Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation
1. Introduction
2. Special Issue Articles
3. Trends and the Future Development
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schmid, D.; Korkmaz, P.; Blesl, M.; Fahl, U.; Friedrich, R. Analyzing transformation pathways to a sustainable European energysystem-Internalization of health damage costs caused by air pollution. Energy Strat. Rev. 2019, 26, 100417. [Google Scholar] [CrossRef]
- A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate NeutralEconomy. 2018. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/2_dgclima_rungemetzger.pdf (accessed on 22 July 2022).
- Tokarski, S.; Magdziarczyk, M.; Smolinski, A. Risk management scenarios for investment program delays in the Polish power industry. Energies 2021, 14, 5210. [Google Scholar] [CrossRef]
- Howaniec, N.; Smolinski, A. Biowaste utilization in the process of co-gasification with hard coal and lignite. Energy 2017, 118, 18–23. [Google Scholar] [CrossRef]
- Howaniec, N.; Smolinski, A. Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas. Int. J. Hydrogen Energy 2011, 36, 2038–2043. [Google Scholar] [CrossRef]
- Smoliński, A.; Wojtacha-Rychter, K.; Król, M.; Magdziarczyk, M.; Polański, J.; Howaniec, N. Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas. Energy 2022, 254, 124210. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef]
- Urych, T.; Chećko, J.; Magdziarczyk, M.; Smoliński, A. Numerical Simulations of Carbon Dioxide Storage in Selected Geological Structures in North-Western Poland. Front. Energy Res. 2022, 10, 827794. [Google Scholar] [CrossRef]
- Rabe, M.; Bilan, Y.; Widera, K.; Vasa, L. Application of the Linear Programming Method in the Construction of a Mathematical Model of Optimization Distributed Energy. Energies 2022, 15, 1872. [Google Scholar] [CrossRef]
- Balat, H.; Öz, C. Technical and Economic Aspects of Carbon Capture an Storage—A Review. Energy Explor. Exploit. 2007, 25, 357–392. [Google Scholar] [CrossRef]
- Møll Nilsen, H.; Lie, K.-A.; Andersen, O. Analysis of CO2 Trapping Capacities and Long-Term Migration for Geological Formations in the Norwegian North Sea Using MRST-Co2lab. Comput. Geosci. 2015, 79, 15–26. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). About CCUS. Paris. 2021. Available online: https://www.iea.org/reports/about-ccus (accessed on 1 July 2022).
- IEAGHG. CCS Deployment in the Context of Regional Developments in Meeting Long-Term Climate Change Objectives; IEAGHG: Cheltenham, UK, 2017. [Google Scholar]
- Klimek, K.; Kapłan, M.; Syrotyuk, S.; Bakach, N.; Kapustin, N.; Konieczny, R.; Dobrzyński, J.; Borek, K.; Anders, D.; Dybek, B.; et al. Investment Model of Agricultural Biogas Plants for Individual Farms in Poland. Energies 2021, 14, 7375. [Google Scholar] [CrossRef]
- Ciuła, J.; Kozik, V.; Generowicz, A.; Gaska, K.; Bak, A.; Paździor, M.; Barbusiński, K. Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies 2020, 13, 6254. [Google Scholar] [CrossRef]
- Wodołażski, A.; Skiba, J.; Zarębska, K.; Polański, J.; Smolinski, A. CFD Modeling of the Catalyst Oil Slurry Hydrodynamics in a High Pressure and Temperature as Potential for Biomass Liquefaction. Energies 2020, 13, 5694. [Google Scholar] [CrossRef]
- Kubisztal, J.; Łosiewicz, B.; Dybał, P.; Kozik, V.; Bąk, A. Water-Induced Corrosion Damage of Carbon Steel in Sulfolane. Energies 2020, 13, 4580. [Google Scholar] [CrossRef]
- Bielowicz, B. Petrographic Characteristics of Coal Gasification and Combustion by-Products from High Volatile Bituminous Coal. Energies 2020, 13, 4374. [Google Scholar] [CrossRef]
- Nikolsky, V.; Kuzyayev, I.; Dychkovskyi, R.; Alieksandrov, O.; Yaris, V.; Ptitsyn, S.; Tikhaya, L.; Howaniec, N.; Bak, A.; Siudyga, T.; et al. A Study of Heat Exchange Processes within the Channels of Disk Pulse Devices. Energies 2020, 13, 3492. [Google Scholar] [CrossRef]
- Krawczyk, P.; Śliwińska, A. Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant. Energies 2020, 13, 1384. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Iwaszenko, S.; Howaniec, N.; Smoliński, A. Determination of random pore model parameters for underground coal gasification simulation. Energy 2018, 166, 972–978. [Google Scholar] [CrossRef]
- Prabowo, B.; Umeki, K.; Yan, M.; Nakamura, M.R.; Castaldi, M.J.; Yoshikawa, K. CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction. Appl. Energy 2014, 113, 670–679. [Google Scholar] [CrossRef]
- GREEN DEAL. Available online: https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf (accessed on 1 July 2022).
- Burchart-Korol, D.; Krawczyk, P.; Czaplicka-Kolarz, K.; Smolinski, A. Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel 2016, 173, 239–246. [Google Scholar] [CrossRef]
- Kumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smoliński, A.; Bąk, A. Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation. Energies 2022, 15, 5868. https://doi.org/10.3390/en15165868
Smoliński A, Bąk A. Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation. Energies. 2022; 15(16):5868. https://doi.org/10.3390/en15165868
Chicago/Turabian StyleSmoliński, Adam, and Andrzej Bąk. 2022. "Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation" Energies 15, no. 16: 5868. https://doi.org/10.3390/en15165868
APA StyleSmoliński, A., & Bąk, A. (2022). Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation. Energies, 15(16), 5868. https://doi.org/10.3390/en15165868