarathan, S.; Ali, M.; Jung, T.J.; Sung, J.; Kim, D. Vertically Aligned Binder-Free TiO2 Nanotube Arrays Doped with Fe, S and Fe-S for Li-ion Batteries. Nanomaterials 2021, 11, 2924. [Google Scholar] [CrossRef]
- Qin, L.J.; Chen, Q.J.; Lan, R.J.; Jiang, R.Q.; Quan, X.; Xu, B.; Zhang, F.; Jia, Y.M. Effect of Anodization Parameters on Morphology and Photocatalysis Properties of TiO2 Nanotube Arrays. J. Mater. Sci. Technol. 2015, 31, 1059–1064. [Google Scholar] [CrossRef]
- Glover, S.D.; Goeltz, J.C.; Lear, B.J.; Kubiak, C.P. Inter-or intramolecular electron transfer between triruthenium clusters: We’ll cross that bridge when we come to it. Coord. Chem. Rev. 2010, 254, 331–345. [Google Scholar] [CrossRef]
- Sarkar, T.; Schneider, S.A.; Ankonina, G.; Hendsbee, A.D.; Li, Y.; Toney, M.F.; Frey, G.L. Tuning intra and intermolecular interactions for balanced hole and electron transport in semiconducting polymers. Chem. Mater. 2020, 32, 7338–7346. [Google Scholar] [CrossRef]
- Rury, A.S.; Sorenson, S.; Dawlaty, J. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid. J. Chem. Phys. 2016, 144, 104701. [Google Scholar] [CrossRef]
- Mahmood, Z.; Xu, K.; Kucukoz, B.; Cui, X.; Zhao, J.; Wang, Z.; Karatay, A.; Yaglioglu, H.G.; Hayvali, M.; Elmali, A. DiiodoBodipy-perylenebisimide dyad/triad: Preparation and study of the intramolecular and intermolecular electron/energy transfer. J. Org. Chem. 2015, 80, 3036–3049. [Google Scholar] [CrossRef]
- Ho, H.E.; Pagano, A.; Rossi-Ashton, J.A.; Donald, J.R.; Epton, R.G.; Churchill, J.C.; James, M.J.; O’Brien, P.; Taylor, R.J.; Unsworth, W.P. Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. Chem. Sci. 2020, 11, 1353–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasnikov, S.A.; Hanson, C.J.; Beggan, J.P.; Cafolla, A.A. Ordering of TtertBuCuPc on Si substrates studied by NEXAFS and VB XPS using synchrotron radiation. J. Phys. Conf. Ser. 2008, 100, 082041. [Google Scholar] [CrossRef]
- Raj, S.; Sinha, A.K.; Panchal, A.K. Solar cell parameters estimation from illuminated I-V characteristic using linear slope equations and Newton-Raphson technique. J. Renew. Sustain. Energy 2013, 5, 8. [Google Scholar] [CrossRef]
- Mihailetchi, V.; Wildeman, J.; Blom, P. Space-charge limited photocurrent. Phys. Rev. Lett. 2005, 94, 126602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihailetchi, V.D.; van Duren, J.K.; Blom, P.W.; Hummelen, J.C.; Janssen, R.A.; Kroon, J.M.; Rispens, M.T.; Verhees, W.J.H.; Wienk, M. Electron transport in a methanofullerene. Adv. Funct. Mater. 2003, 13, 43–46. [Google Scholar] [CrossRef]
- Jurchescu, O.D.; Baas, J.; Palstra, T.T. Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 2004, 84, 3061–3063. [Google Scholar] [CrossRef]
- Lee, H.; Rana, A.; Kymissis, I.; Kim, C.H. Origin of open-circuit voltage reduction in high-mobility perovskite solar cells. Sol. Energy 2022, 236, 473–479. [Google Scholar] [CrossRef]
- Kirchartz, T.; Pieters, B.E.; Taretto, K.; Rau, U. Mobility dependent efficiencies of organic bulk heterojunction solar cells: Surface recombination and charge transfer state distribution. Phys. Rev. B 2009, 80, 6. [Google Scholar] [CrossRef] [Green Version]
- Petrosyan, S.G.; Khachatryan, V.A.; Nersesyan, S.R. Influence of Surface Recombination on Open Circuit-Voltage of a Single Nanowire Solar Cell with Radialp-nJunction. J. Contemp. Phys. Armen. Acad. Sci. 2020, 55, 225–234. [Google Scholar] [CrossRef]
Potential (V) | Nanotube Diameter (nm) | Wall Thickness (nm) |
---|---|---|
35 | 100 | 5 |
30 | 80 | 5 |
25 | 60 | 6 |
20 | 40 | 6 |
Device | Nanotube Diameter (nm) | VOC 1 (V) | JSC 2 (mA/cm2) | FF 3 (%) | PCE 4 (%) |
---|---|---|---|---|---|
1 | 100 | 0.55 | 4.92 | 49.5 | 1.34 |
2 | 80 | 0.53 | 5.42 | 49.0 | 1.41 |
3 | 60 | 0.54 | 4.48 | 48.3 | 1.17 |
4 | 40 | 0.52 | 3.56 | 48.5 | 0.90 |
5 | planar | 0.90 | 0.77 | 60.0 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, Y.; Chen, Q.; Zeng, Z. Performance Enhancement of Interdigitated Heterojunction Solar Cells with Discotic Molecule. Energies 2022, 15, 5736. https://doi.org/10.3390/en15155736
Zhang Z, Wang Y, Chen Q, Zeng Z. Performance Enhancement of Interdigitated Heterojunction Solar Cells with Discotic Molecule. Energies. 2022; 15(15):5736. https://doi.org/10.3390/en15155736
Chicago/Turabian StyleZhang, Zhi, Yao Wang, Qun Chen, and Zhipan Zeng. 2022. "Performance Enhancement of Interdigitated Heterojunction Solar Cells with Discotic Molecule" Energies 15, no. 15: 5736. https://doi.org/10.3390/en15155736
APA StyleZhang, Z., Wang, Y., Chen, Q., & Zeng, Z. (2022). Performance Enhancement of Interdigitated Heterojunction Solar Cells with Discotic Molecule. Energies, 15(15), 5736. https://doi.org/10.3390/en15155736